
Multivariate-from-Univariate MCMC Sampler: The

R Package MfUSampler

Alireza S. Mahani
Scientific Computing Group

Sentrana Inc.

Mansour T.A. Sharabiani
National Heart and Lung Institute

Imperial College London

Abstract

The R package MfUSampler provides Monte Carlo Markov Chain machinery for gen-
erating samples from multivariate probability distributions using univariate sampling al-
gorithms such as slice sampler and adaptive rejection sampler. The multivariate wrapper
performs a full cycle of univariate sampling steps, one coordinate at a time. In each step,
the latest sample values obtained for other coordinates are used to form the conditional
distributions. The concept is an extension of Gibbs sampling where each step involves,
not an independent sample from the conditional distribution, but a Markov transition for
which the conditional distribution is invariant. The software relies on proportionality of
conditional distributions to the joint distribution to implement a thin wrapper for pro-
ducing conditionals. Examples illustrate basic usage as well as methods for improving
performance. By encapsulating the multivariate-from-univariate logic, MfUSampler pro-
vides a reliable library for rapid prototyping of custom Bayesian models while allowing
for incremental performance optimizations such as utilization of conjugacy, conditional
independence, and porting function evaluations to compiled languages. Utility functions
for MCMC diagnostics as well as sample-based construction of predictive posterior distri-
butions are provided in MfUSampler.

Keywords: monte carlo markov chain, slice sampler, adaptive rejection sampler, gibbs sam-
pling, Metropolis.

1. Introduction

Bayesian inference software such as Stan (Stan Development Team 2014), OpenBUGS (Thomas,
O’Hara, Ligges, and Sturtz 2006), and JAGS (Plummer 2004) provide high-level, domain-
specific languages (DSLs) to specify and sample from probabilistic directed acyclic graphs
(DAGs). In some Bayesian projects, the convenience of using such DSLs comes at the price
of reduced flexibility in model specification, and suboptimality of the underlying sampling
algorithms used by the compilers for the particular distribution that must be sampled. Fur-
thermore, for large projects the end-goal might be to implement all or part of the sampling
algorithm in a high-performance - perhaps parallel - language. In such cases, researchers may
choose to start their development work by ‘rolling their own’ joint probability distributions
from the DAG specification, followed by application of their choice of a sampling algorithm
to the joint distribution.

Many Monte Carlo Markov Chain (MCMC) algorithms have been proposed over the years

2 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

for sampling from complex posterior distributions. Perhaps the most widely-known algo-
rithm is Metropolis (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) and its
generalization, Metropolis-Hastings (MH) (Hastings 1970). These multivariate algorithms
are easy to implement, but they can be slow to converge without a carefully-selected proposal
distribution. A particular flavor of MH is the Stochastic Newton Sampler (Qi and Minka
2002), where the proposal distribution is a multivariate Gaussian based on the second-order
Taylor series expansion of the log-probability. This method has been implemented in the
R package sns (Mahani, Hasan, Jiang, and Sharabiani 2015). It can be quite effective for
twice-differentiable, log-concave distributions such as those encountered in generlized linear
regression (GLM) problems. Another flavor of MH is the t-walk algorithm (Christen and Fox
2010) which uses a set of scale-invariant proposal distributions to co-evolve two points in the
state space [better description]. Hamiltonian Monte Carlo (HMC) algorithms (Girolami and
Calderhead 2011; Neal 2011) have also gained popularity due to emerging techniques for their
automated tuning (Hoffman and Gelman 2014).

Univariate samplers tend to have few tuning parameters and thus are well suited for black-box
MCMC software. Two important examples are adaptive rejection sampling (Gilks and Wild
1992) (or ARS) and slice sampling (Neal 2003). ARS requires log-density to be concave, and
needs its first derivative, while slice sampler is generic and derivative-free. To apply these
univariate samplers to multivariate distributions, they must be applied one-coordinate-at-a-
time according to the Gibbs sampling algorithm (Geman and Geman 1984), where at the end
of each univariate step the sampled value is used to update the conditional distribution for
the next coordinate. MfUSampler encapsulates this logic into a library function, providing
a fast and reliable path towards Bayesian model estimation for researchers working on novel
DAG specifications. In addition to slice sampler and ARS, current version of MfUSampler
(1.0.0) contains adaptive rejection Metropolis sampler (Gilks, Best, and Tan 1995) and uni-
variate Metropolis with Gaussian proposal. Univariate samplers have their limits: when pos-
terior distribution exhibits strong correlation structure, one-coordinate-at-a-time algorithms
can become inefficient as they fail to capture important geometry of the space (Girolami
and Calderhead 2011). This has been a key motivation for research on black-box multi-
variate samplers, such as adaptations of slice sampler (Thompson 2011) or the no-U-turn
sampler (Hoffman and Gelman 2014).

The rest of this article is organized as follows. In Section 2 we provide a brief overview of
the extended Gibbs sampling framework used in MfUSampler. In Section 3 we illustrate how
to use the software with an example. Section 4 shows how MfUSampler discussed several
performance optimization techniques that can be used in conjunction with MfUSampler.
Finally, Section 5 provides a summary and concluding remarks.

2. Theory and Implementation of MfUSampler

In this section, we discuss the theoretical underpinnings of the MfUSampler package, in-
cluding extended Gibbs sampling (Section 2.1), and proportionality of conditional and joint
distributions (Section 2.2). Software components of MfUSampler, described in Section 2.3,
are best understood in this theoretical background.

2.1. Extended Gibbs sampling

Alireza S. Mahani, Mansour T.A. Sharabiani 3

Gibbs sampling (Bishop 2006) involves iterating through state space coordinates, one at a
time, and drawing samples from the distribution of each coordinate, conditioned on the latest
sampled values for all remaining coordinates. Gibbs sampling reduces a multivariate sampling
problem into a series of univariate problems, which can be more tractable.

In what we refer to as ‘extended Gibbs sampling’, rather than requiring an independent sample
from each coordinate’s conditional distribution, we expect a Markov transition for which the
conditional distribution is an invariant distribution. Among the current univariate samplers
implemented in MfUSampler, adaptive rejection sampler produces a standard Gibbs sampler
while the remaining samplers falls in the ‘extended Gibbs sampler’ category. The following
lemma forms the basis for proving the validity of extended Gibbs sampling as an MCMC
sampler. (For a discussion of ergodicity of MCMC samplers, see Roberts and Rosenthal
(1999); Jarner and Hansen (2000)).

Lemma 1. If a coordinate-wise Markov transition leaves the conditional distribution invari-
ant, it will also leave the joint distribution invariant.

Proof is given in Appendix B. A full Gibbs cycle is simply a succession of coordinate-wise
Markov transitions, and since each one leaves the target distribution invariant according to
the above lemma, same is true of the resulting composite Markov transition density.

2.2. Proportionality of conditional and joint distributions

Using univariate samplers within Gibbs sampling framework requires access to conditional
distributions, up to a multiplicative constant (in terms of coordinate being sampled). Refer-
ring to conditional distribution for the k’th coordinate as p(xk|x\k), we examine the following
application of Bayes’ rule

p(xk|x\k) =
p(xk,x\k)

p(x\k)
∝ p(xk,x\k), (1)

to observe that, since the normalizing factor - p(x\k) - is independent of xk, the joint and
conditional distributions are porportional. Therefore, the joint distribution can be supplied
to univariate sampling routines in lieu of conditional distributions during each step of Gibbs
sampling. MfUSampler takes advantage of this property, as described next.

2.3. Implementation

The MfUSampler software consists of 5 components: 1) connectors, 2) univariate samplers,
3) Gibbs wrappers, 4) diagnostic utilities, and 5) full Bayesian prediction. We describe each
component below. Figure 1 provides an overview of how these components fit in the overall
process flow of MfUSampler. Below we describe each component in detail.

Connectors The internal functions MfU.fEval, MfU.fgEval.f and MfU.fgEval.g return the
conditional log-density and its gradients for each coordinate, using the underlying joint log-
density and its gradient vector (Section 2.2). These functions act as the bridge between the
user-supplied, multivariate log-densities and the univariate samplers. The vectorized functions
MfU.fgEval.f and MfU.fgEval.g are used by the ars function (see below). Other samplers,
which are derivative-free, use MfU.fEval.

4 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

Log-PDF

Univariate samplers
MfU.Slice

ars (ars package)

arms (HI package)

MfU.UniMet

Connectors
MfU.fEval

MfU.fgEval.f

MfU.fgEval.g

Gibbs wrappers
MfU.Sample

MfU.Sample.Run

Diagnostics
summary.MfU

plot.MfU

Prediction
predict.MfU

summary.predict.MfU

MfUSampler

Coefficient

samples
“MfU” class

Sample

diagnostics

Predictive

posterior

samples

PublicPrivate

Prediction

function

Input

Software module

Output

Figure 1: Software component and process flow for MfUSampler. Connector and sampler
private modules mediate Gibbs sampling of user-supplied PDF.

Univariate samplers These functions are responsible for producing a single MCMC jump for
univariate distributions resulting from applying the connector functions to the user-supplied,
multivariate distribution. As of version 1.0.0, MfUSampler supports the following 4 samplers:

1. Univariate slice sampler with stepout and shrinkage (Neal 2003). The code, wrapped
in the internal function MfU.Slice, is taken - with small modifications - from Radford
Neal’s website1. Slice sampler is derivative-free and robust, i.e. its performance is
rather insensitive to its tuning parameters. It is the default option in MfU.Sample and
MfU.Sample.Run.

2. Adaptive rejection sampler (Gilks and Wild 1992), imported from R package ars (Perez-
Rodriguez, Wild, and Gilks 2014). ARS requires log-density to be concave, and its
gradient. Our experience shows that it is somewhat more sensitive to the choice of
tuning parameters, compared to slice sampler (Section 3.3).

3. Adpative rejection Metropolis sampler (Gilks et al. 1995), imported from R package
HI (Petris, Tardella, and Gilks 2013). This algorithm is an adaptation of ARS with an
additional Metropolis acceptance test, aimed at accommodating distributions that are
not log-concave. The algorithm can also be applied directly to a multivariate distribu-
tion. However, see (Gilks, Neal, Best, and Tan 1997).

4. Univariate Metropolis with Gaussian proposal, implemented by MfUSampler (function

1http://www.cs.toronto.edu/~radford/ftp/slice-R-prog

http://www.cs.toronto.edu/~radford/ftp/slice-R-prog

Alireza S. Mahani, Mansour T.A. Sharabiani 5

MfU.Univariate.Metropolis). This simple sampler can be inefficient, unless the stan-
dard deviation of Gaussian proposal is chosen carefully. It has been primarily included
as a reference for other, more practical choices.

For technical details on the sampling algorithms and their tuning parameters, see help file
for MfU.Sample, as well as aforementioned publications or statistical textbooks (Robert and
Casella 1999).

Gibbs wrappers The function MfU.Sample implements the extended Gibbs sampling concept
(Section 2.1), using a for loop that applies the underlying univariate sampler to each co-
ordinate of the multivariate distribution. The function MfU.Control allows the user to set
the tuning parameters of the univariate sampler. MfU.Sample.Run is a light wrapper around
MfU.Sample for drawing multiple samples.

Diagnostic utilities Implementations of generic S3 methods summary and plot for MfU class -
output of MfU.Sample.Run - are light wrappers around corresponding methods for the mcmc

class in the R package coda, with the addition of sample-based covariance matrix, effective
sample size, time, and number of independent samples per sec.

Full Bayesian prediction The S3 method predict.MfU function allows for sample-based recon-
struction of predictive posterior distribution for any user-supplied prediction function. The
mechanics and advantages of full Bayesian prediction are discussed in the sns vignette (Mahani
et al. 2015). See Section 3.4 of this document for an example.

3. Using MfUSampler

In this section, we illustrate how MfUSampler can be used for building Bayesian models. We
begin by introducing the data set used throughout the examples in this paper. This is followed
by illustration of how univariate samplers can be readily applied to sample from the posterior
distribution of our problem. Application of diagnostic and prediction utility functions are
illustrated last.

Before proceeding, we load MfUSampler into an R session, and select the seed value to feed
to the random number generator at the beginning of each code segment (for reproducibility),
and the number of MCMC samples to collect in each run:

R> library("MfUSampler")

R> my.seed <- 0

R> nsmp <- 10

3.1. Diabetic retinopathy data set

This data set is a 2×8 contingency table, containing the number of occurances of diabetic
retinopathy for patients with 8 different durations of diabetes. The tabular form of the data
set can be found in Knuiman and Speed (1988).

The mid-point of diabetes duration bands are encoded in the vector z below, while the number
of patients with/without retinopathy are encoded in m1 and m2 vectors: The prior suffix
corresponds to numbers from a previous study, while current reflects the results of current
study.

6 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

R> z <- c(1, 4, 7, 10, 13, 16, 19, 24)

R> m1.prior <- c(17, 26, 39, 27, 35, 37, 26, 23)

R> m2.prior <- c(215, 218, 137, 62, 36, 16, 13, 15)

R> m1.current <- c(46, 52, 44, 54, 38, 39, 23, 52)

R> m2.current <- c(290, 211, 134, 91, 53, 42, 23, 32)

Following Knuiman and Speed (1988), our model assumes that the linear predictor for this
grouped logistic regression problem has three variables: unit vector (corresponding to inter-
cept), z and z2:

R> X <- cbind(1, z, z^2)

3.2. Slice sampling from posterior

The following function implements the log-posterior for our problem, assuming a multivariate
Gaussian prior on the coefficient vector, beta, with mean beta0 and covariance matrix W.
The default values represent a non-informative - or flat - prior.

R> loglike <- function(beta, X, m1, m2) {

+ beta <- as.numeric(beta)

+ Xbeta <- X %*% beta

+ return (-sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta))

+ }

R> logprior <- function(beta, beta0 , W) {

+ return (-0.5 * t(beta - beta0) %*% solve(W) %*% (beta - beta0))

+ }

R> logpost <- function(beta, X, m1, m2

+ , beta0 = rep(0,0, 3), W = diag(1e+6, nrow = 3)) {

+ return (logprior(beta, beta0, W) + loglike(beta, X, m1, m2))

+ }

Incorporating prior information in this problem can be done in two ways: 1) extracting beta0

and W from prior data (using flat priors during estimation), and feeding these numbers as priors
for estimating the model with current data, 2) simply adding prior and current numbers to
arrive at the posterior contigency table. While the first approach can be more flexible, as
argued in Knuiman and Speed (1988), here we opt for the second approach for brevity of
presentation:

R> m1.total <- m1.prior + m1.current

R> m2.total <- m2.prior + m2.current

We begin by drawing 1000 samples using the slice sampler, and printing a summary of samples:

R> set.seed(my.seed)

R> beta.ini <- c(0.0, 0.0, 0.0)

R> beta.smp <- MfU.Sample.Run(beta.ini, logpost, nsmp = nsmp

+ , X = X, m1 = m1.total, m2 = m2.total)

R> summ.slice <- summary(beta.smp)

Alireza S. Mahani, Mansour T.A. Sharabiani 7

R> print(summ.slice)

Iterations = 501:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

[1,] -2.452413 0.134392 6.010e-03 0.0409431

[2,] 0.225965 0.025717 1.150e-03 0.0089625

[3,] -0.004234 0.001026 4.589e-05 0.0003032

2. Quantiles for each variable:

2.5% 50% 97.5%

var1 -2.686285 -2.457768 -2.196446

var2 0.172842 0.228813 0.273421

var3 -0.006002 -0.004349 -0.002109

time for all samples (1000): 2.253 sec

time assigned to selected samples (500): 1.1265 sec

Effective sample size / independent samples per sec:

ess iss

var1 8.120590 7.208691

var2 4.647671 4.125762

var3 6.068079 5.386666

Sample mean is quite close to values reported in Knuiman and Speed (1988). Similarly, the
sample covariance matrix is reasonably close to their reported values:

R> print(summ.slice$covar)

[,1] [,2] [,3]

[1,] 0.0266989860 -4.950835e-03 1.786601e-04

[2,] -0.0049508350 1.103237e-03 -4.252586e-05

[3,] 0.0001786601 -4.252586e-05 1.739642e-06

3.3. Adaptive rejection sampling of posterior

Next, we illustrate how ARS can be used for this posterior distribution. We need to imple-
ment the gradient of log-density in order to use ARS. Furthermore, we must ensure that the
distribution is log-concave, or equivalently that the Hessian of log-density is negative-definite.
It is easy to verify that this distribution satisfies our requirement. For theoretical and soft-
ware support in assessing log-concavity of distributions and verifying correct implementation
of their derivatives, see the vignette for the R package sns (Mahani et al. 2015).

8 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

R> logpost.fg <- function(beta, X, m1, m2

+ , beta0 = rep(0.0, 3), W = diag(1e+3, nrow = 3)

+ , grad = FALSE) {

+ Xbeta <- X %*% beta

+

+ if (grad) {

+ log.prior.d <- -solve(W) %*% (beta - beta0)

+ log.like.d <- t(X) %*% ((m1 + m2) / (1 + exp(Xbeta)) - m2)

+ return (log.prior.d + log.like.d)

+ }

+

+ log.prior <- -0.5 * t(beta - beta0) %*% solve(W) %*% (beta - beta0)

+ log.like <- -sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta)

+ log.post <- log.prior + log.like

+

+ return (log.post)

+ }

Note the use of mandatory boolean flag grad, indicating whether log-density or its gradient
must be returned. Next we feed this log-density to MfU.Sample.Run:

R> set.seed(my.seed)

R> beta.ini <- c(0.0, 0.0, 0.0)

R> beta.smp <- MfU.Sample.Run(beta.ini, logpost.fg, nsmp = nsmp

+ , uni.sampler = "ars"

+ , control = MfU.Control(3, ars.x = list(c(-10, 0, 10)

+ , c(-1, 0, 1), c(-0.1, 0.0, 0.1)))

+ , X = X, m1 = m1.total, m2 = m2.total)

R> summ.ars <- summary(beta.smp)

R> print(summ.ars)

Iterations = 501:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

[1,] -2.396224 0.175992 7.871e-03 0.0536249

[2,] 0.213187 0.032584 1.457e-03 0.0096411

[3,] -0.003726 0.001247 5.579e-05 0.0003498

2. Quantiles for each variable:

Alireza S. Mahani, Mansour T.A. Sharabiani 9

2.5% 50% 97.5%

var1 -2.691251 -2.412357 -2.0376872

var2 0.138264 0.216288 0.2671999

var3 -0.005851 -0.003813 -0.0007741

time for all samples (1000): 3.768 sec

time assigned to selected samples (500): 1.884 sec

Effective sample size / independent samples per sec:

ess iss

var1 40.69967 21.602799

var2 16.90188 8.971272

var3 17.39752 9.234350

Note that we have provided custom values for the control parameter ars.x. For this problem,
the ARS algorithm is sensitive to these initial values, and can fail to identify log-concavity
of the distribution in some cases. Generally, we have found the slice sampler to require less
tuning to achieve reasonable performance. Interested readers can see examples of using other
samplers included in MfUSampler - namely ARMS and univariate Metropolis - by typing
?MfU.Sample in the R session.

3.4. Full Bayesian prediction

The predict function in the MfUSampler package can be used to do sample-based recon-
struction of arbitrary functions of model parameters. This includes deterministic as well as
stochastic functions. For example, assume we want to know the probability distribution of
the probability of retinopathy for each value of z in our training set. The prediction function
has the following simple form:

R> predfunc.mean <- function(beta, X) {

+ return (1/(1 + exp(-X %*% beta)))

+ }

We can now generate samples for this predicted quantity:

R> pred.mean <- predict(beta.smp, predfunc.mean, X)

R> predmean.summ <- summary(pred.mean)

R> print(predmean.summ, n = 8)

prediction sample statistics:

(nominal sample size: 5)

mean sd ess 2.5% 50% 97.5%

1 0.1233438 0.0059951 5.0000000 0.1170295 0.1222361 0.1305

2 0.1742073 0.0062654 5.0000000 0.1678182 0.1725081 0.1815

3 0.2377181 0.0057428 5.0000000 0.2319015 0.2361125 0.2443

4 0.3124788 0.0042671 5.0000000 0.3078534 0.3121914 0.3173

5 0.3950574 0.0025847 5.0000000 0.3920084 0.3954314 0.3976

6 0.4805277 0.0041450 5.0000000 0.4765281 0.4799419 0.4867

7 0.5636210 0.0078931 5.0000000 0.5546627 0.5633435 0.5746

8 0.6856569 0.0139778 5.0000000 0.6689487 0.6864122 0.7042

10 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

We can also ask a different question: what is the distribution of percentage of population
with retinopathy in each given band of diabetes duration. The prediction function is a slight
modification of the previous one:

R> predfunc.binary <- function(beta, X) {

+ return (1*(runif(nrow(X)) < 1/(1 + exp(-X %*% beta))))

+ }

R> pred.binary <- predict(beta.smp, predfunc.binary, X)

R> predbinary.summ <- summary(pred.binary)

R> print(predbinary.summ, n = 8)

prediction sample statistics:

(nominal sample size: 5)

mean sd ess 2.5% 50% 97.5%

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.0

2 0.20000 0.44721 5.00000 0.00000 0.00000 0.9

3 0.40000 0.54772 5.00000 0.00000 0.00000 1.0

4 0.40000 0.54772 5.00000 0.00000 0.00000 1.0

5 0.40000 0.54772 33.75000 0.00000 0.00000 1.0

6 0.40000 0.54772 5.00000 0.00000 0.00000 1.0

7 0.60000 0.54772 33.75000 0.00000 1.00000 1.0

8 0.60000 0.54772 5.00000 0.00000 1.00000 1.0

We see that mean values from the two predictions are close, and in the limit of infinite samples
they will converge towards the same values. However, the SD numbers are much larger for
the binary prediction as it combines the uncertainty of estimating the coefficients, with the
uncertainty of the process that generates the (binary) outcome. The value of full Bayesian
prediction, particularly in business and decision-making settings, is that it combines these
two sources of uncertainty to provide the user with a full reprsentation of uncertainty in
estimating actual outcomes, and not just mean/expected values.

4. Performance improvement

Applying MfU.Sample.Run to the full joint PDF of a Bayesian model, implemented in R, is of-
ten a good starting point. For small data sets, this may well be sufficient. For example, in the
diabetic retinopathy data set described in Section 3, we are able to draw 10,000 samples from
the posterior distribution in less than xx seconds. However, for large data sets we must look for
opportunities to improve the performance. In this section, we describe two general strategies
for speeding up sampling of posterior distributions within the framework of MfUSampler:
1) utilizing the structure of the underlying model graph, and 2) high-peformance evalua-
tion of posterior function. We describe these two strategies using extensions of the diabetic
retinopathy data set. At the end of this section, we provide an overview of other performance
optimization approaches, as well as pointers for further reading.

4.1. Diabetic retinopathy: Hierarchical Bayesian with continuous z

Alireza S. Mahani, Mansour T.A. Sharabiani 11

To illustrate the performance optimization strategies discussed in this section, we extend the
diabetic retinopathy data set - by simulations - to define a HB problem with continuous z.
In other words, we turn the grouped logistic regression into a standard logistic regression,
where the outcome is not frequency of occurance of retinopathy within a diabetic duration
band (z), but a binary indicator for each continuous value of z. We generate coefficients
for 50 observation groups from the multivariate Gaussian prior discussed in the last section
(number from Knuiman and Speed (1988) are used), and simulate binary outcome in each
group based on its coefficients. Number of observations per group can be adjusted via the
parameter nrep. z values are sampled - with replacement - from real data, with the addition
of a small random jitter. Data generation code is as follows:

R> library("mvtnorm")

R> set.seed(my.seed)

R> nrep <- 50

R> m.current <- m1.current + m2.current

R> nz.exp <- nrep * sum(m.current)

R> jitter <- 1.0

R> z.exp <- sample(z, size = nz.exp, replace = T, prob = m.current) +

+ (2*runif(nz.exp) - 1) * jitter

R> X.exp <- cbind(1, z.exp, z.exp^2)

R> beta0.prior <- c(-3.17, 0.33, -0.007)

R> W.prior <- 1e-4 * matrix(c(638, -111, 3.9

+ , -111, 24.1, -0.9, 3.9, -0.9, 0.04), ncol = 3)

R> ngrp <- 50

R> beta.mat <- t(rmvnorm(ngrp, mean = beta0.prior, sigma = W.prior))

R> y.mat.exp <- 1* matrix(runif(ngrp * nz.exp) <

+ 1 / (1 + exp(-X.exp %*% beta.mat)), ncol = ngrp)

4.2. Utilizing graph structure

In directed acyclic graphs, the joint distribution can be factorized into the product of con-
ditional distributions for all nodes, conditioned on parent nodes of each node (Bishop 2006).
For undirected graphs, factorization can be done over maximal cliques of the graph. When
sampling from conditional distribution of a variable - conditioned on all remaining variables
- as is done during Gibbs sampling, not all such multiplicative factors involve the variable
being sampled, and can be safely ignored during evaluation of the conditional distribution
and its derivatives. In some cases, the resulting time savings can be quite significant, with
a prime example being the hierarchical Bayesian models (Gelman and Hill 2006). In HB
models, the conditional distribution of the low-level coefficient vector for each group during
Gibbs sampling contains multiplicative contributions from other groups. This is reflected in
the following log-posterior functions for the coefficients of all groups that contain one additive
term per group:

R> hb.logprior <- function(beta.flat, beta0, W) {

+ beta.mat <- matrix(beta.flat, nrow = 3)

+ return (sum(apply(beta.mat, 2, logprior, beta0, W)))

+ }

12 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

R> hb.loglike <- function(beta.flat, X, y) {

+ beta.mat <- matrix(beta.flat, nrow = 3)

+ ngrp <- ncol(beta.mat)

+ return (sum(sapply(1:ngrp, function(n) {

+ xbeta <- X %*% beta.mat[, n]

+ return (-sum((1-y[, n]) * xbeta + log(1 + exp(-xbeta))))

+ })))

+ }

R> hb.logpost <- function(beta.flat, X, y, beta0, W) {

+ return (hb.logprior(beta.flat, beta0, W) +

+ hb.loglike(beta.flat, X, y))

+ }

A naive implementation of full PDF is thus pointlessly duplicating computations by ngrp

times:

R> nsmp <- 10

R> set.seed(my.seed)

R> beta.flat.ini <- rep(0.0, 3 * ngrp)

R> beta.flat.smp <- MfU.Sample.Run(beta.flat.ini, hb.logpost

+ , X = X.exp, y = y.mat.exp

+ , beta0 = beta0.prior, W = W.prior, nsmp = nsmp)

R> t.naive <- attr(beta.flat.smp, "t")

R> cat("hb sampling time - naive method:", t.naive, "sec\n")

hb sampling time - naive method: 53.545 sec

Note that, in the above, we have made the simplifying assumption that we know the true
values of the parameters of the multivariate Gaussian prior, i.e. beta0.prior and W.prior. In
reality, of course, prior parameters must also be estimated from the data, and thus the Gibbs
cycle includes not just the lower-level coefficients but also the prior parameters. However, all
the strategies discussed in this section can be conceptually illustrated while focusing only on
beta’s.

The first optimization strategy is to take advantage of the conditional independence property
by evaluating only the relevant term during sampling of coefficients in each group:

R> hb.loglike.grp <- function(beta, X, y) {

+ beta <- as.numeric(beta)

+ xbeta <- X %*% beta

+ return (-sum((1-y) * xbeta + log(1 + exp(-xbeta))))

+ }

R> hb.logprior.grp <- logprior

R> hb.logpost.grp <- function(beta, X, y

+ , beta0 = rep(0,0, 3), W = diag(1e+6, nrow = 3)) {

+ return (hb.logprior.grp(beta, beta0, W) +

+ hb.loglike.grp(beta, X, y))

+ }

Alireza S. Mahani, Mansour T.A. Sharabiani 13

The price to pay is that we must implement a custom for loop to replace MfU.Sample.Run.
As expected, this revised approach produces a speedup factor that approaches ngrp:

R> set.seed(my.seed)

R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)

R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))

R> t.revised <- proc.time()[3]

R> for (i in 1:nsmp) {

+ for (n in 1:ngrp) {

+ beta.mat.buff[, n] <- MfU.Sample(beta.mat.buff[, n], hb.logpost.grp

+ , uni.sampler = "slice", X = X.exp

+ , y = y.mat.exp[, n], beta0 = beta0.prior, W = W.prior)

+ }

+ beta.mat.smp[i, ,] <- beta.mat.buff

+ }

R> t.revised <- proc.time()[3] - t.revised

R> cat("hb sampling time - revised method:", t.revised, "sec\n")

hb sampling time - revised method: 9.885 sec

Another implication of conditional independence for HB models is that the conditional dis-
tribution for coefficients of each group does not include the coefficients of other groups. This
can be verified by examining hb.logpost.grp. As such, it is mathematically valid to sample
coefficients of all groups, while conditioning all distributions on values of remaining vari-
ables (Mahani and Sharabiani 2015). We can use the doParallel package for multi-core
parallelization.

R> library("doParallel")

R> ncores <- 2

R> registerDoParallel(ncores)

R> set.seed(my.seed)

R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)

R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))

R> t.parallel <- proc.time()[3]

R> for (i in 1:nsmp) {

+ beta.mat.buff <- foreach(n=1:ngrp, .combine = cbind

+ , .options.multicore=list(preschedule=TRUE)) %dopar% {

+ MfU.Sample(beta.mat.buff[, n], hb.logpost.grp, uni.sampler = "slice"

+ , X = X.exp, y = y.mat.exp[, n]

+ , beta0 = beta0.prior, W = W.prior)

+ }

+ beta.mat.smp[i, ,] <- beta.mat.buff

+ }

R> t.parallel <- proc.time()[3] - t.parallel

R> cat("hb sampling time - revised & parallel method:", t.parallel, "sec\n")

14 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

hb sampling time - revised & parallel method: 7.759 sec

In the above, we have continued to use the defualt R random number generator for code
brevity. In practice, in order to generate uncorrelated random numbers across multiple exe-
cution threads, one should use parallel RNG streams such as those provided in the R package
rstream (Leydold 2015).

4.3. High-performance PDF evaluation

For most MCMC algorithms, the majority of sampling time is spent on evaluating the log-
density (and its derivatives if needed). Efficient implementation of functions responsible for
log-density evaluation is therefore a rewarding optimization strategy which can be combined
with the strategies discussed in section 4.2. The Rcpp (Eddelbuettel and François 2011)
framework offers a convenient way to port R functions to C++. Here we use the RcppAr-
madillo (Eddelbuettel and Sanderson 2014) package for its convenient matrix algebra opera-
tions to transform the log-likelihood component of the log-posterior (as it takes the majority
of time for large data, compared to log-prior):

R> library("RcppArmadillo")

R> library("inline")

R> code <- "

+ arma::vec beta_cpp = Rcpp::as<arma::vec>(beta);

+ arma::mat X_cpp = Rcpp::as<arma::mat>(X);

+ arma::vec y_cpp = Rcpp::as<arma::vec>(y);

+ arma::vec xbeta = X_cpp * beta_cpp;

+ int n = X_cpp.n_rows;

+ double logp = 0.0;

+ for (int i=0; i<n; i++) {

+ // (1-y[, n]) * xbeta + log(1 + exp(-xbeta))

+ logp -= (1.0 - y_cpp[i]) * xbeta[i] + log(1.0 + exp(-xbeta[i]));

+ }

+ return Rcpp::wrap(logp);

+ "

R> hb.loglike.grp.rcpp <- cxxfunction(

+ signature(beta = "numeric", X = "numeric", y = "numeric")

+ , code, plugin="RcppArmadillo")

R> hb.logpost.grp.rcpp <- function(beta, X, y

+ , beta0 = rep(0,0, 3), W = diag(1e+6, nrow = 3)) {

+ return (hb.logprior.grp(beta, beta0, W) +

+ hb.loglike.grp.rcpp(beta, X, y))

+ }

We simply replace hb.logpost.grp with hb.logpost.grp.rcpp in the parallel sampling ap-
proach from previous section:

R> set.seed(my.seed)

R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)

Alireza S. Mahani, Mansour T.A. Sharabiani 15

R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))

R> t.rcpp <- proc.time()[3]

R> for (i in 1:nsmp) {

+ beta.mat.buff <- foreach(n=1:ngrp

+ , .combine = cbind, .options.multicore=list(preschedule=TRUE)) %dopar% {

+ MfU.Sample(beta.mat.buff[, n], hb.logpost.grp.rcpp, uni.sampler = "slice"

+ , X = X.exp, y = y.mat.exp[, n]

+ , beta0 = beta0.prior, W = W.prior)

+ }

+ beta.mat.smp[i, ,] <- beta.mat.buff

+ }

R> t.rcpp <- proc.time()[3] - t.rcpp

R> cat("hb sampling time - revised & parallel & rcpp method:", t.rcpp, "sec\n")

hb sampling time - revised & parallel & rcpp method: 4.847 sec

While the result is a decent speedup given the relatively small effort put in, yet the impact
is not as significant as the previous two strategies. It must be noted that matrix algebra
operations in R are handled by BLAS and LAPACK libraries, written in C and Fortran. There-
fore, the majpr benefit of porting the log-likelihood function to C++ in the above example
is likely to be the consolidation of data and control transfer between the interpretation layer
and the computational back-end. For large problems, even parallel hardware such as Graphic
Processing Units (GPUs) can be utilized by writing log-density functions in languages such
as CUDA (Nickolls, Buck, Garland, and Skadron 2008), while continuing to take advantage
of MfUSampler for sampler control logic. Minimizing data movement between processor and
co-processor is a key performance factor in such cases.

Figur 2 summarizes the impact of the three optimization stragies discussed in this section.
We see that, for this particular problem and set of parameters, the cumulative impact of the
3 optimization strategies is a xx times speedup.

In addition to the above-mentioned strategies, there are several other options available for
improving performance of MCMC sampling techniques for Bayesian models. Examples include
differential update, single-instruction multiple-data (SIMD) parallelization of log-likelihood
calculation, and batch random number generation. For a detailed discussion of these topics,
see Mahani and Sharabiani (2015).

5. Summary

The R package MfUSampler enables MCMC sampling of multivariate distributions using uni-
variate algorithms. It relies on an extension of Gibbs sampling from univariate independent
sampling to univariate Markov transitions, and proportionality of conditional and joint distri-
butions. By encapsulating these two concepts in a library, MfUSampler reduces the possibility
of subtle mistakes by researchers while re-implementing the Gibbs sampler and thus allows
them to focus on other, more innovative aspects of their Bayesian modeling. Brute-force ap-
plication of MfUSampler allows researchers to get their project off the ground, maintain full
control over model specification, and utilize robust univariate samplers. This can be followed

16 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

naive + separability + parallel + Rcpp

optimization level

53.55

 9.89 7.76 4.85

5.4x
1.3x

1.6x

Figure 2: Time needed to draw 1000 samples for the HB logistic regression problem, based
on the diabetic retinopathy data set introduced in Section 3.1, at various stages of optimiza-
tion. Each step represents the cumulative effect of strategies, starting with the left-most bar
corresponding to the naive implementation. Numbers above bars show speedup due to each
optimization.

Alireza S. Mahani, Mansour T.A. Sharabiani 17

by an incremental optimization approach by taking advantage of DAG properties such as
conditional independence and by porting log-density functions to high-peformance languages
and hardware.

References

Bishop CM (2006). Pattern Recognition and Machine Learning, volume 1. Springer New
York.

Christen JA, Fox C (2010). “A general purpose sampling algorithm for continuous distribu-
tions (the t-walk).” Bayesian Analysis, 5(2), 263–281.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with high-performance
C++ linear algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. URL
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Gelman A, Hill J (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
(6), 721–741.

Gilks WR, Best N, Tan K (1995). “Adaptive rejection Metropolis sampling within Gibbs
sampling.” Applied Statistics, pp. 455–472.

Gilks WR, Neal R, Best N, Tan K (1997). “Corrigendum: adaptive rejection metropolis
sampling.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 46(4),
541–542.

Gilks WR, Wild P (1992). “Adaptive Rejection Sampling for Gibbs Sampling.” Applied
Statistics, pp. 337–348.

Girolami M, Calderhead B (2011). “Riemann Manifold Langevin and Hamiltonian Monte
Carlo Methods.” Journal of the Royal Statistical Society B (Statistical Methodology), 73(2),
123–214.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57(1), 97–109.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15, 1593–1623.

Jarner SF, Hansen E (2000). “Geometric ergodicity of Metropolis algorithms.” Stochastic
processes and their applications, 85(2), 341–361.

http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005

18 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

Knuiman M, Speed T (1988). “Incorporating prior information into the analysis of contingency
tables.” Biometrics, pp. 1061–1071.

Leydold J (2015). rstream: Streams of Random Numbers. R package version 1.3.3, URL
http://CRAN.R-project.org/package=rstream.

Mahani AS, Hasan A, Jiang M, Sharabiani MT (2015). sns: Stochastic Newton Sampler
(SNS). R package version 1.1.0, URL http://CRAN.R-project.org/package=sns.

Mahani AS, Sharabiani MT (2015). “SIMD parallel MCMC sampling with applications for
big-data Bayesian analytics.” Computational Statistics & Data Analysis, 88, 75–99.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). “Equation of
State Calculations by Fast Computing Machines.” The journal of chemical physics, 21(6),
1087–1092.

Neal R (2011). “MCMC Using Hamiltonian Dynamics.” Handbook of Markov Chain Monte
Carlo, 2.

Neal RM (2003). “Slice sampling.” Annals of Statistics, pp. 705–741.

Nickolls J, Buck I, Garland M, Skadron K (2008). “Scalable Parallel Programming with
CUDA.” Queue, 6(2), 40–53. ISSN 1542-7730. doi:10.1145/1365490.1365500. URL
http://doi.acm.org/10.1145/1365490.1365500.

Perez-Rodriguez P, Wild P, Gilks W (2014). ars: Adaptive Rejection Sampling. R package
version 0.5, URL http://CRAN.R-project.org/package=ars.

Petris G, Tardella L, Gilks WR (2013). HI: Simulation from distributions supported by nested
hyperplanes. R package version 0.4, URL http://CRAN.R-project.org/package=HI.

Plummer M (2004). “JAGS: Just another Gibbs sampler.”

Qi Y, Minka TP (2002). “Hessian-based Markov Chain Monte-Carlo Algorithms.”

Robert CP, Casella G (1999). Monte Carlo Statistical Methods. Springer-Verlag.

Roberts GO, Rosenthal JS (1999). “Convergence of Slice Sampler Markov chains.” Journal
of the Royal Statistical Society B (Statistical Methodology), 61(3), 643–660.

Stan Development Team (2014). “Stan: A C++ Library for Probability and Sampling, Version
2.5.0.” URL http://mc-stan.org/.

Thomas A, O’Hara B, Ligges U, Sturtz S (2006). “Making BUGS Open.” R news, 6(1), 12–17.

Thompson MB (2011). Slice Sampling with Multivariate Steps. Ph.D. thesis, University of
Toronto.

A. Setup

All R code shown in this paper were executed on an Intel Xeon W3680, with a CPU clock rate
of 3.33GHz and 24GB of installed RAM. Below is the corresponding R session information.

http://CRAN.R-project.org/package=rstream
http://CRAN.R-project.org/package=sns
http://dx.doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://CRAN.R-project.org/package=ars
http://CRAN.R-project.org/package=HI
http://mc-stan.org/

Alireza S. Mahani, Mansour T.A. Sharabiani 19

R> sessionInfo()

R version 3.3.0 (2016-05-03)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.11.6 (El Capitan)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] inline_0.3.14 RcppArmadillo_0.6.700.6.0

[3] mvtnorm_1.0-5 MfUSampler_1.0.4

loaded via a namespace (and not attached):

[1] ars_0.5 tools_3.3.0 HI_0.4 coda_0.18-1

[5] Rcpp_0.12.5 grid_3.3.0 lattice_0.20-33

B. Proof of extended Gibbs sampling lemma

The premise can be mathematically expressed as

p(x′k|x\k) =

∫
xk

T (x′k, xk|x\k)p(xk|x\k) dxk, (2)

while the conclusion can be expressed as

p(x′k,x\k) =

∫
xk

T (x′k, xk|x\k)p(xk,x\k) dxk. (3)

In the above x\k denotes all coordinates except for xk and T (x′k, xk|x\k) denotes the coordinate-
wise Markov transition density from x′k to xk. Employing the product rule of probability, we
have p(xk,x\k) = p(xk|x\k) × p(x\k). Since the coordinate-wise Markov transition does not
change x\k, we can factor p(x\k) out of the integral, thereby easily reducing Equation 3 to
Equation 2.

Note that standard Gibbs sampling is a special case of the above lemma where T (x′k, xk|x\k) =
p(x′k|x\k). The reader can easily verify that this special transition density satifies the premise.

Affiliation:

Alireza S. Mahani
Scientific Computing Group

20 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

Sentrana Inc.
1725 I St NW
Washington, DC 20006
E-mail: alireza.mahani@sentrana.com

mailto:alireza.mahani@sentrana.com

	Introduction
	Theory and Implementation of MfUSampler
	Extended Gibbs sampling
	Proportionality of conditional and joint distributions
	Implementation

	Using MfUSampler
	Diabetic retinopathy data set
	Slice sampling from posterior
	Adaptive rejection sampling of posterior
	Full Bayesian prediction

	Performance improvement
	Diabetic retinopathy: Hierarchical Bayesian with continuous z
	Utilizing graph structure
	High-performance PDF evaluation

	Summary
	Setup
	Proof of extended Gibbs sampling lemma

