Package 'MedSurvey'

May 12, 2020
Title Mediation Analysis for Complex Surveys
Version 1.1.1.2.0
Author Yujiao Mai [aut, cre],
Deo Kumar Srivastava [aut], Hui Zhang [aut]
Maintainer Hui Zhang hzhang@northwestern.edu

Description

It is a computer tool to conduct mediation analysis for complex surveys using multi-stage sampling. Specifically, the mediation analysis method using balanced repeated replication was proposed by Mai, Ha, and Soulakova (2019) DOI:10.1080/10705511.2018.1559065. The development of 'MedSurvey' was sponsored by American Lebanese Syrian Associated Charities (ALSAC). However, the contents of MedSurvey do not necessarily represent the policy of the ALSAC.
Depends R (>=2.50), stats, Matrix, survey, lavaan, parallel
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://CRAN.R-project.org/package=MedSurvey
https://github.com/YujiaoMai/MedSurvey
RoxygenNote 7.1.0
NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-12 07:30:08 UTC

R topics documented:

chisq.BRR . 2
med.fit.BRR . 4
med.p.adjust . 7
med.summary . 9
MedData . 11
Index 17

Description

This function is used to adjust model fit statistics for complex surveys with balanced repeated replications (Oberski, 2014; Satorra \& Muthen, 1995). It saves time to only obtain the model fit statistics during the model selection stage.

Usage

chisq.BRR(
model,
lavaan.fit,
data,
mwgtname,
repwgtnames,
fayfactor = 0.5,
estimator = c("ML"),
test = c("satorra.bentler")
)

Arguments

model
lavaan.fit
data
mwgtname The variable name indicating the sample main weight in the dataset. See balanced repeated replications method (Wolter, 2007) for more information about the main weight.
repwgtnames The variable names indicating the set of replicate weights in the dataset. See balanced repeated replications method (Wolter, 2007) for more information about the replicate weight.
fayfactor The fayfactor used in the standard error calculation by fay's method (Fay \& Train, 1995; Judkins, 1990) for balanced repeated replications. Fayfactor is a value between 0 and 1 . The default is 0.5 .
estimator The method used to estimate the model. 'ML' is the default option and the only available option for current version. It is not required.
test The method used to generate adjusted standard errors. 'satorra.bentler' is the default option and the only available option for current version. It is not required.

Value

The model fit results as a lavaan object (Rosseel, 2012) with the adjusted model fit statistics.

References

Fay, R. E., \& Train, G. F. (1995). Aspects of survey and model-based postcensal estimation of income and poverty characteristics for states and counties. In Proceedings of the Section on Government Statistics, American Statistical Association, Alexandria, VA (pp. 154-159).
Judkins, D. R. (1990). Fay's method for variance estimation.Journal of Official Statistics,6(3), 223239.

Oberski, D. (2014). lavaan. survey: An R package for complex survey analysis of structural equation models. Journal of Statistical Software, 57(1), 1-27. DOI:10.18637/jss.v057.i01
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). Journal of statistical software, 48(2), 1-36. DOI:10.18637/jss.v048.i02

Satorra, A., \& Muthen, B. (1995). Complex sample data in structural equation modeling. Sociological methodology, 25(1), 267-316.
Wolter, K. (2007). Introduction to variance estimation. New York, NY: Springer.

Examples

```
R <- 160
wgtnames <- paste("repwgt", seq(0,R,by=1), sep="")
mwgtname=wgtnames[1]
repwgtnames=wgtnames[2:(R+1)]
fayfactor=0.5
model3 <- ' # outcome
    numcg ~ u0*1 + c*workban + b1*sp_adltban + b2*sp_kidsban
    # mediator
                sp_adltban ~ u1*1 + a1*workban
                sp_kidsban ~ u2*1 + a2*workban
            # indirect effect (a*b)
                a1b1 := a1*b1
                a2b2 := a2*b2
            # total effect
                total := c + (a1*b1) + (a2*b2)
fit <- lavaan::sem(model=model3, data=MedData, estimator='ML', test='standard')
chisq.BRR(model3,fit,MedData,mwgtname, repwgtnames)
#
# MedSurvey 1.1.0 Adjusted Model Fit Statistics using BRR
#
# chisq df pvalue CFI RMSEA SRMR AIC BIC
#
# 305.25 1 1 0.00000 0.40561 0.27852 
```

Estimate the mediation effects and standard errors adjusting for complex surveys with $B R R$

Description

This function is used to estimate the mediation effects adjusted for complex surveys with balanced repeated replications (BRR) (Mai, Ha, Soulakova, 2019).

Usage

```
med.fit.BRR(
    model = NULL,
    data = NULL,
    mwgtname = NULL,
    repwgtnames = NULL,
    fayfactor = 0.5,
    estimator = c("ML"),
    test = c("satorra.bentler"),
    parallel = c("no", "parallel", "snow"),
    ncore = Sys.getenv("NUMBER_OF_PROCESSORS"),
    cl = NULL,
    ...
    )
```


Arguments

model

data

mwgtname The variable name indicating the sample main weight in the dataset. See balanced repeated replications method (Wolter, 2007) for more information about the main weight.
repwg tnames The variable names indicating the set of replicate weights in the dataset. See balanced repeated replications method (Wolter, 2007) for more information about the replicate weight.
fayfactor The fayfactor used in the standard error calculation by fay's method (Fay \& Train, 1995; Judkins, 1990) for balanced repeated replications. Fayfactor is a value between 0 and 1 . The default is 0.5 .
estimator The method used to estimate the model. 'ML' is the default option and the only available option for current version. It is not required.
test The method used to generate adjusted standard errors. 'satorra.bentler' is the default option and the only available option for current version. It is not required.

parallel	Parallel computing ("no" or "parallel" or "snow"). It is "no" by default, which means it will not use parallel computing. The option "parallel" is to use multiple cores in a computer for parallel computing. It is used with the number of cores (ncore). The option "snow" is to use clusters for parallel computing. It is used with the number of clusters (cl).
ncore	Number of processors used for parallel computing. By default, ncore = Sys.getenv ('NUMBER_OF_PROCESSORS').
cl	Number of clusters. It is NULL by default. When it is NULL, the program will detect the number of clusters automatically.
\ldots	Extra arguments. For example, ordered=c('z1','z2') is an argument to tell 'z1' and 'z2' are ordinal variables. It is not required.

Value

The model fit results as a lavaan object with the adjusted estimates, standard errors, and model fit statistics. It is a lavaan object (Rosseel, 2012).

References

Fay, R. E., \& Train, G. F. (1995). Aspects of survey and model-based postcensal estimation of income and poverty characteristics for states and counties. In Proceedings of the Section on Government Statistics, American Statistical Association, Alexandria, VA (pp. 154-159).
Judkins, D. R. (1990). Fay's method for variance estimation.Journal of Official Statistics,6(3), 223239.

Mai, Y., Ha, T., \& Soulakova, J. N. (2019). Multimediation Method With Balanced Repeated Replications For Analysis Of Complex Surveys. Structural Equation Modeling: A Multidisciplinary Journal. DOI:10.1080/10705511.2018.1559065

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). Journal of statistical software, 48(2), 1-36. DOI:10.18637/jss.v048.i02

Wolter, K. (2007). Introduction to variance estimation. New York, NY: Springer.

Examples

```
R <- 160
wgtnames <- paste("repwgt", seq(0,R,by=1), sep="")
mwgtname=wgtnames[1]
repwgtnames=wgtnames[2:(R+1)]
model2 <- ' # outcome
    numcg ~ u0*1 + c*workban + b1*sp_adltban + b2*sp_kidsban
    # mediator
        sp_adltban ~ u1*1 + a1*workban
        sp_kidsban ~ u2*1 + a2*workban
    #covariance of residuals
        sp_adltban ~~ sp_kidsban
    # indirect effect (a*b)
```

```
                a1b1 := a1*b1
                a2b2 := a2*b2
            # total effect
                total := c + (a1*b1) + (a2*b2)
fit.BRR <- med.fit.BRR(model=model2, data=MedData, mwgtname=mwgtname,
            repwgtnames=repwgtnames, fayfactor=0.5, parallel='parallel', ncore=2)
lavaan::summary(fit.BRR)
#
    # lavaan 0.6-3 ended normally after 41 iterations
#
# Optimization method NLMINB
# Number of free parameters
                                    12
#
# Number of observations 3922
#
# Estimator ML Robust
# Model Fit Test Statistic 0.000 0.000
# Degrees of freedom
0.0000000000000
# Minimum Function Value
# Scaling correction factor
                                    NA
# for the Satorra-Bentler correction
#
Parameter Estimates:
#
# Information Expected
# Information saturated (h1) model Structured
Standard Errors
    BRR
#
# Regressions:
# numcg ~
        workban (c) -0.101 0.039 -2.572 0.010
        sp_adltbn (b1) -0.253 0.048 -5.270 0.000
        sp_kidsbn (b2) -0.361 0.051 -7.006 0.000
# sp_adltban ~
# workban (a1) 0.069 0.018
# sp_kidsban ~
```



```
#
# Covariances:
# Estimate Std.Err z-value P(>|z|)
.sp_adltban ~~
Intercepts:
#stimate Std.Err z-value P(>|z|)
.numcg (u0) 18.485 0.566 32.668
    .sp_adltbn (u1) 4.221 0.167 25.281 0.000
    .sp_kidsbn (u2) 7.926 0.143 55.272 0.000
Variances:
# Estimate Std.Err z-value P(>|z|)
```

\#	.numcg	54.283	1.716	31.628	0.000
\#	.sp_adltban	11.011	0.239	46.140	0.000
\#	.sp_kidsban	9.402	0.209	44.998	0.000
\#					
\# Defined Parameters:					
\#		Estimate	Std.Err	z-value	$P(>\|z\|)$
\#	a1b1	-0.017	0.006	-2.905	0.004
\#	a2b2	-0.007	0.006	-1.234	0.217
\#	total	-0.125	0.040	-3.169	0.002

```
med.p.adjust To adjust the p values for multimediation tests
```


Description

This function is used to adjust the p values when there are multiple mediators (Mai et al., 2019).

Usage

```
med.p.adjust(
    fit = NULL,
    med.eff = NULL,
    p.adj.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr")
)
```


Arguments

fit The model fit results of a model with multiple mediators. Note that it is a lavaan object.
med.eff A vector of labels. The labels should be of the mediation effects in the estimated model.
p.adj.method The method used to adjust for multiplicity ('holm' or 'hochberg' or 'hommel ' or 'bonferroni' or 'BH' or 'BY' or 'fdr'). Conservative method includes the Bonferroni correction ('bonferroni') in which the p-values are multiplied by the number of comparisons. Less conservative corrections are also included by Holm (1979) ('holm'), Hochberg (1988) ('hochberg'), Hommel (1988) ('hommel'), Benjamini \& Hochberg (1995) ('BH' or its alias 'fdr'), and Benjamini \& Yekutieli (2001) ('BY'), respectively. It is 'holm' by default. It is not required.

Value

The adjusted p values along with the effect labels and original p values. It is a list.

References

Benjamini, Y., \& Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289-300. DOI:10.2307/2346101
Benjamini, Y., \& Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188. DOI:10.1214/aos/1013699998
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75, 383-386. DOI:10.1093/biomet/75.2.383

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800-803. DOI:10.1093/biomet/75.4.800

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). Journal of statistical software, 48(2), 1-36. DOI:10.18637/jss.v048.i02

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561-576.
Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of Simes conjecture. Annals of Statistics, 26, 494-504. DOI:10.1214/aos/1028144846

Examples

```
R <- 160
wgtnames <- paste("repwgt", seq(0,R,by=1), sep="")
mwgtname=wgtnames[1]
repwgtnames=wgtnames[2:(R+1)]
fayfactor=0.5
model2 <- ' # outcome
                            numcg ~ u0*1 + c*workban + b1*sp_adltban + b2*sp_kidsban
            # mediator
                sp_adltban ~ u1*1 + a1*workban
                sp_kidsban ~ u2*1 + a2*workban
            #covariance of residuals
                sp_adltban ~~ sp_kidsban
            # indirect effect (a*b)
                a1b1 := a1*b1
                a2b2 := a2*b2
            # total effect
                total := c + (a1*b1) + (a2*b2)
fit.BRR2 <- med.fit.BRR(model=model2, data=MedData, mwgtname=mwgtname,
                            repwgtnames=repwgtnames, fayfactor, parallel='parallel', ncore=4)
temp <- med.p.adjust(fit=fit.BRR2, med.eff=c('a1b1' , 'a2b2'))
#
# Adjustment for multi mediation tests:
#
# Effect p Value adj.p Value
```

med.summary

```
# a1b1 0.003667674 0.007335347
# a2b2 0.217228711 0.217228711
#
# NOTE: p Value adjustment method is holm
#
##########################################
# To catch the unformatted results:
temp
#
# $med.eff
# [1] "a1b1" "a2b2"
#
# $org.p.value
[1] 0.003667674 0.217228711
#
# $adj.p.value
# [1] 0.007335347 0.217228711
```

```
med.summary
```

To print the summary results of the mediation analysis

Description

This function is used to print the summary results of the mediation analysis with adjustment for multiplicity.

Usage

```
    med. summary(
        fit = NULL,
        med.eff = NULL,
        p.adj.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr")
    )
```


Arguments

fit
med.eff
p.adj.method

The model fit results of a mediation model. Note that it is a lavaan object.
A vector of labels. The labels should be of the mediation effects in the estimated model.

The method used to adjust for multiplicity ('holm' or 'hochberg' or 'hommel' or 'bonferroni' or 'BH' or 'BY' or 'fdr'). Conservative method includes the Bonferroni correction ('bonferroni') in which the p-values are multiplied by the number of comparisons. Less conservative corrections are also included by Holm (1979) ('holm'), Hochberg (1988) ('hochberg'), Hommel (1988) ('hommel'), Benjamini \& Hochberg (1995) ('BH' or its alias 'fdr'), and Benjamini \& Yekutieli (2001) ('BY'), respectively. It is 'holm' by default. It is not required.

Value

A list including the effect labels, estimates, standard errors, p values, and adjusted p values if there are more than one mediation effects.

References

Benjamini, Y., \& Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289-300. DOI:10.2307/2346101

Benjamini, Y., \& Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188. DOI:10.1214/aos/1013699998
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75, 383-386. DOI:10.1093/biomet/75.2.383
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800-803. DOI:10.1093/biomet/75.4.800

Mai, Y., Ha, T., \& Soulakova, J. N. (2019). Multimediation Method With Balanced Repeated Replications For Analysis Of Complex Surveys. Structural Equation Modeling: A Multidisciplinary Journal. DOI:10.1080/10705511.2018.1559065
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). Journal of statistical software, 48(2), 1-36. DOI:10.18637/jss.v048.i02

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561-576.
Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of Simes conjecture. Annals of Statistics, 26, 494-504. DOI:10.1214/aos/1028144846

Examples

```
R <- 160
wgtnames <- paste("repwgt", seq(0,R,by=1), sep="")
mwgtname=wgtnames[1]
repwgtnames=wgtnames[2:(R+1)]
fayfactor=0.5
model2 <- ' # outcome
    numcg ~ u0*1 + c*workban + b1*sp_adltban + b2*sp_kidsban
    # mediator
        sp_adltban ~ u1*1 + a1*workban
        sp_kidsban ~ u2*1 + a2*workban
            #covariance of residuals
        sp_adltban ~~ sp_kidsban
            # indirect effect (a*b)
        a1b1 := a1*b1
        a2b2 := a2*b2
    # total effect
```

```
                    total := c + (a1*b1) + (a2*b2)
fit.BRR2 <- med.fit.BRR(model=model2, data=MedData, mwgtname=mwgtname,
                repwgtnames=repwgtnames, fayfactor, parallel='parallel')
temp <- med.summary(fit=fit.BRR2, med.eff=c('a1b1' , 'a2b2'))
#
# MedSurvey 1.1.0
#
# Multimediation with Complex Survey Data:
#
# Effect Est. BRR SE. p Value adj.p Value
#
# a1b1 -0.017475544 0.006014820 0.003667674 0.007335347
\begin{tabular}{lllll}
\(\#\) & \(a 2 b 2\) & -0.007244189 & 0.005870823 & 0.217228711
\end{tabular}
#
# NOTE:
# p Value adjustment method is holm
# Standard errors type is BRR SE.
#
#
######################################
# To catch the unformatted results:
temp
#
# $med.label
# [1] "a1b1" "a2b2"
#
# $med.est
# [1] -0.017475544 -0.007244189
#
# $med.se
# [1] 0.006014820 0.005870823
#
# $org.p.value
# [1] 0.003667674 0.217228711
#
# $adj.p.value
[1] 0.007335347 0.217228711
#
# $se.type
# [1] "BRR SE."
#
# $p.adj.method
# [1] "holm"
#
```


Description

Data from 2014-15 CPS Tobacco Use Supplement (TUS; U.S. Department of Commerce and U.S. Census Bureau 2016), employed adult daily smokers (Non-Hispanic White males only). Missing data are removed from the dataset. Due to the CRAN limitation of the size (5 MB) of an R package, only half of the observations remained in this internal dataset for the purpose of illustration.

Usage

MedData

Format

A data frame with 3922 rows and 167 variables:
PRTAGE Age
PESEX Gender, $0=$ Male, $1=$ Female
repwgt0 Sample main weights
repwgt1 BRR replicate weights
repwgt2 BRR replicate weights
repwgt3 BRR replicate weights
repwgt4 BRR replicate weights
repwgt5 BRR replicate weights
repwgt6 BRR replicate weights
repwgt7 BRR replicate weights
repwgt8 BRR replicate weights
repwgt9 BRR replicate weights
repwgt10 BRR replicate weights
repwgt11 BRR replicate weights
repwgt12 BRR replicate weights
repwgt13 BRR replicate weights
repwgt14 BRR replicate weights
repwgt15 BRR replicate weights
repwgt16 BRR replicate weights
repwgt17 BRR replicate weights
repwgt18 BRR replicate weights
repwgt19 BRR replicate weights
repwgt20 BRR replicate weights
repwgt21 BRR replicate weights
repwgt22 BRR replicate weights
repwgt23 BRR replicate weights
repwgt24 BRR replicate weights
repwgt25 BRR replicate weights
repwgt26 BRR replicate weights
repwgt27 BRR replicate weights
repwgt28 BRR replicate weights
repwgt29 BRR replicate weights
repwgt30 BRR replicate weights
repwgt31 BRR replicate weights
repwgt32 BRR replicate weights
repwgt33 BRR replicate weights
repwgt34 BRR replicate weights
repwgt35 BRR replicate weights
repwgt36 BRR replicate weights
repwgt37 BRR replicate weights
repwgt38 BRR replicate weights
repwgt39 BRR replicate weights
repwgt40 BRR replicate weights
repwgt41 BRR replicate weights
repwgt42 BRR replicate weights
repwgt43 BRR replicate weights
repwgt44 BRR replicate weights
repwgt45 BRR replicate weights
repwgt46 $B R R$ replicate weights
repwgt47 BRR replicate weights
repwgt48 BRR replicate weights
repwgt49 BRR replicate weights
repwgt50 BRR replicate weights
repwgt51 BRR replicate weights
repwgt52 BRR replicate weights
repwgt53 BRR replicate weights
repwgt54 BRR replicate weights
repwgt55 BRR replicate weights
repwgt56 BRR replicate weights
repwgt57 BRR replicate weights
repwgt58 BRR replicate weights
repwgt59 BRR replicate weights
repwgt60 BRR replicate weights
repwgt61 $B R R$ replicate weights
repwgt62 BRR replicate weights
repwgt63 BRR replicate weights
repwgt64 BRR replicate weights
repwgt65 BRR replicate weights
repwgt66 $B R R$ replicate weights
repwgt67 BRR replicate weights
repwgt68 BRR replicate weights
repwgt69 BRR replicate weights
repwgt70 BRR replicate weights
repwgt71 BRR replicate weights
repwgt72 BRR replicate weights
repwgt73 BRR replicate weights
repwgt74 BRR replicate weights
repwgt75 BRR replicate weights
repwgt76 BRR replicate weights
repwgt77 BRR replicate weights
repwgt78 BRR replicate weights
repwgt79 BRR replicate weights
repwgt80 BRR replicate weights
repwgt81 BRR replicate weights
repwgt82 BRR replicate weights
repwgt83 BRR replicate weights
repwgt84 BRR replicate weights
repwgt85 BRR replicate weights
repwgt86 BRR replicate weights
repwgt87 BRR replicate weights
repwgt88 BRR replicate weights
repwgt89 BRR replicate weights
repwgt90 $B R R$ replicate weights
repwgt91 BRR replicate weights
repwgt92 BRR replicate weights
repwgt93 BRR replicate weights
repwgt94 $B R R$ replicate weights
repwgt95 BRR replicate weights
repwgt96 BRR replicate weights
repwgt97 BRR replicate weights
repwgt98 BRR replicate weights
repwgt99 BRR replicate weights
repwgt100 BRR replicate weights
repwgt101 BRR replicate weights
repwgt102 BRR replicate weights
repwgt103 BRR replicate weights
repwgt104 BRR replicate weights
repwgt105 BRR replicate weights
repwgt106 BRR replicate weights
repwgt107 BRR replicate weights
repwgt108 BRR replicate weights
repwgt109 BRR replicate weights
repwgt110 BRR replicate weights
repwgt111 BRR replicate weights
repwgt112 BRR replicate weights
repwgt113 BRR replicate weights
repwgt114 BRR replicate weights
repwgt115 BRR replicate weights
repwgt116 BRR replicate weights
repwgt117 BRR replicate weights
repwgt118 BRR replicate weights
repwgt119 BRR replicate weights
repwgt120 BRR replicate weights
repwgt121 BRR replicate weights
repwgt122 BRR replicate weights
repwgt123 BRR replicate weights
repwgt124 BRR replicate weights
repwgt125 BRR replicate weights
repwgt126 BRR replicate weights
repwgt127 BRR replicate weights
repwgt128 BRR replicate weights
repwgt129 BRR replicate weights
repwgt130 BRR replicate weights
repwgt131 BRR replicate weights
repwgt132 BRR replicate weights
repwgt133 BRR replicate weights
repwgt134 BRR replicate weights
repwgt135 BRR replicate weights
repwgt136 BRR replicate weights
repwgt137 BRR replicate weights
repwgt138 BRR replicate weights
repwgt139 BRR replicate weights
repwgt140 BRR replicate weights
repwgt141 BRR replicate weights
repwgt142 BRR replicate weights
repwgt143 BRR replicate weights
repwgt144 BRR replicate weights
repwgt145 BRR replicate weights
repwgt146 BRR replicate weights
repwgt147 BRR replicate weights
repwgt148 BRR replicate weights
repwgt149 BRR replicate weights
repwgt150 BRR replicate weights
repwgt151 BRR replicate weights
repwgt152 BRR replicate weights
repwgt153 BRR replicate weights
repwgt154 BRR replicate weights
repwgt155 BRR replicate weights
repwgt156 BRR replicate weights
repwgt157 BRR replicate weights
repwgt158 BRR replicate weights
repwgt159 BRR replicate weights
repwgt160 BRR replicate weights
sp_adltban Supporting toward smoking ban in adults-exclusive areas (e.g., casinos, bars)
sp_kidsban Supporting toward smoking ban in kids-related areas (e.g., children playground)
workban Score of smoking restriction score at workplace
numcg Number of cigarretes smoked per day

Source

http://thedataweb.rm.census.gov/ftp/cps_ftp.html\#cpssupps

References

U.S. Department of Commerce, \& U.S. Census Bureau. (2016). National Cancer Institute and Food and Drug Administration co-sponsored Tobacco Use Supplement to the Current Population Survey. 2014-15.

Index

*Topic datasets
MedData, 11
chisq.BRR, 2
med.fit.BRR, 4
med.p.adjust, 7
med. summary, 9
MedData, 11

