Package 'MiRAnorm'

November 3, 2016

Type Package

Title Adaptive Normalization for miRNA Data

Version 1.0.0

Description An adaptive normalization algorithm that selects housekeeping genes based on the sample level variability in the data. This is suitable for any data obtained from RT-qPCR assays. A manuscript describing the method is submitted to Genome Biology under ``MiRAnorm: An Adaptive Method for the Normalization of MicroRNA Array Data``, Yuda Zhu et al.

Depends R (>= 3.1.0)

Imports grDevices, graphics, stats, utils, ggplot2, cluster, npmv, dendextend, parallel, MASS, plyr, reshape2, ArgumentCheck

License GPL-3

LazyData TRUE

RoxygenNote 5.0.1

NeedsCompilation no

Author Yuda Zhu [aut, cre], Amanda Zhao [aut]

Maintainer Yuda Zhu <yudazhu@gmail.com>

Repository CRAN

Date/Publication 2016-11-03 11:33:06

R topics documented:

dist.func		2
impmat		2
miranorm		3
scr	•••	4
simData		5
		6

Index

dist.func

Description

dist.func returns a sum total of all distances for each row of the matrix from the centroid.

Usage

```
dist.func(mndata, standardize = TRUE, method = "euclidean",
    centroid = NULL)
```

Arguments

mndata	matrix dataset with numeric columns.
standardize	is a booleon variable to denote whether columns should first be scaled to 0-1.
method	dictates how distance is computed. Currently, only "euclidean" is implemented.
centroid	allows user to specify the centroid values for each column. Otherwise, the mean of each column is taken by default.

```
impmat
```

Imputation function

Description

impmat imputes a dataset entered as rows=Genes, columns=Samples. NA values are imputed by row. Currently, impvalue function imputes these as the max value of the row, the largest observed value for a given Gene across all Samples.

Usage

```
impmat(data)
```

Arguments

data

dataset to be imputed. Should contain all numeric values with rows=Genes and columns=Samples.

miranorm

Description

miranorm returns a list of suggested normalization genes based on supplied data. Various output figures are also available if requested in the parameter list.

Usage

```
miranorm(data = dat, group = dat$Trt, max = 15, min = 3,
method = "complex", dis.method = "Euclidean", hclust.method = "single",
ct = 25, missing = 0, clustplot = TRUE, selected = 4, ggplot = TRUE,
heatmap = TRUE, known.positives = NULL, suggested.list = NULL,
exclude = NULL)
```

Arguments

data	Dataframe containing at a minimum: Sample, Gene, Ct, and Trt
group	Treatment allocation. This should be the same length as the number of rows in data.
max	When method is chosen as "complex", this determines the maximum selected size at which the stability evaluation is done.
min	When method is chosen as "complex", this determines the minimum selected size at which the stability evaluation is done.
method	Choice of "simple" or "complex". Simple runs a single pass of miranorm for suggested normalizing genes. Complex runs bootstrap samples across a range of sizes to compute a stability metric.
dis.method	Distance metric used to calculate pairwise distance between individual miRNAs across all samples. Currently "Euclidean" and "1-Cor" are implemented.
hclust.method	The agglomeration method used to group genes. Methods are the same as de- fined in the hclust function in the stats package and include "single", "average", "complete", and "ward.D2". "single" is recommended as it is more robust to small perturbations and tends to form the "chaining" phenomenon useful for defining normalizing genes.
ct	Cycle threshold values at or above this level are treated as NA for the purposes of determining normalization genes. Recommend the value be set to 25.
missing	Defines maximum percentage of samples missing for a given gene before that gene is excluded from dataset during normalization.
clustplot	"True" or "False" to output or suppress stability plot. Only applicable if method = "complex".
selected	How many adaptive normalizing genes to search for in panel. Note, actual num- ber of genes found may be larger based on tree cut.
ggplot	"True" or "False" to output general raw data plots.

heatmap	"True or "False" to output or suppress heatmap plot.
known.positives	
	Names of miRNA that are known positive. These will be added automatically to the heatmap plot.
suggested.list	Names of miRNA that are user suggested normalizing miRNA. These will be added automatically to the heatmap plot.
exclude	List of miRNA to exclude from the selection process for HK genes, eg: known.positives should be included here.

Value

A list including the following: nmean, nmed, nlcv, lcv.gene, ncls, ncls.gene.

nmean is the dataset normalized to the global mean.

nmed is the dataset normalized to the global median.

nlcv is the dataset normalized to the average of the 3 genes with the lowest CV.

lcv.gene is the names of the 3 genes with used to normalize nlcv

ncls is the dataset normalized to the adaptive normalizing genes chosen from miranorm.

ncls.gene is the names of the genes chosen as adaptive normalizing genes chosen from miranorm.

Examples

```
dat = simData(n.trt=15, n.ctrl=15, n.gene=30, n.err=10, sigma.error = c(1, 0.3), mean.sample = 2,
sigma.sample = 1.88 , sigma.gene = 0.1, n.big.effect = 5, n.small.effect = 10, mean.big.effect = 2,
mean.small.effect = 1.2)$sim
```

```
obj = miranorm(data = dat, group = dat$Group, method="simple")
```

scr

Replacing values above ct to NA

Description

scr screens the dataset in wide format according to Ct threshold and missing.percent.thresh (for each gene, the percentage of samples is missing). sets all values above Ct threshold to NA and then removes all rows of genes with number of missing above missing.percent.thresh.

Usage

scr(dat, threshold, missing.percent.thresh)

simData

Arguments

dat	the dataset with rows = Genes and columns = Samples.	
threshold	Ct value at or above which all values are set to NA.	
missing.percent.thresh		
	a number between 0 to 100 denoting the percentage of allowable missing. If the percentage of missing is greater than this value, the row (gene) is not retained.	

simData

Simulating a RT-PCR miRNA dataset.

Description

simData simulates a RT-PCR miRNA dataset with user defined levels of variability and treatment effect size.

Usage

```
simData(n.trt = 50, n.ctrl = 50, n.gene = 96, sigma.error, n.err = 10,
mean.sample = 0.6, sigma.sample = 0.6, sigma.gene = 0,
n.big.effect = 5, n.small.effect = 15, mean.big.effect = 5,
mean.small.effect = 2)
```

Arguments

n.trt	Number of simulated treatment samples	
n.ctrl	Number of simulated control samples	
n.gene	Number of simulated genes in the panel	
sigma.error	a vector of length 2 for 2 different measurement error sizes (sd).	
n.err	number of genes with sigma.error[2]. The rest (n.gene - n.err) have sigma.error[1] measurement error.	
mean.sample	the unadjusted mean of the samples. Can generally be left as default	
sigma.sample	the unadjusted sample to sample sd. Can generallyb e left as default.	
sigma.gene	sd of gene to gene effect sizes for large and small treatment effects.	
n.big.effect	Number of genes with large treatment effect	
n.small.effect	Number of genes with small treatment effect	
mean.big.effect		
	Average effect size for a "large" treatment effect	
mean.small.effect		

Average effect size for a "small" treatment effect

Index

 ${\tt dist.func,2}$

impmat, 2

miranorm, 3

scr,4 simData,5