Package 'MixMatrix'

November 14, 2019
Type Package
Title Classification with Matrix Variate Normal and t Distributions

Version 0.2.4

Description Provides sampling and density functions for matrix variate normal, t , and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) arXiv:1907.09565. Performs clustering with matrix variate normal and t mixture models.
Depends R (>= 3.5.0)
Imports stats, CholWishart, Rcpp
Suggests knitr, rmarkdown, testthat, covr, ggplot2, dplyr, magrittr, spelling
VignetteBuilder knitr
LazyData true
URL http://github.com/gzt/MixMatrix/, https://gzt.github.io/MixMatrix/
BugReports http://github.com/gzt/MixMatrix/issues
Language en-us
License GPL-3
RoxygenNote 6.1.1
Encoding UTF-8
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Author Geoffrey Thompson [aut, cre] (https://orcid.org/0000-0003-2436-8822),
B. D. Ripley author of original lda and qda functions [$\mathrm{ctb}, \mathrm{cph}$],
W. N. Venables author of original lda and qda functions [ctb, cph]

Maintainer Geoffrey Thompson gzthompson@gmail.com
Repository CRAN
Date/Publication 2019-11-14 22:30:03 UTC

R topics documented:

ARgenerate 2
CSgenerate 3
init_matrixmixture 3
matrixlda 5
matrixmixture 6
matrixqda 9
MixMatrix 10
MLmatrixnorm 11
MLmatrixt 12
predict.matrixlda 14
predict.matrixqda 15
rmatrixinvt 16
rmatrixnorm 18
rmatrixt 19
Index 22
ARgenerate Generate a unit $A R(1)$ covariance matrix

Description

generate $\mathrm{AR}(1)$ correlation matrices

Usage

ARgenerate (n , rho)

Arguments

n	number of columns/rows
rho	correlation parameter

Value

Toeplitz $n \times n$ matrix with 1 on the diagonal and $r h o^{k}$ on the other diagonals, where k is distance from the main diagonal. Used internally but it is useful for generating your own random matrices.

See Also

toeplitz

Examples

ARgenerate (6, .9)

CSgenerate Generate a compound symmetric correlation matrix

Description

Generate a compound symmetric correlation matrix

Usage

CSgenerate(n , rho)

Arguments

n number of dimensions
rho off-diagonal element - a correlation between -1 and 1 . Will warn if less than 0.

Value

returns an $n \times n$ matrix with 1 on the diagonal and rho on the off-diagonal.

Examples

\# generates a covariance matrix with 1 on the main diagonal
\# and 0.5 on the off-diagonal elements.
CSgenerate ($3, .5$)

Description

Providing this will generate a list suitable for use as the init argument in the matrixmixture function. Either provide data and it will select centers and variance matrices to initialize or provide initial values and it will format them as expected for the function.

Usage

init_matrixmixture(data, prior = NULL, K = length(prior), centers $=$ NULL, $U=N U L L, V=N U L L, ~ c e n t e r m e t h o d=" k m e a n s "$, varmethod = "identity", model = "normal", init = NULL, ...)

Arguments

$$
\begin{aligned}
& \text { data data, } p \times q \times n \text { array } \\
& \text { prior prior probability. One of prior and K must be provided. They must be consistent } \\
& \text { if both provided. } \\
& \text { K } \\
& \text { centers } \\
& \text { U } \\
& \text { V } \\
& \text { centermethod } \\
& \text { what method to use to generate initial centers. Currently support random start } \\
& \text { (random) or performing k-means (kmeans) on the vectorized version for a small } \\
& \text { number of iterations and then converting back. By default, if } K \text { centers are pro- } \\
& \text { vided, nothing will be done. } \\
& \text { varmethod what method to use to choose initial variance matrices. Currently only identity } \\
& \text { matrices are created. By default, if } U \text { and } V \text { matrices are provided, nothing will } \\
& \text { be done. } \\
& \text { model whether to use a normal distribution or a t-distribution, not relevant for more } \\
& \text { initialization methods. } \\
& \text { init (optional) a (possibly partially-formed) list with some of the components centers, } \\
& U \text {, and } V \text {. The function will complete the list and fill out missing entries. } \\
& \text {... Additional arguments to pass to kmeans() if that is centermethod. }
\end{aligned}
$$

Value

a list suitable to use as the init argument in matrixmixture:
centers the group means, a $p \times q \times K$ array.
U the between-row covariance matrices, a $p \times p \times K$ array
V the between-column covariance matrix, a $q \times q \times K$ array

See Also

matrixmixture

Examples

```
    set.seed(20180221)
A <- rmatrixt(30,mean=matrix(0,nrow=3,ncol=4), df = 10)
# 3x4 matrices with mean 0
B <- rmatrixt(30,mean=matrix(2,nrow=3,ncol=4), df = 10)
# 3x4 matrices with mean 2
C <- array (c(A,B), dim=c( }3,4,60)) # combine into one array
```

```
prior <- c(.5,.5) # equal probability prior
init = init_matrixmixture(C, prior = prior)
# will find two centers using the "kmeans" method on the vectorized matrices
```

```
matrixlda LDA for matrix variate distributions
```


Description

Performs linear discriminant analysis on matrix variate data. This works slightly differently from the LDA function in MASS: it does not sphere the data or otherwise normalize it. It presumes equal variance matrices and probabilities are given as if the data are from a matrix variate normal distribution. The estimated variance matrices are weighted by the prior. However, if there are not enough members of a class to estimate a variance, this may be a problem. The function does not take the formula interface. If method $=$ ' t ' is selected, this performs discrimination using the matrix variate t distribution, presuming equal covariances between classes.

Usage

matrixlda(x, grouping, prior, tol = 1e-04, method = "normal", nu $=10$, ..., subset)

Arguments

x

grouping

prior a vector of prior probabilities of the same length as the number of classes
tol
method whether to use the normal distribution (normal) or the t distribution (t). By default, normal.
nu If using the t-distribution, the degrees of freedom parameter. By default, 10 .
Arguments passed to or from other methods, such as additional parameters to pass to MLmatrixnorm (e.g., row.mean)
subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.)

Value

Returns a list of class matrixlda containing the following components:
prior the prior probabilities used.
counts the counts of group membership
means the group means.
scaling the scalar variance parameter
U the between-row covariance matrix
V the between-column covariance matrix
lev levels of the grouping factor
N The number of observations used.
method The method used.
nu The degrees of freedom parameter if the t distribution was used.
call The (matched) function call.

References

G Z Thompson, R Maitra, W Q Meeker, A Bastawros (2019), "Classification with the matrix-variate-t distribution", arXiv e-prints arXiv:1907.09565 https://arxiv.org/abs/1907.09565
Ming Li, Baozong Yuan, "2D-LDA: A statistical linear discriminant analysis for image matrix", Pattern Recognition Letters, Volume 26, Issue 5, 2005, Pages 527-532, ISSN 0167-8655.

Aaron Molstad \& Adam J. Rothman (2019), "A Penalized Likelihood Method for Classification With Matrix-Valued Predictors", Journal of Computational and Graphical Statistics, 28:1, 11-22, doi: 10.1080/10618600.2018.1476249 MatrixLDA
Venables, W. N. \& Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0 MASS

See Also

predict.matrixlda, lda, MLmatrixnorm and MLmatrixt matrixqda, and matrixmixture

Examples

```
set.seed(20180221)
# construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D<-matrixlda(C, groups, prior) # fit model
logLik(D)
print(D)
```

matrixmixture Fit a matrix variate mixture model

Description

Clustering by fitting a mixture model using EM with K groups and unconstrained covariance matrices for a matrix variate normal or matrix variate t distribution (with specified degrees of freedom nu).

Usage

```
matrixmixture(x, init \(=\) NULL, prior \(=\) NULL, K = length(prior),
    iter = 1000, model = "normal", method = NULL, row.mean = FALSE,
    col.mean \(=\) FALSE, tolerance \(=0.1\), nu \(=\) NULL,... , verbose \(=0\),
    miniter \(=5\), convergence \(=\) TRUE)
```


Arguments

X
init a list containing an array of K of $p \times q$ means labeled centers, and optionally $p \times p$ and $q \times q$ positive definite variance matrices labeled U and V . By default, those are presumed to be identity if not provided. If init is missing, it will be provided using the prior or K by init_matrixmix.
prior prior for the K classes, a vector that adds to unity
K number of classes - provide either this or the prior. If this is provided, the prior will be of uniform distribution among the classes.
iter maximum number of iterations.
model whether to use the normal or t distribution.
method what method to use to fit the distribution. Currently no options.
row.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this and col.mean are TRUE, there will be a common mean for the entire matrix.
col.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this and row. mean are TRUE, there will be a common mean for the entire matrix.
tolerance convergence criterion, using Aitken acceleration of the log-likelihood by default.
nu degrees of freedom parameter. Can be a vector of length K.
... pass additional arguments to MLmatrixnorm or MLmatrixt
verbose whether to print diagnostic output, by default 0 . Higher numbers output more results.
miniter minimum number of iterations
convergence By default, TRUE. Whether to use Aitken acceleration to determine convergence. If false, it instead checks if the change in log-likelihood is less than tolerance. Aitken acceleration may prematurely end in the first few steps, so you may wish to set miniter or select FALSE if this is an issue.

Value

A list of class MixMatrixModel containing the following components:
prior the prior probabilities used.
init the initialization used.
K the number of groups
N the number of observations
centers the group means.
U the between-row covariance matrices
V the between-column covariance matrix
posterior the posterior probabilities for each observation
pi the final proportions
nu The degrees of freedom parameter if the t distribution was used.
convergence whether the model converged
logLik a vector of the log-likelihoods of each iteration ending in the final log-likelihood of the model
model the model used
method the method used
call The (matched) function call.

References

Andrews, Jeffrey L., Paul D. McNicholas, and Sanjeena Subedi. 2011. "Model-Based Classification via Mixtures of Multivariate T-Distributions." Computational Statistics \& Data Analysis 55 (1): 520-29. doi: 10.1016/j.csda.2010.05.019.
Fraley, Chris, and Adrian E Raftery. 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation." Journal of the American Statistical Association 97 (458). Taylor \& Francis: 611-31. doi: 10.1198/016214502760047131.
McLachlan, Geoffrey J, Sharon X Lee, and Suren I Rathnayake. 2019. "Finite Mixture Models." Annual Review of Statistics and Its Application 6. Annual Reviews: 355-78. doi: 10.1146/annurevstatistics031017100325.
Viroli, Cinzia. 2011. "Finite Mixtures of Matrix Normal Distributions for Classifying Three-Way Data." Statistics and Computing 21 (4): 511-22. doi: 10.1007/s112220109188x.

See Also

init_matrixmixture

Examples

```
set.seed(20180221)
A <- rmatrixt(20,mean=matrix(0,nrow=3,ncol=4), df = 5)
# 3x4 matrices with mean 0
B <- rmatrixt(20,mean=matrix(1,nrow=3,ncol=4), df = 5)
# 3x4 matrices with mean 1
C <- array(c(A,B), dim=c(3,4,40)) # combine into one array
prior <- c(.5,.5) # equal probability prior
# create an intialization object, starts at the true parameters
init = list(centers = array(c(rep(0,12),rep(1,12)), dim = c(3,4,2)),
    U = array(c(diag(3), diag(3)), dim = c(3,3,2))*20,
    V = array(c(diag(4), diag(4)), dim = c(4,4,2))
)
# fit model
    res<-matrixmixture(C, init = init, prior = prior, nu = 5,
                model = "t", tolerance = 1e-3, convergence = FALSE)
```

```
    print(res$centers) # the final centers
    print(res$pi) # the final mixing proportion
    plot(res) # the log likelihood by iteration
    logLik(res) # log likelihood of final result
    BIC(res) # BIC of final result
    predict(res, newdata = C[,,c(1,21)]) # predicted class membership
```

matrixqda Quadratic Discriminant Analysis for Matrix Variate Observations

Description

See matrixlda: quadratic discriminant analysis for matrix variate observations.

Usage

matrixqda(x, grouping, prior, tol $=1 \mathrm{e}-04$, method = "normal", nu $=10$,... , subset)

Arguments

X
grouping
prior a vector of prior probabilities of the same length as the number of classes
tol by default, 1e-4. Tolerance parameter checks for 0 variance.
method whether to use the normal distribution (normal) or the t distribution (t). By default, normal.
nu If using the t -distribution, the degrees of freedom parameter. By default, 10.
... Arguments passed to or from other methods, such as additional parameters to pass to MLmatrixnorm (e.g., row.mean)
subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.)

Details

This uses MLmatrixnorm or MLmatrixt to find the means and variances for the case when different groups have different variances.

Value

Returns a list of class matrixqda containing the following components:
prior the prior probabilities used.
counts the counts of group membership
means the group means.

U the between-row covariance matrices
V the between-column covariance matrices
lev levels of the grouping factor
N The number of observations used.
method The method used.
nu The degrees of freedom parameter if the t -distribution was used.
call The (matched) function call.

References

G Z Thompson, R Maitra, W Q Meeker, A Bastawros (2019), "Classification with the matrix-variate-t distribution", arXiv e-prints arXiv:1907.09565 https://arxiv.org/abs/1907.09565
Venables, W. N. \& Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0

Pierre Dutilleul. The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, (64):105-123, 1999.

See Also

predict.matrixqda, qda, MLmatrixnorm, MLmatrixt, matrixlda, and matrixmixture

Examples

```
set.seed(20180221)
# construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixqda(C, groups, prior)
logLik(D)
print(D)
```


Description

Provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019). Performs clustering with matrix variate normal and t mixture models.

Description

Maximum likelihood estimates exist for $N>\max (p / q, q / p)+1$ and are unique for $N>\max (p, q)$. This finds the estimate for the mean and then alternates between estimates for the U and V matrices until convergence. An $\operatorname{AR}(1)$, compound symmetry, correlation matrix, or independence restriction can be proposed for either or both variance matrices. However, if they are inappropriate for the data, they may fail with a warning.

Usage

```
MLmatrixnorm(data, row.mean = FALSE, col.mean = FALSE,
    row.variance = "none", col.variance = "none", tol = 10 *
    .Machine$double.eps^0.5, max.iter = 100, U, V, ...)
```


Arguments

$\left.\begin{array}{ll}\text { data } & \begin{array}{l}\text { Either a list of matrices or a 3-D array with matrices in dimensions } 1 \text { and } 2, \\ \text { indexed by dimension 3. }\end{array} \\ \text { row.mean } & \begin{array}{l}\text { By default, FALSE. If TRUE, will fit a common mean within each row. If both this } \\ \text { and col.mean are TRUE, there will be a common mean for the entire matrix. }\end{array} \\ \text { col.mean } & \begin{array}{l}\text { By default, FALSE. If TRUE, will fit a common mean within each row. If both this } \\ \text { and row.mean are TRUE, there will be a common mean for the entire matrix. }\end{array} \\ \text { row.variance } & \begin{array}{l}\text { Imposes a variance structure on the rows. Either 'none', 'AR(1), 'CS' for 'com- } \\ \text { pound symmetry', 'Correlation' for a correlation matrix, or 'Independence' for } \\ \text { independent and identical variance across the rows. Only positive correlations } \\ \text { are allowed for AR(1) and CS covariances. Note that while maximum likeli- } \\ \text { hood estimators are available (and used) for the unconstrained variance matrices, }\end{array} \\ \text { optim is used for any constraints so it may be considerably slower. }\end{array}\right\}$

Value
Returns a list with a the following elements:
mean the mean matrix
scaling the scalar variance parameter (the first entry of the covariances are restricted to unity)
U the between-row covariance matrix
V the between-column covariance matrix
iter the number of iterations
tol the squared difference between iterations of the variance matrices at the time of stopping
\log Lik vector of \log likelihoods at each iteration.
convergence a convergence flag, TRUE if converged.
call The (matched) function call.

References

Pierre Dutilleul. The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, (64):105-123, 1999.
Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462

See Also

rmatrixnorm and MLmatrixt

Examples

```
set.seed(20180202)
# simulating from a given density
A <- rmatrixnorm(n=100,mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),list=TRUE)
# finding the parameters by ML estimation
results=MLmatrixnorm(A, tol = 1e-5)
print(results)
```


Description

For the matrix variate normal distribution, maximum likelihood estimates exist for $N>\max (p / q, q / p)+$ 1 and are unique for $N>\max (p, q)$. The number necessary for the matrix variate t has not been worked out but this is a lower bound. This implements an ECME algorithm to estimate the mean, covariance, and degrees of freedom parameters. An AR(1), compound symmetry, or independence restriction can be proposed for either or both variance matrices. However, if they are inappropriate for the data, they may fail with a warning.

Usage

MLmatrixt(data, row.mean $=$ FALSE, col.mean $=$ FALSE, row.variance = "none", col.variance = "none", df = 10, fixed $=$ TRUE, tol $=$.Machine\$double.eps^0.5, max.iter $=5000, \mathrm{U}, \mathrm{V}$, ...)

Arguments

data Either a list of matrices or a 3-D array with matrices in dimensions 1 and 2, indexed by dimension 3 .
row.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this and col.mean are TRUE, there will be a common mean for the entire matrix.
col.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this and row. mean are TRUE, there will be a common mean for the entire matrix.
row.variance Imposes a variance structure on the rows. Either 'none', 'AR(1)', 'CS' for 'compound symmetry', 'Correlation' for a correlation matrix, or 'Independence' for independent and identical variance across the rows. Only positive correlations are allowed for $\mathrm{AR}(1)$ and CS. Note that while maximum likelihood estimators are available (and used) for the unconstrained variance matrices, optim is used for any constraints so it may be considerably slower.
col.variance Imposes a variance structure on the columns. Either 'none', 'AR(1)', 'CS', 'Correlation', or 'Independence'. Only positive correlations are allowed for AR(1) and CS.
df Starting value for the degrees of freedom. If fixed $=T R U E$, then this is required and not updated. By default, set to 10 .
fixed Whether df is estimated or fixed. By default, TRUE.
tol Convergence criterion. Measured against square deviation between iterations of the two variance-covariance matrices.
max.iter Maximum possible iterations of the algorithm.
$U \quad$ (optional) Can provide a starting point for the U matrix. By default, an identity matrix.

V (optional) Can provide a starting point for the V matrix. By default, an identity matrix.
... (optional) additional arguments can be passed to optim if using restrictions on the variance.

Value

Returns a list with the following elements:
mean the mean matrix
U the between-row covariance matrix
V the between-column covariance matrix
var the scalar variance parameter (the first entry of the covariances are restricted to unity)
nu the degrees of freedom parameter
iter the number of iterations
tol the squared difference between iterations of the variance matrices at the time of stopping
logLik \log likelihood of result.
convergence a convergence flag, TRUE if converged.
call The (matched) function call.

References

Thompson, G Z. R Maitra, W Q Meeker, A Bastawros (2019), "Classification with the matrix-variate-t distribution", arXiv e-prints arXiv:1907.09565 https://arxiv.org/abs/1907. 09565
Dickey, James M. 1967. "Matricvariate Generalizations of the Multivariate t Distribution and the Inverted Multivariate t Distribution." Ann. Math. Statist. 38 (2): 511-18. doi: 10.1214/aoms/ 1177698967

Liu, Chuanhai, and Donald B. Rubin. 1994. "The ECME Algorithm: A Simple Extension of EM and ECM with Faster Monotone Convergence." Biometrika 81 (4): 633-48. doi: 10.2307/2337067
Meng, Xiao-Li, and Donald B. Rubin. 1993. "Maximum Likelihood Estimation via the ECM Algorithm: A General Framework." Biometrika 80 (2): 267-78. doi: 10.1093/biomet/80.2.267
Rubin, D.B. 1983. "Encyclopedia of Statistical Sciences." In, 4th ed., 272-5. John Wiley.

See Also

rmatrixnorm, rmatrixt, MLmatrixnorm

Examples

```
set.seed(20180202)
# drawing from a distribution with specified mean and covariance
A <- rmatrixt(n=100,mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),list=TRUE, df = 5)
# fitting maximum likelihood estimates
results=MLmatrixt(A, tol = 1e-5, df = 5)
print(results)
```

predict.matrixlda Classify Matrix Variate Observations by Linear Discrimination

Description

Classify matrix variate observations in conjunction with matrixlda.

Usage

\#\# S3 method for class 'matrixlda'
predict(object, newdata, prior = object\$prior, ...)

Arguments

object object of class matrixlda
newdata array or list of new observations to be classified. If newdata is missing, an attempt will be made to retrieve the data used to fit the matrixlda object.
prior The prior probabilities of the classes, by default the proportions in the training set or what was set in the call to matrixlda.
... arguments based from or to other methods

Details

This function is a method for the generic function predict() for class "matrixlda". It can be invoked by calling predict (x) for an object x of the appropriate class.

Value

Returns a list containing the following components:
class The MAP classification (a factor)
posterior posterior probabilities for the classes

See Also

matrixlda, matrixqda, and matrixmixture

Examples

```
set.seed(20180221)
# construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixlda(C, groups, prior)
predict(D)$posterior[1:10,]
```

```
predict.matrixqda
```

Classify Matrix Variate Observations by Quadratic Discrimination

Description

Classify matrix variate observations in conjunction with matrixqda.

Usage

\#\# S3 method for class 'matrixqda'
predict(object, newdata, prior = object\$prior, ...)

Arguments

object	object of class matrixqda
newdata	array or list of new observations to be classified. If newdata is missing, an attempt will be made to retrieve the data used to fit the matrixqda object.
prior	The prior probabilities of the classes, by default the proportions in the training set or what was set in the call to matrixqda.
\ldots.	arguments based from or to other methods

Details

This function is a method for the generic function predict() for class "matrixqda". It can be invoked by calling predict (x) for an object x of the appropriate class.

Value

Returns a list containing the following components:
class The MAP classification (a factor)
posterior posterior probabilities for the classes

See Also

matrixlda, matrixqda, and matrixmixture

Examples

```
set.seed(20180221)
# construct two populations of 3\times4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep (1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixqda(C, groups, prior) # fit model
predict(D)$posterior[1:10,] # predict, show results of first 10
```

rmatrixinvt Distribution functions for matrix variate inverted t distributions

Description

Generate random samples from the inverted matrix variate t distribution or compute densities.

Usage

```
rmatrixinvt(n, df, mean, \(L=\operatorname{diag}(d i m(a s . m a t r i x(m e a n))[1])\),
        \(R=\operatorname{diag}(\operatorname{dim}(\) as.matrix(mean))\([2]), U=L \% * \% t(L), V=t(R) \% * \%\)
        R, list = FALSE, array \(=\) NULL)
    dmatrixinvt(x, df, mean = matrix(0, \(p, n), L=\operatorname{diag}(p), R=\operatorname{diag}(n)\),
        \(\mathrm{U}=\mathrm{L} \% * \% \mathrm{t}(\mathrm{L}), \mathrm{V}=\mathrm{t}(\mathrm{R}) \% * \% \mathrm{R}\), log = FALSE)
```


Arguments

$\mathrm{n} \quad$ number of observations for generation
$d f \quad$ degrees of freedom (>0, may be non-integer), $d f=0, \operatorname{Inf}$ is allowed and will return a normal distribution.
mean $\quad p \times q$ This is really a 'shift' rather than a mean, though the expected value will be equal to this if $d f>2$
$\mathrm{L} \quad p \times p$ matrix specifying relations among the rows. By default, an identity matrix.
$\mathrm{R} \quad q \times q$ matrix specifying relations among the columns. By default, an identity matrix.

U $L L^{T}-p \times p$ positive definite matrix for rows, computed from L if not specified.
V $\quad R^{T} R-q \times q$ positive definite matrix for columns, computed from R if not specified.
list Defaults to FALSE . If this is TRUE , then the output will be a list of matrices.
array If $n=1$ and this is not specified and list is FALSE, the function will return a matrix containing the one observation. If $n>1$, should be the opposite of list . If list is TRUE, this will be ignored.
$x \quad$ quantile for density
$\log \quad \operatorname{logical}$; in dmatrixt, if TRUE, probabilities p are given as $\log (p)$.

Value

rmatrixinvt returns either a list of $n p \times q$ matrices or a $p \times q \times n$ array.
dmatrixinvt returns the density at x.

References

Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462

Dickey, James M. 1967. "Matricvariate Generalizations of the Multivariate t Distribution and the Inverted Multivariate t Distribution." Ann. Math. Statist. 38 (2): 511-18. doi: 10.1214/aoms/ 1177698967

See Also

rmatrixnorm, rmatrixt, and Distributions.

Examples

\# an example of drawing from the distribution and computing the density.
A<-rmatrixinvt($\mathrm{n}=2$, df = 10, diag(4))
dmatrixinvt(A[, 1], df $=10$, mean $=\operatorname{diag}(4)$)

rmatrixnorm Matrix variate Normal distribution functions

Description

Density and random generation for the matrix variate normal distribution

Usage

rmatrixnorm(n, mean, $L=\operatorname{diag}(\operatorname{dim}(a s . m a t r i x(m e a n))[1])$, $R=\operatorname{diag}(\operatorname{dim}($ as.matrix(mean))$[2]), U=L \% * \% t(L), V=t(R) \% * \%$ R, list $=$ FALSE, array $=$ NULL, force $=$ FALSE)
dmatrixnorm(x, mean $=\operatorname{matrix}(0, p, n), L=\operatorname{diag}(p), R=\operatorname{diag}(n)$, $U=L \% * \% t(L), V=t(R) \% * \% R, l o g=F A L S E)$

Arguments

n
mean
L
$\mathrm{R} \quad q \times q$ matrix specifying relations among the columns. By default, an identity matrix.
U $L L^{T}-p \times p$ positive definite variance-covariance matrix for rows, computed from L if not specified.
$\vee \quad R^{T} R-q \times q$ positive definite variance-covariance matrix for columns, computed from R if not specified.
list Defaults to FALSE. If this is TRUE , then the output will be a list of matrices.
array If $n=1$ and this is not specified and list is FALSE, the function will return a matrix containing the one observation. If $n>1$, should be the opposite of list . If list is TRUE, this will be ignored.
force If TRUE, will take the input of L and/or R directly - otherwise computes U and V and uses Cholesky decompositions. Useful for generating degenerate normal distributions. Will also override concerns about potentially singular matrices unless they are not, in fact, invertible.
$x \quad$ quantile for density
\log
number of observations to generate - must be a positive integer.
$p \times q$ matrix of means
$p \times p$ matrix specifying relations among the rows. By default, an identity matrix.
logical; if TRUE, probabilities p are given as $\log (\mathrm{p})$.

Value

rmatrixnorm returns either a list of $n p \times q$ matrices or a $p \times q \times n$ array.
dmatrixnorm returns the density at x .

References

Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462

See Also

rmatrixt, rmatrixinvt, rnorm and Distributions

Examples

```
set.seed(20180202)
# a draw from a matrix variate normal with a certain mean
# and row-wise covariance
rmatrixnorm(n=1,mean=matrix(c(100,0,-100,0, 25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),list=FALSE)
set.seed(20180202)
# another way of specifying this - note the output is equivalent
A <- rmatrixnorm(n=10,mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),list=TRUE)
A[[1]]
# demonstrating the dmatrixnorm function
dmatrixnorm(A[[1]],mean=matrix(c(100,0,-100,0, 25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),log=TRUE )
```

 rmatrixt Distribution functions for the matrix variate \(t\) distribution.

Description

Density and random generation for the matrix variate t distribution.

Usage

```
rmatrixt(n, df, mean, \(L=\operatorname{diag}(d i m(a s . m a t r i x(m e a n))[1])\),
    \(R=\operatorname{diag}(d i m(\) as.matrix(mean))\([2]), U=L \% * \% ~ t(L), V=t(R) \% * \%\)
    R, list = FALSE, array = NULL, force = FALSE)
    dmatrixt(x, df, mean \(=\operatorname{matrix}(0, p, n), L=\operatorname{diag}(p), R=\operatorname{diag}(n)\),
        \(\mathrm{U}=\mathrm{L} \% * \% \mathrm{t}(\mathrm{L}), \mathrm{V}=\mathrm{t}(\mathrm{R}) \% * \% \mathrm{R}\), log = FALSE)
```


Arguments

n
df degrees of freedom (>0, may be non-integer), $\mathrm{df}=0, \mathrm{Inf}$ is allowed and will
mean $\quad p \times q$ This is really a 'shift' rather than a mean, though the expected value will be equal to this if $d f>2$
$\mathrm{L} \quad p \times p$ matrix specifying relations among the rows. By default, an identity matrix.
$\mathrm{R} \quad q \times q$ matrix specifying relations among the columns. By default, an identity matrix.

U
V
list
array
force
x
log
number of observations for generation return a normal distribution.

Details

The matrix t-distribution is parameterized slightly differently from the univariate and multivariate t-distributions - the variance is scaled by a factor of $1 / \mathrm{df}$. In this parameterization, the variance for a 1×1 matrix variate t-distributed random variable with identity variance matrices is $1 /(d f-2)$ instead of $d f /(d f-2)$. A Central Limit Theorem for the matrix variate T is then that as df goes to infinity, $\operatorname{MVT}\left(0, d f, I_{p}, d f * I_{q}\right)$ converges to $M V N\left(0, I_{p}, I_{q}\right)$.

Value

rmatrixt returns either a list of $n p \times q$ matrices or a $p \times q \times n$ array.
dmatrixt returns the density at x .

References

Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462

Dickey, James M. 1967. "Matricvariate Generalizations of the Multivariate t Distribution and the Inverted Multivariate t Distribution." Ann. Math. Statist. 38 (2): 511-18. doi: 10.1214/aoms/ 1177698967

See Also

rmatrixnorm, rmatrixinvt,rt and Distributions.

Examples

```
set.seed(20180202)
# random matrix with df = 10 and the given mean and L matrix
rmatrixt(n=1,df=10,mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
    L=matrix(c(2,1,0,.1),nrow=2),list=FALSE)
# comparing 1-D distribution of t to matrix
summary(rt(n=100,df=10))
summary(rmatrixt(n=100,df=10,matrix(0)))
# demonstrating equivalence of 1x1 matrix t to usual t
set.seed(20180204)
x = rmatrixt(n=1,mean=matrix(0),df=1)
dt(x,1)
dmatrixt(x,df=1)
```


Index

```
ARgenerate, 2
CSgenerate, 3
Distributions, 17, 19, 21
dmatrixinvt(rmatrixinvt),16
dmatrixnorm(rmatrixnorm), 18
dmatrixt(rmatrixt),19
init_matrixmixture, 3, 8
lda, }
matrixlda, 5, 10, 15, 16
matrixmixture, 4, 6, 6, 10, 15, 16
matrixqda, 6, 9, 15, 16
MixMatrix, 10
MixMatrix-package (MixMatrix), 10
MLmatrixnorm, 6, 10, 11, 14
MLmatrixt, 6, 10, 12, 12
predict.matrixlda,6,14
predict.matrixqda, 10,15
qda, 10
rmatrixinvt, 16, 19, 21
rmatrixnorm, 12,14,17,18, 21
rmatrixt, 14, 17, 19, 19
rnorm, 19
rt,21
toeplitz,2
```

