Metrics: Evaluation Metrics for Machine Learning

An implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.

Version: 0.1.4
Suggests: testthat
Published: 2018-07-09
Author: Ben Hamner [aut, cph], Michael Frasco [aut, cre], Erin LeDell [ctb]
Maintainer: Michael Frasco <mfrasco6 at gmail.com>
BugReports: https://github.com/mfrasco/Metrics/issues
License: BSD_3_clause + file LICENSE
URL: https://github.com/mfrasco/Metrics
NeedsCompilation: no
CRAN checks: Metrics results

Downloads:

Reference manual: Metrics.pdf
Package source: Metrics_0.1.4.tar.gz
Windows binaries: r-devel: Metrics_0.1.4.zip, r-release: Metrics_0.1.4.zip, r-oldrel: Metrics_0.1.4.zip
macOS binaries: r-release: Metrics_0.1.4.tgz, r-oldrel: Metrics_0.1.4.tgz
Old sources: Metrics archive

Reverse dependencies:

Reverse depends: manymodelr, PUPAIM
Reverse imports: ConsReg, dblr, iml, immuneSIM, MetaIntegrator, predtoolsTS, RSCAT, specmine, superml
Reverse suggests: featurefinder, s2net, tfdatasets

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Metrics to link to this page.