Package ‘McSpatial'

February 19, 2015
Type Package
Title Nonparametric spatial data analysis
Version 2.0
Date 2013-5-20
Author Daniel McMillen
Maintainer Daniel McMillen mcmillen@illinois.edu
Description Locally weighted regression, semiparametric andconditionally parametric regression, fourier and cubic splinefunctions, GMM and linearized spatial logit and probit,k -density functions and counterfactuals, nonparametric quantileregression and conditional density functions, Machado-Matadecomposition for quantile regressions, spatial AR model,repeat sales models, conditionally parametric logit and probit
License GPL
LazyLoad yes
Depends lattice, locfit, maptools, quantreg, RANN, SparseM
Suggests car, classInt, mlogit, RColorBrewer, spatstat, spdep
NeedsCompilation no
Repository CRAN
Date/Publication 2013-05-26 11:08:53
R topics documented:
McSpatial-package 3
condens 3
CookCensusTracts 6
cookdata 7
cparlogit 8
cparlwr 11
cparlwrgrid 15
cparmlogit 18
cparprobit 22
cubespline 25
dfldens 27
dupage99 29
fourier 30
geodensity 32
geodistance 34
geogravity 35
geoshape 36
gmmlogit 38
gmmprobit 40
kdensity 43
ksim 45
lwr 47
lwrgrid 52
maketarget 54
makew 56
matchdata 57
matchmahal 59
matchprop 61
matchqreg 64
qregbmat 66
qregcdf 67
qregcpar 69
qreglwr 73
qregsim1 76
qregsim2 79
qregspiv 83
repsale 86
repsaledata 89
repsalefourier 90
repsaleqreg 94
sarml 96
semip 98
smooth12 102
splogit 104
spprobit 107
spprobitml 109
Index 112

Description

Locally weighted regression, semiparametric and conditionally parametric regression, fourier and cubic spline functions, GMM and linearized spatial logit and probit, k-density functions and counterfactuals, nonparametric quantile regression and conditional density functions, Machado-Mata decomposition for quantile regressions, spatial AR model, repeat sales models, conditionally parametric logit and probit

Details

Package:	McSpatial
Type:	Package
Version:	2.0
Date:	$2013-5-20$
License:	GPL
LazyLoad:	yes

Author(s)

Daniel McMillen
Maintainer: Daniel McMillen mcmillen@illinois.edu
condens Conditional density estimation

Description

Estimates conditional density functions of the form $f(y \mid x)=f(x, y) / f(x)$. Kernel density estimators are used to estimate $f(x, y)$ and $f(x)$. The conditional density function can be plotted as a threedimensional surface or as a contour map. Alternatively, the conditional density of y can be graphed for as many as five target values of x.

Usage

```
condens(form,window=.7,bandwidth=0,kern="tcub",
    mingrid.x=NULL,maxgrid.x=NULL,mingrid.y=NULL,maxgrid.y=NULL,ngrid=50,
    xlab="x",ylab="y",zlab="fxy/fx",contour=TRUE,level=TRUE,wire=TRUE,dens=TRUE,
    targetx.dens=NULL,quantile.dens=c(.10,.25,.50,.75,.90),data=NULL)
```


Arguments

form	Model formula
window	Window size. Default: 0.25 .
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
mingrid.x, maxgrid.x, mingrid.y, maxgrid.y, ngrid	
	The mingrid and maxgrid values are the boundaries for the ngrid x ngrid lattice used in the graphs produced by condens. By default, mingrid. $x=\min (x)$, $\operatorname{maxgrid} . \mathrm{x}=\max (\mathrm{x}), \operatorname{mingrid} . \mathrm{y}=\min (\mathrm{y})$, maxgrid. $\mathrm{y}=\max (\mathrm{y})$, and ngrid $=50$.
xlab	Label for the x-axis in graphs. Default: "x"
ylab	Label for the y-axis in graphs. Default: "y"
zlab	Label for the z-axis in graphs. Default: "fxy/fx"
contour	If contour $=T$, produces a two-dimensional contour plot of the conditional density estimates. Evaluated for an ngrid x ngrid lattice. Default is contour=T.
level	If level $=T$, produces a two-dimensional level plot of the conditional density estimates. Evaluated for an ngrid x ngrid lattice. Default is level $=F$.
wire	If wire $=T$, produces a three-dimensional plot of the conditional density estimates. Evaluated for an ngrid x ngrid lattice. Default is wire $=T$.
dens	If dens $=T$, produces a plot showing how $f(y \mid x)$ varies over y for given target values of x. Target values of x are provided using the targetx.dens or quantile.dens options. Default is dens $=\mathrm{F}$.
targetx.dens	Target values for x in the density plots, e.g, targetx.dens $=c(200,400,600)$. Maximum number of entries is 5 . If targetx.dens has more than 5 entries, only the first 5 will be used. Default is targetx.dens $=N U L L$, meaning that the target values for x are determined by the quantile.dens option.
quantile.dens	Quantiles for the target values for x in the density plots, e.g, quantile.dens $=$ $c(.25, .50, .75)$. Maximum number of entries is 5 . If quantile.dens has more than 5 entries, only the first 5 will be used. Default is quantile.dens $=c(.10, .25, .50, .75, .90)$.
data	A data frame containing the data. Default: use data in the current working directory.

Details

The locfit package is used to find the target values of x for $f(x)$ and y for $f(y)$. The expand.grid command is then used to determine the target values of x and y for $f(x, y)$. The smooth 12 command is used to interpolate $f(x), f(y)$, and $f(x, y)$ to the full data set and to the grid of target values for the contour, level, and wire plots.
The density functions $f(x)$ and $f(y)$ are as follows:

$$
f(x)=\frac{1}{s d(x) * b * n} \sum_{i} K\left(\frac{x_{i}-x}{s d(x) * b}\right)
$$

$$
f(y)=\frac{1}{s d(y) * b * n} \sum_{i} K\left(\frac{y_{i}-y}{s d(y) * b}\right)
$$

A product kernel is used for $f(x, y)$:

$$
f(x, y)=\frac{1}{s d(x) * b * s d(y) * b * n} \sum_{i} K\left(\frac{x_{i}-x}{s d(x) * b}\right) K\left(\frac{y_{i}-y}{s d(y) * b}\right)
$$

where b is the bandwidth and the target points are x and y. The bandwidth, b, can be set using the bandwidth option. If $b=0$ (the default), $s d(x) * b$ and $s d(y) * b$ are replaced by window values, $h=$ quantile(dist, window), where dist $=\left|x_{i}-x\right|$ or dist $=\left|y_{i}-y\right|$. The window size is set using the window option. By default, window $=.7$ and bandwidth $=0$. Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

The contour, level, and wire plots are produced from the values in gridmat using the lattice package. The two-dimensional density graphs produced when dens $=T R U E$ are plots of $f(y, x) / f(x)$ at given values of x. By default, the values for x are the quantiles given in quantile.dens. Alternatively, the values of x can be specified directly using the targetx.dens option. The values used to construct the density graphs are stored in densmat. Both gridmat and densmat are stored by condens even if the printing of the graphs is suppressed.

Value

$\mathrm{fx} \quad$ The values of $f(x)$, one for each data point.
fy The values of $f(y)$, one for each data point.
fxy The values of $f(x, y)$, one for each data point. The conditional densities are $\mathrm{fxy} / \mathrm{fx}$ for x and fxy/fy for y.
gridmat An (ngrid*ngrid)x3 matrix used to produce the contour, level, and wire maps. The first column contains the lattice values for x, the second column contains the lattice values for y, and the third column has the estimated values of $f(y \mid x)$ at the target values for x and y.
densmat The estimated values of $f(y \mid x)$ for the two-dimensional density graphs produced when dens $=$ TRUE. If the number of observations in the call to condens is n and the number of entries in quantile.dens is $n q$, then densmat is an $n \times n q$ matrix.

References

Li, Oi and Jeffrey Scott Racine. Nonparametric Econometrics: Theory and Practice. Princeton, NJ: Princeton University Press, 2007.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

See Also

qregcdf

Examples

```
data(dupage99)
dupage99$ratio <- dupage99$av/dupage99$price
dupage99$price <- dupage99$price/1000
par(ask=TRUE)
fit <- condens(ratio~price,contour=TRUE,level=TRUE, wire=TRUE,dens=TRUE,
    targetx.dens=seq(100,500,100), data=dupage99)
```

 CookCensusTracts Shapefile of Census Tracts in Cook County for 2000

Description

A map of census tracts in Cook County, Illinois with data on population, median household income, average floor area ratios, and average home ages.

Format

A shape file with 1343 census tracts. Can be read directly into a GIS program.
SP_ID An identification variable
AREA Area of the tract in square miles
TRACT Census tract number, including state and county codes
POPULATION Population in 2000
HHMEDINC Median household income in the census tract in 2000
FAR Average floor area ratio for census tract in 2000. Calculated from Cook County assessment file
AGE Average age of homes in 2000. Calculated from Cook County assessment file.
CHICAGO Indicates whether the tract is part of the City of Chicago. O'Hare airport is NOT included in Chicago. It is identified in the variable CAREA.

CAREA For Chicago observations, indicates the community area. Missing for suburban observations.

Source

Daniel McMillen. Data are drawn from the U.S. Census and the Cook County Assessment File.

Examples

```
cook <- readShapePoly(system.file("maps/CookCensusTracts.shp",
        package="McSpatial"))
sampvar <- cook$CHICAGO==1|(!is.na(cook$CAREA)&cook$CAREA=="O'Hare")
chicago <- cook[sampvar==TRUE,]
```

 cookdata Data set associated with CookCensusTracts shape file

Description

Census tract data for Cook County, IL for 2000

Usage

data(cookdata)

Format

A data frame with 1343 observations on the following variables:
AREA Area of the census tract in square miles
TRACT Census tract number
POPULATION Total population
HHMEDINC Median household income
FAR Average floor-area ratio for single-family residential homes
AGE Average age of single-family residential homes
CHICAGO Indicates whether the tract is in Chicago. Note that the "O'Hare" community area is not counted as part of Chicago when defining this variable.
CAREA Community area name for tracts in Chicago
LONGITUDE Longitude of the tract centroid
LATITUDE Latitude of the tract centroid
DCBD Distance from the Chicago CBD, measured in miles
LNFAR Natural log of FAR
LNDENS Natural Log of Dens

See Also

CookCensusTracts
cparlogit Conditionally Parametric logit for two or more choices

Description

Estimates a logit model with two choices by maximizing a locally weighted likelihood function the logit equivalent of cparlwr

Usage

```
cparlogit(form, nonpar,window=.25,bandwidth=0, kern="tcub",
distance="Mahal", target=NULL, data=NULL,minp=NULL)
```


Arguments

form	Model formula
nonpar	List of either one or two variables for z. Formats: cparlogit($y \sim x$ xist, nonpar $=\sim z 1$, \ldots...) or cparlogit($y \sim x l i s t$, nonpar $=\sim z 1+z 2, \ldots$). Important: note the " \sim " before the first z variable.
window	Window size. Default: 0.25 .
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: cparlogit looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
target	If target $=$ NULL, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observation is used as a target value for x. A set of target values can be supplied directly.
data	A data frame containing the data. Default: use data in the current working directory
minp	Specifies a limit for the estimated probability. Any estimated probability lower than minp will be set to minp and any probability higher than 1-minp will be set to $1-m i n p$. By default, the estimated probabilities are bounded by 0 and 1.

Details

The list of explanatory variables is specified in the base model formula while Z is specified using nonpar. X can include any number of explanatory variables, but Z must have at most two.

The model is estimated by maximizing the following weighted log-likelihood function at each target point:

$$
\sum_{i=1}^{n} w_{i}\left\{y_{i} \log \left(P_{i}\right)+\left(1-y_{i}\right) \log \left(1-P_{i}\right)\right\}
$$

where y is the discrete dependent variable, X is the set of explanatory variables, and $P_{i}=\frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)}$.
When Z includes a single variable, w_{i} is a simple kernel weighting function: $w_{i}=K\left(\left(z_{i}-\right.\right.$ $\left.\left.z_{0}\right) /(s d(z) * h)\right)$. When Z includes two variables (e.g., nonpar=~z1+z2), the method for specifying w depends on the distance option. Under either option, the i th row of the matrix $Z=(\mathrm{z} 1, \mathrm{z} 2)$ is transformed such that $z_{i}=\sqrt{z_{i} * V * t\left(z_{i}\right)}$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(Z)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(Z))$. After this transformation, the weights again reduce to the simple kernel weighting function $K\left(\left(z_{i}-z_{0}\right) /(s d(z) * h)\right) . h$ is specified by the bandwidth or window option.
The great circle formula is used to construct the distances used to form the weights when distance $=$ "Latlong"; in this case, the variable list for nonpar must be listed as nonpar $=$ ~latitude + longitude (or $\sim l o+l a$ or $\sim l a t+l o n g$, etc), with the longitude and latitude variables expressed in degrees (e.g., -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option.
Following White (1982), the covariance matrix for a quasi-maximum likelihood model is $A^{-1} B A^{-1}$, where

$$
\begin{gathered}
A=\sum_{i=1}^{n} w_{i} \frac{\partial^{2} L n L_{i}}{\partial \beta \partial \beta^{\prime}} \\
B=\sum_{i=1}^{n} w_{i}^{2} \frac{\partial L n L_{i}}{\partial \beta} \frac{\partial L n L_{i}}{\partial \beta^{\prime}}
\end{gathered}
$$

For the logit model,

$$
\begin{aligned}
& A=\sum_{i=1}^{n} w_{i} P_{i}\left(1-P_{i}\right) X_{i} X_{i}^{\prime} \\
& B=\sum_{i=1}^{n} w_{i}^{2}\left(y_{i}-P_{i}\right)^{2} X_{i} X_{i}^{\prime}
\end{aligned}
$$

The covariance matrix is calculated at all target points and the implied standard errors are then interpolated to each data point.
Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$

Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target	The target points for the original estimation of the function.
xcoef.target	Estimated coefficients, $B(z)$, at the target values of z.
xcoef.target.se	
	Standard errors for $B(z)$ at the target values of z.
xcoef	Estimated coefficients, $B(z)$, at the original data points.
xcoef.se	Standard errors for $B(z)$ with z evaluated at all points in the data set.
p	The estimated probabilities.
lnl	The log-likelihood value.

References

Fan, Jianqing, Nancy E. Heckman, and M.P. Wand, "Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions," Journal of the American Statistical Association 90 (1995), 141-150.

Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P. and John F. McDonald, "Locally Weighted Maximum Likelihood Estimation: Monte Carlo Evidence and an Application," in Luc Anselin, Raymond J.G.M. Florax, and Sergio J. Rey, eds., Advances in Spatial Econometrics, Springer-Verlag, New York (2004), 225-239.

Tibshirani, Robert and Trevor Hastie, "Local Likelihood Estimation," Journal of the American Statistical Association 82 (1987), 559-568.

See Also

cparprobit
cparmlogit
gmmlogit
gmmprobit
splogit
spprobit
spprobitml

Examples

```
set.seed(5647)
data(cookdata)
cookdata <- cookdata[!is.na(cookdata$AGE),]
n = nrow(cookdata)
cookdata$ystar <- cookdata$DCBD - .5*cookdata$AGE
cookdata$y <- cookdata$ystar - mean(cookdata$ystar) + rnorm(n,sd=4) > 0
fit <- cparlogit(y~DCBD+AGE,~LONGITUDE+LATITUDE,window=.5,
    distance="Latlong",data=cookdata,minp=0.001)
```

cparlwr Conditionally Parametric LWR Estimation

Description

Estimates a model of the form $y=X B(z)+u$, where z can include one or two variables. "Geographically weighted regression" is a special case in which $z=$ (latitude, longitude) or some other measure of location.

Usage

```
cparlwr(form,nonpar,window=.25,bandwidth=0,kern="tcub",
    distance="Mahal",targetobs=NULL, data=NULL)
```


Arguments

form	Model formula
nonpar	List of either one or two variables for z. Formats: cparlwr $(y \sim x l i s t, ~ n o n p a r=\sim z 1$, ...) or cparlwr ($y \sim x$ list, nonpar $=\sim z 1+z 2, \ldots$). Important: note the " \sim " before the first z variable.
window	Window size. Default: 0.25.
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: cparlwr looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
targetobs	If targetobs $=N U L L$, uses the maketarget command to form targets. If target="alldata", each observation is used as a target value for x. A set of target can also be supplied directly by listing the observation numbers of the target data points. The observation numbers can be identified using the obs variable produced by the maketarget command.

data A data frame containing the data. Default: use data in the current working directory

Details

The list of explanatory variables is specified in the base model formula while Z is specified using nonpar. The model formula does not have to include an intercept, making it suitable for repeat sales estimation as well as other models. X can include any number of explanatory variables, but Z must have at most two. cparlwr is equivalent to the $l w r$ command when $Z=X$ and the formula includes an intercept, with one exception: the explanatory variables are not centered on the target points so the intercept does not provide a direct estimate of y. This affects the intercept and its standard errors but not the coefficients on the explanatory variables. It also means that $\hat{y}=\hat{\alpha}+X \hat{\beta}$ rather than just $\hat{\alpha}$. The estimated coefficient matrix, xcoef, provides estimates of the slopes at z_{0}, i.e., $B\left(z_{0}\right)$
The estimated value of y at a target value z_{0} is the predicted value from a weighted least squares regression of y on X with weights given by K. When Z includes a single variable, K is a simple kernel weighting function: $K\left(\left(z-z_{0}\right) /(s d(z) * h)\right)$. When Z includes two variables (e.g., nonpar=~z1+z2), the method for specifying K depends on the distance option. Under either option, the i th row of the matrix $Z=(\mathrm{z} 1, \mathrm{z} 2)$ is transformed such that $z_{i}=\sqrt{z_{i} * V * t\left(z_{i}\right)}$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(Z)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(Z))$. After this transformation, the weights again reduce to the simple kernel weighting function $K((z-$ $\left.\left.z_{0}\right) /(s d(z) * h)\right)$.
The great circle formula is used to define K when distance $=$ "Latlong"; in this case, the variable list for nonpar must be listed as nonpar $=\sim l a t i t u d e+l o n g i t u d e ~(o r ~ \sim l o+l a ~ o r ~ \sim l a t+l o n g$, etc), with the longitude and latitude variables expressed in degrees (e.g., -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is the longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance $/ h$) under the "Latlong" option.
h is specified by the bandwidth or window option. The function cparlwrgrid can be used to search for the value of h that minimizes the $c v$ or $g c v$ criterion.
Since each estimate is a linear function of all n values for y, the full set of estimates takes the form yhat $=L Y$, where L is an nxn matrix. Loader (1999) suggests two measures of the number of degrees of freedom used in estimation: $d f 1=\operatorname{tr}(L)$ and $d f 2=\operatorname{tr}\left(L^{\prime} L\right)$. The diagonal elements of $\operatorname{tr}(L)$ are stored in the array infl. Since the degrees of freedom measures can differ substantially when target="alldata" rather than using a set of target points, it is a good idea to report final estimates using target="alldata" when possible.
Again following Loader (1999), the degrees of freedom correction used to estimate the error variance, $\operatorname{sig} 2$, is $d f=2 * d f 1-d f 2$. Let e represent the vector of residuals, $y-y h a t$. The estimated variance is $\operatorname{sig} 2=\sum_{i} e_{i}^{2} /(n-d f)$. The covariance matrix for $B\left(z_{0}\right)$ is

$$
\hat{\sigma}^{2}\left(\sum_{i=1}^{n} X_{i} K\left(\phi_{i}\right) X_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} X_{i}\left(K\left(\phi_{i}\right)\right)^{2} X_{i}^{\top}\right)\left(\sum_{i=1}^{n} X_{i} K\left(\phi_{i}\right) X_{i}^{\top}\right)^{-1}
$$

Estimation can be very slow when targetobs $=$ "alldata". The maketarget command can be used to identify target points.

Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target The target points for the original estimation of the function.
ytarget \quad The predicted values of y at the target values z.
xcoef.target Estimated coefficients, $B(z)$, at the target values of z.
xcoef.target.se
Standard errors for $B(z)$ at the target values of z.
yhat Predicted values of y at the original data points.
xcoef Estimated coefficients, $B(z)$, at the original data points.
xcoef.se Standard errors for $B(z)$ with z evaluated at all points in the data set.
df1 $\operatorname{tr}(L)$, a measure of the degrees of freedom used in estimation.
df2 $\operatorname{tr}\left(L^{\prime} L\right)$, an alternative measure of the degrees of freedom used in estimation.
sig2 Estimated residual variance, sig2 $=r s s /(n-2 * d f 1+d f 2)$.
cv Cross-validation measure. $c v=\operatorname{mean}\left(((y-y h a t) /(1-i n f l))^{\wedge} 2\right)$, where yhat is the vector of predicted values for y and infl is the vector of diagonal terms for L.
$\operatorname{gcv} \quad \operatorname{gcv}=n *(n * \operatorname{sig} 2) /\left((n-n r e g)^{\wedge} 2\right)$, where sig2 is the estimated residual variance and nreg $=2 * d f 1-d f 2$.
infl A vector containing the diagonal elements of L.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P., "One Hundred Fifty Years of Land Values in Chicago: A Nonparametric Approach," Journal of Urban Economics 40 (1996), 100-124.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.

McMillen, Daniel P., "Employment Densities, Spatial Autocorrelation, and Subcenters in Large Metropolitan Areas," Journal of Regional Science 44 (2004), 225-243.
McMillen, Daniel P. and John F. McDonald, "A Nonparametric Analysis of Employment Density in a Polycentric City," Journal of Regional Science 37 (1997), 591-612.

McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.

Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

See Also

cparlwrgrid
cubespline
fourier
lwr
lwrgrid
semip

Examples

```
data(cookdata)
par(ask=TRUE)
cookdata <- cookdata[cookdata$CHICAGO==1&!is.na(cookdata$LNFAR),]
fit1 <- cparlwr(LNFAR~DCBD,nonpar=~DCBD, window=.10,
        data=cookdata)
fit2 <- cparlwr(LNFAR~DCBD,nonpar=~LONGITUDE+LATITUDE,window=.10,
        distance="LATLONG",data=cookdata)
cookdata$yhat1 <- fit1$yhat
cookdata$yhat2 <- fit2$yhat
o <- order(cookdata$DCBD)
plot(cookdata$DCBD[o], cookdata$LNFAR[o],main="Log Floor Area Ratio",
        xlab="Distance from CBD",ylab="Log FAR")
lines(cookdata$DCBD[o], cookdata$yhat1[o], col="red")
plot(cookdata$DCBD[o], cookdata$LNFAR[o],main="Log Floor Area Ratio",
        xlab="Distance from CBD",ylab="Log FAR")
points(cookdata$DCBD[o], cookdata$yhat2[o], col="red")
```

cparlwrgrid

Conditionally parametric LWR regression bandwidth or window selection

Description

Finds the value of a user-provided array of window or bandwidth values that provides the lowest $c v$ or $g c v$ for a CPAR model. Calls cparlwr and returns its full output for the chosen value of h.

Usage

```
cparlwrgrid(form, nonpar,window=0,bandwidth=0, kern="tcub",method="gcv",
    print=TRUE,distance="Mahal",targetobs=NULL, data=NULL)
```


Arguments

form	Model formula
nonpar	List of either one or two variables for z. Formats: cparlwr $(y \sim x l i s t$, nonpar $=\sim z 1$, ...) or cparlwr ($y \sim x$ list, nonpar $=\sim z 1+z 2, \ldots$). Important: note the $" \sim$ " before the first z variable.
window	Window size. Default: not used.
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
method	Specifies "gcv" or "cv" criterion function. Default: method="gcv".
print	If TRUE, prints $g c v$ or $c v$ values for each value of the window or bandwidth.
distance	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: cparlwr looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
targetobs	If targetobs $=$ NULL, uses the maketarget command to form targets. If target="alldata", each observation is used as a target value for x. A set of target can also be supplied directly by listing the observation numbers of the target data points. The observation numbers can be identified using the obs variable produced by the maketarget command.
data	A data frame containing the data. Default: use data in the current working directory

Value

target The target points for the original estimation of the function.
ytarget \quad The predicted values of y at the target values z.
xcoef.target Estimated coefficients, $B(z)$, at the target values of z.
xcoef.target.se
Standard errors for $B(z)$ at the target values of z.
yhat Predicted values of y at the original data points.
xcoef Estimated coefficients, $B(z)$, at the original data points.
xcoef.se Standard errors for $B(z)$ with z evaluated at all points in the data set.
$\mathrm{df} 1 \quad \operatorname{tr}(L)$, a measure of the degrees of freedom used in estimation.
df2 $\operatorname{tr}\left(L^{\prime} L\right)$, an alternative measure of the degrees of freedom used in estimation.
sig2 Estimated residual variance, sig2 $=r s s /(n-2 * d f 1+d f 2)$.
$\mathrm{cv} \quad$ Cross-validation measure. $c v=\operatorname{mean}\left(((y \text {-yhat }) /(1-\mathrm{inf} f))^{\wedge} 2\right)$, where yhat is the vector of predicted values for y and infl is the vector of diagonal terms for L.
$\operatorname{gcv} \quad \operatorname{gcv}=\mathrm{n} *(\mathrm{n} * \operatorname{sig} 2) /\left((\mathrm{n}-\mathrm{nreg})^{\wedge} 2\right)$, where sig2 is the estimated residual variance and $n r e g=2 * d f 1-d f 2$.
infl A vector containing the diagonal elements of L.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P., "One Hundred Fifty Years of Land Values in Chicago: A Nonparametric Approach," Journal of Urban Economics 40 (1996), 100-124.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.

McMillen, Daniel P., "Employment Densities, Spatial Autocorrelation, and Subcenters in Large Metropolitan Areas," Journal of Regional Science 44 (2004), 225-243.
McMillen, Daniel P. and John F. McDonald, "A Nonparametric Analysis of Employment Density in a Polycentric City," Journal of Regional Science 37 (1997), 591-612.
McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

See Also

cparlwr

Examples

```
par(ask=TRUE)
n = 1000
z1 <- runif(n,0,2*pi)
z1 <- sort(z1)
z2 <- runif(n,0,2*pi)
o1 <- order(z1)
o2 <- order(z2)
ybase1 <- z1 - . 1*(z1^2) + sin(z1) - cos(z1) - . 5* sin(2*z1) + . 5* cos(2*z1)
ybase2 <- -z2 + .1*(z2^2) - sin(z2) + cos(z2) + . 5*sin(2*z2) - . 5* cos(2*z2)
ybase <- ybase1+ybase2
sig = sd(ybase)/2
y <- ybase + rnorm(n,0,sig)
summary(lm(y~ybase))
# Single variable estimation
```

```
fit1 <- cparlwrgrid(y~z1,nonpar=~z1,window=seq(.10,.40,.10))
c(fit1$df1,fit1$df2,2*fit1$df1-fit1$df2)
plot(z1[o1],ybase1[o1],type="l",ylim=c(min(ybase1,fit1$yhat),max(ybase1,fit1$yhat)),
    xlab="z1",ylab="y")
# Make predicted and actual values have the same means
fit1$yhat <- fit1$yhat - mean(fit1$yhat) + mean(ybase1)
lines(z1[o1],fit1$yhat[o1], col="red")
legend("topright", c("Base", "LWR"), col=c("black","red"),lwd=1)
fit2 <- cparlwrgrid(y~z2,nonpar=~z2,window=seq(.10,.40,.10))
fit2$yhat <- fit2$yhat - mean(fit2$yhat) + mean(ybase2)
c(fit2$df1,fit2$df2,2*fit2$df1-fit2$df2)
plot(z2[o2],ybase2[o2],type="l",ylim=c(min(ybase2,fit2$yhat),max(ybase2,fit2$yhat)),
    xlab="z1",ylab="y")
lines(z2[o2],fit2$yhat[o2], col="red")
legend("topright", c("Base", "LWR"), col=c("black","red"),lwd=1)
#both variables
fit3 <- cparlwrgrid(y~z1+z2,nonpar=~z1+zz2,window=seq(.10,.20,.05))
yhat1 <- fit3$yhat - mean(fit3$yhat) + mean(ybase1)
plot(z1[o1],yhat1[o1], xlab="z1",ylab="y")
lines(z1[01],ybase1[01],col="red")
yhat2 <- fit3$yhat - mean(fit3$yhat) + mean(ybase2)
plot(z2[o2],yhat2[o2], xlab="z2",ylab="y")
lines(z2[o2],ybase2[o2],col="red")
```

cparmlogit

Conditionally parametric logit for two or more choices

Description

Estimates a multinomial logit model with two or more choices by maximizing a locally weighted likelihood function - the logit equivalent of cparlwr

Usage

cparmlogit(form, nonpar, window=. 25, bandwidth=0, kern="tcub", distance="Mahal", target=NULL, data=NULL)

Arguments

form	Model formula
nonpar	$\left.\begin{array}{l}\text { List of either one or two variables for } z . \text { Formats: cparmlogit }(y \sim x l i s t, \text { non- } \\ \text { par }=\sim z 1, \ldots) \text { or cparmlogit }(y \sim x l i s t, ~ n o n p a r ~ \\ \text { " }\end{array} \sim \sim z 1+z 2, \ldots\right)$ before the first z variable.

kern Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: cparmlogit looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
target If target $=$ NULL, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observation is used as a target value for x. A set of target values can be supplied directly.
data A data frame containing the data. Default: use data in the current working directory

Details

The list of explanatory variables is specified in the base model formula while Z is specified using nonpar. X can include any number of explanatory variables, but Z must have at most two.
The model is estimated by maximizing the following weighted log-likelihood function at each target point:

$$
\sum_{i=1}^{n} \sum_{j=1}^{K} w_{i} I\left(y_{i}=j\right) \log \left(P\left(X_{i} \beta_{j}\right)\right)
$$

where y is the discrete dependent variable with $\mathrm{K}+1$ choices, X is the set of explanatory variables, and $P\left(X_{i} \beta_{j}\right)=\frac{\exp \left(X_{i} \beta_{j}\right)}{\sum_{j} \exp \left(X_{i} \beta_{j}\right)}$. For the base value, $\mathrm{y}=0$, the coefficients are normalized to $\beta_{0}=0$.
When Z includes a single variable, w_{i} is a simple kernel weighting function: $w_{i}=K\left(\left(z_{i}-\right.\right.$ $\left.\left.z_{0}\right) /(s d(z) * h)\right)$. When Z includes two variables (e.g., nonpar=~z1+z2), the method for specifying w depends on the distance option. Under either option, the i th row of the matrix $Z=(\mathrm{z} 1, \mathrm{z} 2)$ is transformed such that $z_{i}=\sqrt{z_{i} * V * t\left(z_{i}\right)}$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(Z)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(Z))$. After this transformation, the weights again reduce to the simple kernel weighting function $K\left(\left(z_{i}-z_{0}\right) /(s d(z) * h)\right) . h$ is specified by the bandwidth or window option.
The great circle formula is used to constuct the distances used to form the weights when distance $=$ "Latlong"; in this case, the variable list for nonpar must be listed as nonpar $=$ ~latitude + longitude (or $\sim l o+l a$ or $\sim l a t+l o n g, ~ e t c), ~ w i t h ~ t h e ~ l o n g i t u d e ~ a n d ~ l a t i t u d e ~ v a r i a b l e s ~ e x p r e s s e d ~ i n ~ d e g r e e s ~(e . g ., ~$ -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is the longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option.
Following White (1982), the covariance matrix for a quasi-maximum likelihood model is $A^{-1} B A^{-1}$, where

$$
\begin{gathered}
A=\sum_{i=1}^{n} w_{i} \frac{\partial^{2} L n L_{i}}{\partial \beta \partial \beta^{\prime}} \\
B=\sum_{i=1}^{n} w_{i}^{2} \frac{\partial L n L_{i}}{\partial \beta} \frac{\partial L n L_{i}}{\partial \beta^{\prime}}
\end{gathered}
$$

The covariance matrix is calculated at each target point and the implied standard errors are then interpolated to each data point. Estimation can be very slow when target $=$ "alldata". The maketarget command can be used to identify target points.
Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target The target points for the original estimation of the function.
xcoef.target Estimated coefficients, $B(z)$, at the target values of z.
xcoef.target.se
Standard errors for $B(z)$ at the target values of z.
xcoef Estimated coefficients, $B(z)$, at the original data points.
xcoef. se Standard errors for $B(z)$ with z evaluated at all points in the data set.
pmat The $\mathrm{n} \times \mathrm{K}+1$ matrix of estimated probabilities.
lnl The log-likelihood value.

References

Fan, Jianqing, Nancy E. Heckman, and M.P. Wand, "Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions," Journal of the American Statistical Association 90 (1995), 141-150.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P. and John F. McDonald, "Locally Weighted Maximum Likelihood Estimation: Monte Carlo Evidence and an Application," in Luc Anselin, Raymond J.G.M. Florax, and Sergio J. Rey, eds., Advances in Spatial Econometrics, Springer-Verlag, New York (2004), 225-239.
Tibshirani, Robert and Trevor Hastie, "Local Likelihood Estimation," Journal of the American Statistical Association 82 (1987), 559-568.

See Also

cparlogit
cparprobit
gmmlogit
gmmprobit
splogit
spprobit
spprobitml

Examples

```
library(mlogit)
set.seed(5647)
n = 1000
x <- runif(n,0,pi*sqrt(12))
o <- order(x)
x <- x[o]
form <- yvar~x
nonpar <- ~x
# 2 choices
ybase <- x + rlogis(n)
yvar <- ybase>.5*pi*sqrt(12)
table(yvar)
fit <- glm(yvar~x,family=binomial(link="logit"))
summary(fit)
p <- fitted(fit)
fit1 <- cparmlogit(yvar~x, nonpar=~x,window=.5,kern="tcub")
fit1$lnl
colMeans(fit1$xcoef)
colMeans(fit1$xcoef.se)
cor(p,fit1$pmat)
plot(x,p,xlab="x",ylab="Prob(y=1)",type="l")
lines(x,fit1$pmat[,2],col="red")
legend("topleft",c("Standard Logit","CPAR"),col=c("black","red"),lwd=1)
## Not run:
par(ask=TRUE)
# 3 choices
ybase1 <- -.5*pi*sqrt(12) + x + rlogis(n)
ybase2 <- -.5*pi*sqrt(12)/2 + x/2 + rlogis(n)
yvar <- ifelse(ybase1>ybase2,1,2)
yvar <- ifelse(ybase1<0&ybase2<0,0,yvar)
table(yvar)
mdata <- data.frame(yvar,x)
fit <- mlogit(yvar~0 | x, data=mdata, shape="wide")
summary(fit)
fit1 <- cparmlogit(yvar~x,nonpar=~x,window=.5,kern="tcub")
fit1$lnl
```

```
colMeans(fit1$xcoef)
colMeans(fit1$xcoef.se)
cor(fit$probabilities,fit1$pmat)
plot(x,fit$probabilities[,1],xlab="x",ylab="Prob(y=1)",type="l",main="Prob(y=0)")
lines(x,fit1$pmat[,1],col="red")
legend("topright",c("Standard Logit","CPAR"),col=c("black","red"),lwd=1)
plot(x,fit$probabilities[,2],xlab="x",ylab="Prob(y=1)", type="l",main="Prob(y=1)")
lines(x,fit1$pmat[,2],col="red")
legend("topleft",c("Standard Logit","CPAR"),col=c("black","red"),lwd=1)
plot(x,fit$probabilities[,3],xlab="x",ylab="Prob(y=1)",type="l",main="Prob(y=2)")
lines(x,fit1$pmat[,3],col="red")
legend("topleft",c("Standard Logit","CPAR"),col=c("black","red"),lwd=1)
# 2 choices, quadratic
x2 <- x^2
ybase <- x - . 1*(x^2) + rlogis(n)
yvar <- ybase>median(ybase)
table(yvar)
fit <- glm(yvar~x+x2,family=binomial(link="logit"))
summary(fit)
p <- fitted(fit)
fit1 <- cparmlogit(yvar~x,nonpar=~x,window=.25,kern="tcub")
fit1$lnl
colMeans(fit1$xcoef)
colMeans(fit1$xcoef.se)
cor(p,fit1$pmat)
plot(x,p,xlab="x",ylab="Prob(y=1)",type="l")
lines(x,fit1$pmat[,2],col="red")
legend("topleft",c("Standard Logit","CPAR"),col=c("black","red"),lwd=1)
## End(Not run)
```

cparprobit

Conditionally Parametric probit for two choices

Description

Estimates a probit model with two choices by maximizing a locally weighted likelihood function the probit equivalent of cparlwr

Usage

cparprobit(form, nonpar, window=. 25, bandwidth=0, kern="tcub", distance="Mahal", target=NULL, data=NULL, minp=NULL)

Arguments

form
Model formula

nonpar	List of either one or two variables for z. Formats: cparprobit(y~xlist, nonpar $=\sim z 1, \ldots$) or cparprobit $(y \sim x l i s t$, nonpar $=\sim z 1+z 2, \ldots)$. Important: note the " \sim " before the first z variable.
window	Window size. Default: 0.25 .
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: cparprobit looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
target	If target $=N U L L$, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observation is used as a target value for x. A set of target values can be supplied directly.
data	A data frame containing the data. Default: use data in the current working directory
minp	Specifies a limit for the estimated probability. Any estimated probability lower than minp will be set to minp and any probability higher than 1-minp will be set to $1-m i n p$. By default, the estimated probabilities are bounded by 0 and 1.

Details

The list of explanatory variables is specified in the base model formula while Z is specified using nonpar. X can include any number of explanatory variables, but Z must have at most two.
The model is estimated by maximizing the following weighted log-likelihood function at each target point:

$$
\sum_{i=1}^{n} w_{i}\left\{y_{i} \log \left(\Phi\left(X_{i} \beta\right)\right)+\left(1-y_{i}\right) \log \left(1-\Phi\left(X_{i} \beta\right)\right)\right\}
$$

where y is the discrete dependent variable and X is the set of explanatory variables.
When Z includes a single variable, w_{i} is a simple kernel weighting function: $w_{i}=K\left(\left(z_{i}-\right.\right.$ $\left.\left.z_{0}\right) /(s d(z) * h)\right)$. When Z includes two variables (e.g., nonpar=~z1+z2), the method for specifying w depends on the distance option. Under either option, the i th row of the matrix $Z=(\mathrm{z} 1, \mathrm{z} 2)$ is transformed such that $z_{i}=\sqrt{z_{i} * V * t\left(z_{i}\right)}$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(Z)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(Z))$. After this transformation, the weights again reduce to the simple kernel weighting function $K\left(\left(z_{i}-z_{0}\right) /(s d(z) * h)\right) . h$ is specified by the bandwidth or window option.
The great circle formula is used to construct the distances used to form the weights when distance $=$ "Latlong"; in this case, the variable list for nonpar must be listed as nonpar $=\sim$ latitude + longitude (or $\sim l o+l a$ or $\sim l a t+l o n g, ~ e t c), ~ w i t h ~ t h e ~ l o n g i t u d e ~ a n d ~ l a t i t u d e ~ v a r i a b l e s ~ e x p r e s s e d ~ i n ~ d e g r e e s ~(e . g ., ~$ -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first
two letters to determine which variable is latitude and which is longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option.
Following White (1982), the covariance matrix for a quasi-maximum likelihood model is $A^{-1} B A^{-1}$, where

$$
\begin{gathered}
A=\sum_{i=1}^{n} w_{i} \frac{\partial^{2} L n L_{i}}{\partial \beta \partial \beta^{\prime}} \\
B=\sum_{i=1}^{n} w_{i}^{2} \frac{\partial L n L_{i}}{\partial \beta} \frac{\partial L n L_{i}}{\partial \beta^{\prime}}
\end{gathered}
$$

For the probit model,

$$
\begin{aligned}
& A=\sum_{i=1}^{n} w_{i} P_{i}\left(1-P_{i}\right) X_{i} X_{i}^{\prime} \\
& B=\sum_{i=1}^{n} w_{i}^{2}\left(y_{i}-P_{i}\right)^{2} X_{i} X_{i}^{\prime}
\end{aligned}
$$

The covariance matrix is calculated at all target points and the implied standard errors are then interpolated to each data point.
Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target The target points for the original estimation of the function.
xcoef.target Estimated coefficients, $B(z)$, at the target values of z.
xcoef.target.se
Standard errors for $B(z)$ at the target values of z.
xcoef Estimated coefficients, $B(z)$, at the original data points.
xcoef.se \quad Standard errors for $B(z)$ with z evaluated at all points in the data set.
p
The estimated probabilities.
ln1 The log-likelihood value.

References

Fan, Jianqing, Nancy E. Heckman, and M.P. Wand, "Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions," Journal of the American Statistical Association 90 (1995), 141-150.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P. and John F. McDonald, "Locally Weighted Maximum Likelihood Estimation: Monte Carlo Evidence and an Application," in Luc Anselin, Raymond J.G.M. Florax, and Sergio J. Rey, eds., Advances in Spatial Econometrics, Springer-Verlag, New York (2004), 225-239.
Tibshirani, Robert and Trevor Hastie, "Local Likelihood Estimation," Journal of the American Statistical Association 82 (1987), 559-568.

See Also

cparlogit
cparmlogit
gmmlogit
gmmprobit
splogit
spprobit
spprobitml

Examples

```
set.seed(5647)
data(cookdata)
cookdata <- cookdata[!is.na(cookdata$AGE),]
n = nrow(cookdata)
cookdata$ystar <- cookdata$DCBD - .5*cookdata$AGE
cookdata$y <- cookdata$ystar - mean(cookdata$ystar) + rnorm(n,sd=4) > 0
tvect <- maketarget(~LONGITUDE+LATITUDE,window=.5,data=cookdata)$target
fit <- cparprobit(y~DCBD+AGE,~LONGITUDE+LATITUDE,window=.5,
    target=tvect,distance="Latlong",data=cookdata,minp=0.001)
```

cubespline

Smooth cubic spline estimation

Description

Estimates a smooth cubic spline for a model of the form $y=f(z)+X B+u$. The function divides the range of z into knots +1 equal intervals. The regression is $y=$ cons $+\lambda_{1}\left(z-z_{0}\right)+\lambda_{2}(z-$ $\left.z_{0}\right)^{2}+\lambda_{3}\left(z-z_{0}\right)^{3}+\sum_{k=1}^{K} \gamma_{k}\left(z-z_{k}\right)^{3} D_{k}+X \beta+u$ where $z_{0}=\min (z), z_{1} \ldots z_{K}$ are the knots, and $D_{k}=1$ if $z \geq z_{k}$. Estimation can be carried out for a fixed value of K or for a range of K . In the latter case, the function indicates the value of K that produces the lowest value of one of the following criteria: the AIC, the Schwarz information criterion, or the gcv.

Usage

```
cubespline(form,knots=1,mink=1,maxk=1,crit="gcv",data=NULL)
```


Arguments

```
form Model formula. The spline is used with the first explanatory variable.
knots If knots is specified, fits a cubic spline with \(\mathrm{K}=\) knots. Default is knots=1, mink
    \(=1\), and maxk \(=1\), which implies a cubic spline with a single knot.
    mink The lower bound to search for the value of K that minimizes crit. mink can take
    any value greater than zero. The default is mink \(=1\)
    maxk The upper bound to search for the value of \(K\) that minimizes crit. maxk must be
        great than or equal to mink. The default is maxk \(=1\).
    crit The selection criterion. Must be in quotes. The default is the generalized cross-
        validation criterion, or "gcv". Options include the Akaike information criterion,
        "aic", and the Schwarz criterion, "sc". Let nreg be the number of explanatory
        variables in the regression and sig2 the estimated variance. The formulas for the
        available crit options are
        \(\operatorname{gcv}=\mathrm{n}^{*}(\mathrm{n} * \operatorname{sig} 2) /\left((\mathrm{n}-\mathrm{nreg})^{\wedge} 2\right)\)
        aic \(=\log (\operatorname{sig} 2)+2^{*}\) nreg \(/ n\)
        \(\mathrm{sc}=\log (\operatorname{sig} 2)+\log (\mathrm{n}) * \mathrm{nreg} / \mathrm{n}\)
data A data frame containing the data. Default: use data in the current working
        directory
```


Value

yhat The predicted values of the dependent variable at the original data points
rss The residual sum of squares
sig2 The estimated error variance
aic The value for AIC
sc The value for sc
gcv The value for gcv
coef The estimated coefficient vector, B
splinehat The predicted values for z alone, normalized to have the same mean as the dependent variable. If no X variables are included in the regression, splinehat $=$ yhat.
knots The vector of knots

References

McMillen, Daniel P., "Testing for Monocentricity," in Richard J. Arnott and Daniel P. McMillen, eds., A Companion to Urban Economics, Blackwell, Malden MA (2006), 128-140.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.
Suits, Daniel B., Andrew Mason, and Louis Chan, "Spline Functions Fitted by Standard Regression Methods," Review of Economics and Statistics 60 (1978), 132-139.

See Also

> cparlwr
fourier
lwr
lwrgrid
semip

Examples

```
data(cookdata)
fardata <- cookdata[!is.na(cookdata$LNFAR),]
par(ask=TRUE)
# single variable
o <- order(fardata$DCBD)
fit1 <- cubespline(LNFAR~DCBD, mink=1, maxk=10,data=fardata)
c(fit1$rss, fit1$sig2, fit1$aic, fit1$sc, fit1$gcv, fit1$knots)
plot(fardata$DCBD[o], fardata$LNFAR[o], xlab="Distance from CBD", ylab="Log FAR")
lines(fardata$DCBD[o], fit1$splinehat[o], col="red")
# multiple explanatory variables
fit2 <- cubespline(fardata$LNFAR~fardata$DCBD+fardata$AGE, mink=1, maxk=10)
c(fit2$rss, fit2$sig2, fit2$aic, fit2$sc, fit2$gcv, fit2$knots)
plot(fardata$DCBD[o], fardata$LNFAR[o], xlab="Distance from CBD", ylab="Log FAR")
lines(fardata$DCBD[o], fit2$splinehat[o], col="red")
# pre-specified number of knots
fit3 <- cubespline(LNFAR~DCBD+AGE, knots=4, data=fardata)
```

dfldens Counterfactual Kernel Density Functions

Description

Uses the DiNardo, Fortin, and Lemieux approach to re-weight kernel density functions based on values of an explanatory variable from an earlier period.

Usage

dfldens(y,lgtform, window=0, bandwidth=0, kern="tcub", probit=FALSE, graph=TRUE , yname=" y ", alldata=FALSE, data=NULL)

Arguments

y
lgtform

The dependent variable for which the counterfactual density is estimated. The data frame must be specified if it has not been attached, e.g., $y=m y d a t a \$ d e p v a r$. The formula for the logit or probit model for the time variable. The dependent variable should be a $0-1$ variable with 1 's representing the later time period. Example: lgtform=timevar $\sim x 1+x 2$.
window The window size for the kernel density function. Default: not used.
bandwidth The bandwidth. Default: bandwidth $=\left(.9^{*}(\text { quantile }(\mathrm{y} 1, .75) \text {-quantile }(\mathrm{y} 1, .25)) / 1.34\right)^{*}\left(\mathrm{n} 1^{\wedge}(-\right.$ $.20)$), specified by setting bandwidth $=0$ and window $=0$.
kern Kernel weighting function. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
probit If TRUE, a probit model is used for the time variable rather than logit. Default: probit $=$ FALSE.
graph If $T R U E$, produces a graph showing the density function for time 1 and the counterfactual density. Default: graph=TRUE.
yname \quad The name to be used for the variable whose density functions are drawn when graph=T. Default: yname $=" y "$.
alldata If TRUE, the density functions are calculated using each observation in turn as a target value. When alldata $=F$, densities are calculated at a set of points chosen by the locfit program using an adaptive decision tree approach, and the smooth 12 command is used to interpolate to the full set of observations.
data A data frame with the variables for the logit or probit model specified by lgtform. Note: the data frame for y must be specified even if it is part of data.

Details

The dfldens command first calculates kernel density estimates for y in time period timevar $=1$. The density estimate at target point y is $f\left(y_{1}\right)=\left(1 /\left(h n_{1}\right)\right) \sum_{i} K\left(\left(y_{1 i}-y_{1}\right) / h\right)$. The following kernel weighting functions are available:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

By default, dfldens uses a tri-cube kernel with a fixed bandwidth of $\mathrm{h}=\left(.9^{*}\right.$ (quantile(y1,.75)quantile $(\mathrm{y} 1, .25)) / 1.34)^{*}\left(\mathrm{n} 1^{\wedge}(-.20)\right)$. The results are stored in dtargetl and dhatl.
The counterfactual density is an estimate of the density function for y in time 1 if the explanatory variables listed in lgtform were equal to their time 0 values. DiNardo, Fortin, and Lemieux (1996) show that the the following re-weighting of $f\left(y_{1}\right)$ is an estimate of the counterfactual density:
$\left(1 /\left(h n_{1}\right)\right) \sum_{i} \tau_{i} K\left(\left(y_{1 i}-y_{1}\right) / h\right)$. The weights are given by $t a u_{i}=\left(P\left(x_{i}\right) /\left(1-P\left(x_{i}\right)\right)\right) /(p /(1-$ $p)$), where $\left.p=n_{0} /\left(n_{0}+n_{1}\right)\right)$ and $\left.P\left(x_{i}\right)\right)$ is the estimated probability that timevar $=0$ from the estimated logit or probit regression of timevar on X.
If X includes a single variable x, the counterfactual density shows how the $f\left(y_{1}\right)$ would change if $x=x_{0}$ rather than x_{1}. Alternatively, X can include multiple variables, in which case the counterfactual density shows how the $f\left(y_{1}\right)$ would change if all of the variables in X were equal to their timevar $=0$ values.

Value

target	The vector of target values for y for the density functions.
dtarget1	The vector of densities in period 1 at the target values of y.
dtarget10	The counterfactual densities in period 1 at the target values of y.
dhat1	The vector of densities in period 1 at the actual values of y.
dhat10	The counterfactual densities in period 1 at the actual values of y.

References

DiNardo, J., N. Fortin, and T. Lemieux, "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semi-Parametric Approach," Econometrica 64 (1996), 1001-1044.

Leibbrandt, Murray, James A. Levinsohn, and Justin McCrary, "Incomes in South Africa after the Fall of Apartheid," Journal of Globalization and Development 1 (2010).

See Also

qregsim2

Examples

```
data(matchdata)
matchdata$year05 <- matchdata$year==2005
fit <- dfldens(matchdata$lnprice, year05~lnland+lnbldg, window=.2,
    yname = "Log of Sale Price", data=matchdata)
matchdata$age <- matchdata$year - matchdata$yrbuilt
fit <- dfldens(matchdata$lnprice, year05~age, window=.2,
    yname="Log of Sale Price", data=matchdata)
```

dupage99 DuPage County assessment ratio data set

Description

A random draw of 2000 assessment ratios from DuPage County, IL in 1999. Sales took place in 1999; the assessments were in place in 1998. Statutory assessment rates in DuPage County were 0.33 .

Usage

data(dupage99)

Format

A data frame with 2000 observations on the following 2 variables.
av the first column. The assessed value.
price the second column. The sales price.

Source

Daniel McMillen. Data were provided originally by the Illinois Department of Revenue.
fourier Fourier expansion smoothing

Description

Estimates a model of the form $\mathrm{y}=\mathrm{f}(\mathrm{z})+\mathrm{XB}+\mathrm{u}$ using a fourier expansion for z . The variable z is first transformed to $z=2 \pi \frac{(z-\min (z))}{\max (z)-\min (z))}$. The fourier model is $y=\alpha_{1} z+\alpha_{2} z^{2}+\sum\left(\lambda_{q} \sin (q z)+\right.$ $\left.\delta_{q} \cos (q z)\right)+X \beta+u$. Estimation can be carried out for a fixed value of Q or for a range of Q . In the latter case, the function indicates the value of Q that produces the lowest value of one of the following criteria: the AIC, the Schwarz information criterion, or the gcv.

Usage

fourier (form, $q=1$, minq=0, maxq=0, crit="gcv", data=NULL)

Arguments

form Model formula. The expansion is applied to the first explanatory variable.
$\mathrm{q} \quad$ If q is specified and minq=maxq, fits a fourier expansion with Q set to q. Default is $\mathrm{q}=1$, which implies a model with $\mathrm{z}, \mathrm{z}^{\wedge} 2, \sin (\mathrm{z}), \cos (\mathrm{z})$ and X as explanatory variables.
minq The lower bound to search for the value of Q that minimizes crit. minq can take any value greater than zero. Default: not used.
maxq The upper bound to search for the value of Q that minimizes crit. maxq must be great than or equal to minq. Default: not used.
crit The selection criterion. Must be in quotes. The default is the generalized crossvalidation criterion, or "gcv". Options include the Akaike information criterion, "aic", and the Schwarz criterion, "sc". Let nreg be the number of explanatory variables in the regression and sig2 the estimated variance. The formulas for the available crit options are
$\mathrm{gcv}=\mathrm{n} *(\mathrm{n} * \operatorname{sig} 2) /\left((\mathrm{n}-\mathrm{nreg})^{\wedge} 2\right)$
aic $=\log (\operatorname{sig} 2)+2^{*}$ nreg $/ \mathrm{n}$
$\mathrm{sc}=\log (\operatorname{sig} 2)+\log (\mathrm{n}) * \mathrm{nreg} / \mathrm{n}$
data A data frame containing the data. Default: use data in the current working directory

Value

yhat
rss
sig2
aic
sc
gcv
coef The estimated coefficient vector, B
fourierhat The predicted values for z alone, normalized to have the same mean as the dependent variable. If no X variables are included in the regression, fourierhat $=$ yhat.
The value of Q used in the final estimated model.

References

Gallant, Ronald, "On the Bias in Flexible functional Forms and an Essentially Unbiased Form: The Fourier Flexible Form," Journal of Econometrics 15 (1981), 211-245.

Gallant, Ronald, "Unbiased Determination of Production Technologies," Journal of Econometrics 20 (1982), 285-323.
McMillen, Daniel P. and Jonathan Domborw, "A Flexible Fourier Approach to Repeat Sales Price Indexes," Real Estate Economics 29 (2001), 207-225.
McMillen, Daniel P., "Neighborhood Price Indexes in Chicago: A Fourier Repeat Sales Approach," Journal of Economic Geography 3 (2003), 57-73.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.

See Also

cparlwr
cubespline
lwr
lwrgrid
semip

Examples

```
set.seed(23849103)
n = 1000
x <- runif(n,0,2*pi)
x <- sort(x)
ybase <- x - . 1*( (x^2) + sin(x) - cos(x) -. 5* sin(2*x) + . 5* cos(2*x)
```

```
sig = sd(ybase)/2
y <- ybase + rnorm(n,0,sig)
par(ask=TRUE)
plot(x,y)
lines(x,ybase,col="red")
fit <- fourier(y~x,minq=1,maxq=10)
plot(x,ybase, type="l",xlab="x",ylab="y")
lines(x,fit$yhat,col="red")
legend("topright",c("Base","Fourier"),col=c("black","red"),lwd=1)
```

geodensity Kernel density functions for geo-coded data

Description

Calculates kernel density functions for geo-coded data based on straight-line distances between observations

Usage

geodensity(longvar, latvar, window=. 25 , kern="tcub", alldata=FALSE)

Arguments

longvar Longitude variable, in degrees.
latvar Latitude variable, in degrees.
window Window size. Default: 0.25.
kern Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", and "trwt".
alldata If alldata $=T$, each observation is used as a target value for x. When alldata $=F$, the function is estimated at a set of points chosen by the locfit program using an adaptive decision tree approach, and the smooth 12 command is used to interpolate to the full set of observations. Specifying alldata $=T$ can lead to long estimation times.

Details

The geodistance function is used to calculate straight-line distances between all observations and each target point. The vector of distances for a given target value is d. The window is determined by finding d max $=$ quantile $(d$, window $)$. The estimated density at the target point is simply:

$$
f=\frac{1}{d m a x * n} \sum_{i} K\left(\frac{d_{i}}{d m a x}\right)
$$

Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{88}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$

The gaussian kernel is not available.
If alldata $=T$, each data point in turn is used as a target point. If alldata $=F$, locfit is used to find a set of target points, and the smooth 12 command is used to interpolate to the full set of observations. The matrix of target coordinates is stored in target, and the estimated densities at the target points are stored in dens.target. If alldata $=T$, target contains the full set of values for longitude and latitude, and dens.target $=$ denshat .

Value

target The matrix of target values. Dimensions = ntx2, where nt is the number of target points. First column $=$ longitude, second column $=$ latitude .
dens.target The estimated densities at the target coordinates.
denshat The estimated densities at the original data points.

See Also

geodistance
geogravity

Examples

```
## Not run:
library(spdep)
library(RColorBrewer)
cook <- readShapePoly(system.file("maps/CookCensusTracts.shp",package="McSpatial"))
# measure distance to Chicago city center
lmat <- coordinates(cook)
cook$longitude <- lmat[,1]
cook$latitude <- lmat[,2]
fit <- geodensity(cook$longitude, cook$latitude)
cook$denshat <- fit$denshat
brks <- seq(min(cook$denshat,na.rm=TRUE),max(cook$denshat,na.rm=TRUE),length=9)
spplot(cook,"denshat",at=brks,col.regions=rev(brewer.pal(9,"RdBu")),
    main="Census Tract Densities")
## End(Not run)
```

geodistance \quad Calculates distances using the great circle formula

Description

geodistance calculates distances in miles between a set of observations and a location. Distances are calculated in miles using the great circle formula. Geographic coordinates must be expressed in latitudes and longitudes.

Usage

geodistance(longvar, latvar, lotarget, latarget, dcoor = FALSE)

Arguments

longvar	Longitude variable, in degrees.
latvar	Latitude variable, in degrees.
lotarget	Target longitude.
latarget	Target latitude.
dcoor	If dcoor $=$ T, also calculates the distance east (deast) and north (dnorth) of the target point.

Value

dist A vector with the distance in miles between each data point and the target point.
dnorth A vector with the number of miles north of the target point for each data point. dnorth <0 for observations that are south of the target point.
deast A vector with the number of miles east of the target point for each data point. deast <0 for observations that are west of the target point.

See Also

geodensity
geoshape

Examples

```
data(cookdata)
dcbd <- geodistance(cookdata$LONGITUDE, cookdata$LATITUDE, -87.627800, 41.881998)$dist
```

geogravity Gravity matrix and gravity variable calculations

Description

Calculates a variable showing the average value for each observation of a gravity measure of the spatial interaction between the observation and the other points in a data set.

Usage

geogravity (x, longvar, latvar, alpha=1, maxd=NULL, alldata=FALSE, window=. 10 , outmatrix=FALSE)

Arguments

$x \quad$ The variable of interest, e.g., population or employment.
longvar Longitude variable, in degrees.
latvar Latitude variable, in degrees.
alpha \quad The α parameter for the distance variables. Default: alpha=1.
maxd Maximum distance, beyond which observations get zero weight. Default: all observations are included in the calculations.
alldata If $F A L S E$, interpolates between target points rather than making the calculations at every observation. Default: alldata $=F A L S E$.
window Window size used to determine a set of target points when alldata=FALSE. Default: window = . 10 .
outmatrix If $T R U E$ and alldata $==T R U E$, stores the full matrix of gravity values. Default: outmatrix=FALSE.

Details

The gravity measure of the spatial interaction between two points i and j is $g_{i j}=P_{i} P_{j} / d_{i j}^{\alpha}$ if $d_{i j} \leq$ maxd and $g_{i j}=0$ if $d_{i j}>\operatorname{maxd}$, where P is a variable such as population or employment that measures the importance of the observation, $d_{i j}$ is the straight-line distance between observations i and j, and α is a parameter. The variable P is provided by the argument x. The full $n \times n$ matrix of values is stored in dmat if alldata=TRUE and outmatrix=TRUE, with the diagonal elements set to zero.
The "gravity variable" that is stored in gravity is the average value for each observation:

$$
g_{i}=\frac{1}{n-1} \sum_{j \neq i} g_{i j}
$$

By default, the locfit program is used to find a set of target values for calculating $g_{i j}$. The full set of observations is used for the j index, but a smaller set of observations is used for the target values, i. The abbreviated set of g_{i} values is then interpolated to the full set of data points using the smooth 12 command. The vector of target observation numbers is stored in targetobs.

Value

targetobs	The vector of target observation numbers.
gtarget	The gravity variable at the target points.
gravity	The gravity variable for the full data set.
dmat	The full nxn matrix of results, if outmatrix=TRUE and alldata=TRUE. The di- agonal elements are set to zero.

See Also

geodistance
geodensity

Examples

```
library(spdep)
cook <- readShapePoly(system.file("maps/CookCensusTracts.shp",package="McSpatial"))
cook <- cook[cook$POPULATION>0&cook$AREA>0,]
cook$lndens <- log(cook$POPULATION/cook$AREA)
lmat <- coordinates(cook)
longitude <- lmat[,1]
latitude <- lmat[,2]
fit <- geogravity(cook$lndens,longitude,latitude)
cook$gravity <- fit$gravity
```


Description

Calculates distances in miles between a shape file and a set of geographic coordinates.

Usage

geoshape(longvar, latvar,linefile=NULL, pointfile=NULL, coormatrix=NULL)

Arguments

longvar Longitude variable, in degrees.
latvar Latitude variable, in degrees.
linefile A shape file with lines. In this case, geoshape calculates the distance between each observation and the nearest line in the shape file. Default: linefile $=N U L L$.
pointfile A shape file with points. In this case, geoshape calculates the distance between each observation and the nearest point in the shape file. Also used for polygon files, in which case the centroids are considered points. Default: shapefile $=N U L L$.
coormatrix A matrix of geographic coordinates. The first column must be the longitude and the second column the latitude, both in degrees. In this case, geoshape calculates the distance between each observation and the nearest point in the matrix. The class of the object sent to coormatrix must actually be matrix. Default: coormatrix $=N U L L$.

Details

Uses the nncross command from the spatstat package to calculate distances between the set of points given by (longvar, latvar) and the shape file provided by one of the linefile, pointfile, or coormatrix options. Only one of the three shape file options should be specified, and it is critical that the appropriate option is matched to the shape file. A polygon file is considered a point file for purposes of the geoshape command; in this case, nncross calculates distances to the polygon centroids. For the coormatrix option, it is critical that the object is of class matrix, the first column is longitude, and the second is latitude.

Value

Returns the calculated distances, in miles.

See Also

geodistance

Examples

```
data(matchdata)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1,]
lmat <- coordinates(cmap)
# Calculate distance between homes in matchdata and the census tract centroids
matchdata$dist1 <- geoshape(matchdata$longitude, matchdata$latitude, pointfile=cmap)
# Alternative method using coormatrix option
matchdata$dist2 <- geoshape(matchdata$longitude,matchdata$latitude,
    coormatrix=coordinates(cmap))
# measure distance from census tract centroids to Chicago city center
longitude <- lmat[,1]
latitude <- lmat[,2]
cmat <- t(as.matrix(c(-87.627800, 41.881998)))
dcbd <- geoshape(longitude, latitude, coormatrix=cmat)
summary(dcbd)
```


Description

Estimates a GMM logit model for a 0-1 dependent variable and an underlying latent variable of the form $Y^{*}=\rho W Y^{*}+X \beta+u$

Usage

gmmlogit(form, inst=NULL, winst=NULL, wmat=NULL, shpfile, startb=NULL, startrho=0, blockid=0, cvcrit=.0001, data=NULL, silent=FALSE)

Arguments

form	Model formula
inst	List of instruments not to be pre-multiplied by W. Entered as inst=~w1+w2 ... Default: inst=NULL. See details for more information.
winst	List of instruments to be pre-multiplied by W before use. Entered as winst $=\sim w 1+w 2$... Default: inst=NULL. See details for more information.
wmat	Directly enter wmat rather than creating it from a shape file. Default: not specified. One of the wmat or shpfile options must be specified.
shpfile	Shape file to be used for creating the W matrix. Default: not specified. One of the wmat or shpfile options must be specified.
startb	Vector of starting values for B. Default: use estimates from splogit, the linearized version of the model. Specified as startb=0.
startrho	Vector of starting values for ρ. Default: use estimates from splogit, the linearized version of the model. Specified as startrho=0.
blockid	A variable identifying groups used to specify a block diagonal structure for the W matrix, e.g., blockid=state or blockid=region. Imposes that all elements outside of the blocks equal zero and then re-standardizes W such that the rows sum to one. By default, blockid $=0$, and a block diagonal structure is not imposed.
cverit	Convergence criterion. Default: cvcrit $=0.0001$.
data	A data frame containing the data. Default: use data in the current working directory.
silent	If silent=T, no output is printed

Details

The underlying latent variable for the model is $Y^{*}=\rho W Y^{*}+X \beta+u$ or $Y^{*}=(I-\rho W)^{-1}(X \beta+$ $u)$. The covariance matrix is $\sigma^{2}\left((I-\rho W)(I-\rho W)^{\prime}\right)^{-1}$, with σ^{2} normalized to unity. Typical specifications imply heteroskedasticity, i.e., the diagonal elements of the covariance matrix, denoted by
σ_{i}^{2}, vary across observations. Heteroskedasticity makes standard logit estimates inconsistent. Letting $X_{i}^{*}=X_{i} / \sigma_{i}$ and $H=(I-\rho W)^{-1} X^{*}$, the logit probabilities implied by the latent variable are $p=\exp (H B) /(1+\exp (H B))$ and the error term is $e_{i}=y_{i}-p_{i}$, where $y_{i}=1$ if $Y_{i}^{*}>0$ and $y_{i}=0$ otherwise.

The GMM estimator chooses β and ρ to minimize $(y-p)^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(y-p)$, where Z is a matrix of instruments specified using the inst and winst options. Unless specified otherwise using the startb and startrho options, initial estimates are obtained using splogit, which implements the simple (and fast) linearized version of the GMM logit model proposed by Klier and McMillen (2008). Convergence is defined by abs(change) < cvcrit, where change is the gradient vector implied by applying a standard Gauss-Newton algorithm to the objective function. The covariance matrix (equation 3 in Klier-McMillen, 2008) is estimated using the car package.

Estimation can be very slow because each iteration requires the inversion of an $n x n$ matrix. To speed up the estimation process and to reduce memory requirements, it may be desirable to impose a block diagonal structure on W. For example, it may be reasonable to impose that each state or region has its own error structure, with no correlation of errors across regions. The blockid option specifies a block diagonal structure such as blockid=region. The option leads the program to re-calculate the W matrix, imposing the block diagonal structure and re-normalizing the matrix to again have each row sum to one. If there are G groups, estimation requires G sub-matrices to be inverted rather than one nxn matrix, which greatly reduces memory requirements and significantly reduces the time required in estimation.
gmmlogit provides flexibility in specifying the list of instruments. By default, the instrument list includes X and $W X$, where X is the original explanatory variable list and W is the spatial weight matrix. It is also possible to directly specify the full instrument list or to include only a subset of the X variables in the list that is to be pre-multiplied by W.

Let listl and list 2 be user-provided lists of the form list $=\sim z 1+z 2$. The combinations of defaults ($N U L L$) and lists for inst alter the final list of instruments as follows:

$$
\begin{aligned}
& \text { inst }=\text { NULL }, \text { winst }=\text { NULL: } Z=(X, W X) \\
& \text { inst }=\text { list } 1, \text { winst }=N U L L: Z=\text { list } 1 \\
& \text { inst }=\text { NULL }, \text { winst }=\text { list } 2: Z=\left(X, W^{*} \text { list } 2\right) \\
& \text { inst }=\text { list } 1, \text { winst }=\text { list } 2: Z=\left(\text { list } 1, W^{*} \text { list } 2\right)
\end{aligned}
$$

Note that when inst=listl and winst $=N U L L$ it is up to the user to specify at least one variable in listl that is not also included in X.

Value

coef	Coefficient estimates
se	Standard error estimates

References

Klier, Thomas and Daniel P. McMillen, "Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial Logit for Large Samples," Journal of Business and Economic Statistics 26 (2008), 460-471.

Pinkse, J. and M. E. Slade, "Contracting in Space: An Application of Spatial Statistics to DiscreteChoice Models," Journal of Econometrics 85 (1998), 125-154.

See Also

cparlogit
cparprobit
cparmlogit
gmmprobit
splogit
spprobit
spprobitml

Examples

\# The example for "gmmprobit" applies directly after changing "gmmprobit" to "gmmlogit"

```
gmmprobit GMM Spatial Probit
```


Description

Estimates a GMM probit model for a 0-1 dependent variable and an underlying latent variable of the form $Y^{*}=\rho W Y^{*}+X \beta+u$

Usage

gmmprobit(form, inst=NULL, winst=NULL, wmat=NULL, shpfile, startb=NULL, startrho=0, blockid=0, cvcrit=. 0001 , data=NULL, silent=FALSE)

Arguments

form Model formula
inst List of instruments not to be pre-multiplied by W. Entered as inst=~w1+w2 ... Default: inst=NULL. See details for more information.
winst List of instruments to be pre-multiplied by W before use. Entered as winst=~wl+w2 ... Default: inst=NULL. See details for more information.

wmat	Directly enter wmat rather than creating it from a shape file. Default: not speci- fied. One of the wmat or shpfile options must be specified.
shpfile	Shape file to be used for creating the W matrix. Default: not specified. One of the wmat or shpfile options must be specified.
startb	Vector of starting values for B. Default: use estimates from spprobit, the lin- earized version of the model. Specified as startb= $=0$
startrho	Vector of starting values for ρ. Default: use estimates from spprobit, the lin- earized version of the model. Specified as startrho= 0.
blockid	A variable identifying groups used to specify a block diagonal structure for the W matrix, e.g., blockid $=$ state or blockid= region. Imposes that all elements out- side of the blocks equal zero and then re-standardizes W such that the rows sum to one. By default, blockid $=0$, and a block diagonal structure is not imposed.
cvcrit	Convergence criterion. Default: cvcrit $=0.0001$.
data	A data frame containing the data. Default: use data in the current working directory.
silent	If silent=T, no output is printed

Details

The underlying latent variable for the model is $Y^{*}=\rho W Y^{*}+X \beta+u$ or $Y^{*}=(I-\rho W)^{-1}(X \beta+$ $u)$. The covariance matrix is $E u u^{\prime}=\sigma^{2}\left((I-\rho W)(I-\rho W)^{\prime}\right)^{-1}$, with σ^{2} normalized to unity. Typical specifications imply heteroskedasticity, i.e., the diagonal elements of $E u u^{\prime}$, denoted by σ_{i}^{2}, vary across observations. Heteroskedasticity makes standard probit estimates inconsistent. Letting $X_{i}^{*}=X_{i} / \sigma_{i}$ and $H=(I-\rho W)^{-1} X^{*}$, the probit probabilities implied by the latent variable are $p=\Phi(H \beta)$ and the generalized error term is $e=(y-p) \phi(H \beta) /(p(1-p))$, where $y=1$ if $Y^{*}>0$ and $y=0$ otherwise.

The GMM estimator chooses β and ρ to minimize $e^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} e$, where Z is a matrix of instruments specified using the inst and winst options. Unless specified otherwise using the startb and startrho options, initial estimates are obtained using spprobit, which implements the simple (and fast) linearized version of the GMM probit model proposed by Klier and McMillen (2008). Convergence is defined by abs(change) < cvcrit, where change is the gradient vector implied by applying a standard Gauss-Newton algorithm to the objective function. The covariance matrix (equation 3 in Klier-McMillen, 2008) is estimated using the car package.

Estimation can be very slow because each iteration requires the inversion of an $n x n$ matrix. To speed up the estimation process and to reduce memory requirements, it may be desirable to impose a block diagonal structure on W. For example, it may be reasonable to impose that each state or region has its own error structure, with no correlation of errors across regions. The blockid option specifies a block diagonal structure such as blockid=region. The option leads the program to re-calculate the W matrix, imposing the block diagonal structure and re-normalizing the matrix to again have each row sum to one. If there are G groups, estimation requires G sub-matrices to be inverted rather than one $n x n$ matrix, which greatly reduces memory requirements and significantly reduces the time required in estimation.
gmmprobit provides flexibility in specifying the list of instruments. By default, the instrument list includes X and $W X$, where X is the original explanatory variable list and W is the spatial weight matrix. It is also possible to directly specify the full instrument list or to include only a subset of the X variables in the list that is to be pre-multiplied by W.

Let listl and list 2 be user-provided lists of the form list $=\sim z 1+z 2$. The combinations of defaults ($N U L L$) and lists for inst alter the final list of instruments as follows:

```
inst = NULL, winst = NULL: Z = (X,WX)
inst = list1, winst = NULL: Z = listl
inst = NULL, winst = list2: Z = (X,W*list2)
inst = list1, winst = list 2: Z = (list 1, W*list 2)
```

Note that when inst=listl and winst=NULL it is up to the user to specify at least one variable in listl that is not also included in X.

Value

coef	Coefficient estimates
se	Standard error estimates

References

Klier, Thomas and Daniel P. McMillen, "Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial probit for Large Samples," Journal of Business and Economic Statistics 26 (2008), 460-471.

Pinkse, J. and M. E. Slade, "Contracting in Space: An Application of Spatial Statistics to DiscreteChoice Models," Journal of Econometrics 85 (1998), 125-154.

See Also

cparlogit
cparprobit
cparmlogit
gmmlogit
splogit
spprobit

Examples

```
set.seed(9947)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
lmat <- coordinates(cmap)
```

```
dnorth <- geodistance(lmat[,1],lmat[,2], -87.627800,
41.881998, dcoor=TRUE)$dnorth
cmap <- cmap[dnorth>0,]
wmat <- makew(cmap)$wmat
n = nrow(wmat)
rho = .4
x <- runif(n,0,10)
ystar <- as.numeric(solve(diag(n) - rho*wmat)%*%(x + rnorm(n,0,2)))
y <- ystar>quantile(ystar,.4)
fit <- gmmprobit(y~x, wmat=wmat)
```

kdensity $\quad K$-density functions for distances between geographic coordinates

Description

Calculates K-density functions for lat-long coordinates. Calculates the distance, d, between every pair of observations and plots the density, $f\left(d_{0}\right)$, at a set of target distances, d_{0}. The kernel density functions are calculated using the density function.

Usage

kdensity(longitude, latitude, kilometer=FALSE, noplot=FALSE, dmin=0, dmax=0, dlength=512, h=0, kern="gaussian" , nsamp=0, confint=TRUE, pval=.05)

Arguments

longitude	Longitude variable, in degrees.
latitude	Latitude variable, in degrees.
kilometer	If kilometer $=T$, measurements are in kilometers rather than miles. Default: kilometer $=F$.
noplot	If noplot $=T$, does not show the graph of the K-density function. Minimum value for target distances. Default: dmin=0. dmin dmax
Maximum value for target distances. Default: dmin = max(distance), specified	
by setting dmin=0.	

Details

The kdensity function uses Silverman's (1986) reflection method to impose zero densities at negative densities. This method involves supplementing each distance observation with its negative value to form a pseudo data set with twice the original number of observations. The following commands are the core of the function:
dfit1 <- density(dvect,from=dmin,to=dmax,n=dlength,kernel=kern,bw=h)
dfit2 <- density(-dvect,from=dmin,to=dmax,n=dlength,kernel=kern,bw=h)
distance $<-$ dfit $1 \$ x$
dhat $<-$ dfit $1 \$ y+$ dfit $2 \$ y$

Local standard errors are calculated using the following asymptotic formula:
$(n h)^{-.5}\left(f(x) \int K^{2}(\psi) d \psi\right)^{.5}$

Value

distance The vector of target distances.
dhat The vector of densities for the target distances.
dvect The full vector of distances between observation pairs. Length is $n(n-1) / 2$.
h
The bandwidth.
se The vector of standard errors.

References

Duranton, Gilles and Henry G. Overman, "Testing for Localisation using Microgeographic Data", Review of Economic Studies 72 (2005), 1077-1106.
Klier Thomas and Daniel P. McMillen, "Evolving Agglomeration in the U.S. Auto Industry," Journal of Regional Science 48 (2008), 245-267.
Silverman, A. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York (1986).

See Also

ksim

Examples

```
data(matchdata)
lmat <- cbind(matchdata$longitude,matchdata$latitude)
# Smaller sample to reduce computation time for example
set.seed(18493)
obs <- sample(seq(1,nrow(lmat)),400)
lmat <- lmat[obs,]
fit95 <- kdensity(lmat[,1],lmat[,2],noplot=FALSE)
```

ksim

> Estimates K-density functions with local or global confidence intervals for counter-factual locations

Description

Calculates K-density functions for lat-long coordinates. Calculates the distance, d, between every pair of observations and plots the density, $f\left(d_{0}\right)$ at a set of target distances, d_{0}. Also uses the Duranton-Overman bootstrap method to construct local or global confidence intervals for the density of distances between pairs of observations if the same number of points were allocated across another set of possible locations.

Usage
 ksim(long1,lat1,long2,lat2, kilometer=FALSE, noplot=FALSE, dmin=0, dmax=0, dlength=512, h=0, kern="gaussian", nsim=2000, nsamp=0,pval=.05, cglobal=FALSE)

Arguments

long1	Longitude variable, in degrees.
lat1	Latitude variable, in degrees.
long2	Longitude variable for counter-factual locations, in degrees.
lat2	Latitude variable for counter-factual locations, in degrees.
kilometer	If kilometer $=T$, measurements are in kilometers rather than miles. Default: kilometer $=F$.
noplot	If noplot $=T$, does not show the K-density graph.
dmin	Minimum value for target distances. Default: d min=0.
dmax	Maximum value for target distances. Default: $d_{\text {min }}=\max$ (distance) .
dlength	Number of target values for density calculations. Default: dlength $=512$.
h	Bandwidth. Default: (.9*(quantile(distance,.75)-quantile(distance,.25))/1.34)*($\mathrm{n}^{\wedge}(-$ $.20)$), where $\mathrm{n}=2 *$ length(dvect).
kern	Kernel. Default: "gaussian". Other options from the density function are also available, including "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine".
nsim	Number of simulations for constructing the confidence intervals. Default: n sim=2000.
nsamp	If n samp >0, uses a random sample of lat-long pairs for calculations rather than full data set. Takes random draws from long1, lat1 pairs; the long2, lat 2 remain as specified by the user. Can be much faster for large samples. Default: use full sample.
pval	Significance level for confidence intervals. Default: pval $=.05$, i.e., a 95 percent confidence interval.
cglobal	If cglobal $=T$, calculates global confidence intervals. Default: $\operatorname{cglobal}=F$, calculates local confidence intervals.

Details

Let n be the number of observations in the long1, latl data set. ksim draws n observations from the long2, lat2 pairs and re-calculates the K-density function using the new, simulated data set. The process is repeated n sim times, producing $n \operatorname{sim}$ bootstrap K-density functions. The local confidence interval treats each target distance as a separate observation, and calculates the confidence interval at each distance using the standard bootstrap percentile method. In contrast, the global confidence interval treats the full K-density function as an observations and shifts the interval outward at each data point until 95 percent of the density functions lie within the interval. Large values of nsim perhaps greater than the default of 2000 - are necessary to get accurate global confidence intervals.
The ksim function is intended for cases where the counterfactual data set has more observations than the base, i.e., n $2>n 1$. In this case, observations are drawn without replacement from the counterfactual data set. When the counterfactual data set has fewer observations than the base (i.e., $\mathrm{n} 2<=\mathrm{n} 1$), n1 observations are drawn with replacement from the counterfactual data set.
Duranton and Overman (2005) proposed this method for constructing global confidence intervals for K-density functions. See Klier and McMillen (2008) for a description of the procedures used here. See the description of the kdensity function for more details on the estimation procedure of the K-density functions.

Value

distance The vector of target distances
dhat The vector of densities for the target distances
h
The bandwidth
local.lo The local confidence interval at each target distance, if calculated.
local.hi The local confidence interval at each target distance, if calculated.
global.lo The global confidence interval at each target distance, if calculated.
global.hi The global confidence interval at each target distance, if calculated.

References

Duranton, Gilles and Henry G. Overman, "Testing for Localisation using Microgeographic Data", Review of Economic Studies 72 (2005), 1077-1106.
Klier Thomas and Daniel P. McMillen, "Evolving Agglomeration in the U.S. Auto Industry," Journal of Regional Science 48 (2008), 245-267.
Silverman, A. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York (1986).

See Also

kdensity

Examples

```
data(matchdata)
lmat <- cbind(matchdata$longitude,matchdata$latitude)
lmat1 <- lmat[matchdata$carea=="Rogers Park"|matchdata$carea=="Albany Park",]
```

```
lmat2 <- lmat[matchdata$carea!="Rogers Park"&matchdata$carea!="Albany Park",]
# smaller samples to reduce time for examples
set.seed(4941)
obs <- sample(seq(1,nrow(lmat1)), 200)
lmat1 <- lmat1[obs,]
obs <- sample(seq(1,nrow(lmat2)),400)
lmat2 <- lmat2[obs,]
fit <- ksim(lmat1[,1],lmat1[,2],lmat2[,1],lmat2[,2],dmax=9,nsim=100,
    nsamp=100, noplot=TRUE,cglobal=FALSE)
ymin = min(fit$dhat,fit$local.lo)
ymax = max(fit$dhat,fit$local.hi)
plot(fit$distance, fit$dhat, xlab="Distance", ylab="Density", ylim = c(ymin,ymax),
    type="l", main="Albany Park & Rogers Park v. Other Areas")
lines(fit$distance, fit$local.lo, col="red")
lines(fit$distance, fit$local.hi, col="red")
```

lwr
Locally Weighted Regression

Description

Estimates a model of the form $y=f(x)$ using locally weighted regression. x can include either one or two variables. Returns estimated values, derivatives, and standard errors for both $f(x)$ and $d f(x) / d x$.

Usage

```
lwr(form, window=.25,bandwidth=0,kern="tcub", distance="Mahal",
    target=NULL, data=NULL)
```


Arguments

form	Model formula
window	
bandwidth	Window size. Default: 0.25.
kern	Bandwidth. Default: not used. Kernel weighting function. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss". distance
Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "great- circle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: lwr looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or spec- ified using the data option; options like data\$latitude will not work. Default: Mahal.	
target	If target = NULL, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observa- tion is used as a target value for x. A set of target values can be supplied directly.
data	A data frame containing the data. Default: use data in the current working directory.

Details

The estimated value of y at a target value x_{0} is the predicted value from a weighted least squares regression of y on $x-x_{0}$ with weights given by $K(\psi / h)$, where ψ is a measure of the distance between x and x_{0} and h is the bandwidth or window.
When x includes a single variable, $\psi=x-x_{0}$. When x includes two variables, the method for specifying ψ depends on the distance option. If distance $=$ "Mahal" or distance $=$ "Euclid", the i th row of the matrix $X=(\mathrm{x} 1, \mathrm{x} 2)$ is transformed such that $x_{i}=\operatorname{sqrt}\left(x_{-} i * V * t\left(x _i\right)\right)$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(X)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(X))$. By reducing x from two dimensions to one, this transformation leads again to the simple kernel weighting function $K\left(\left(x-x_{0}\right) /(s d(x) * h)\right)$.
The great circle formula is used to define K when distance $=$ "Latlong"; in this case, the explanatory variable list must be specified as ~latitude $+l o n g i t u d e$ (or $\sim l o+l a$ or $\sim l a t+l o n g$, etc), with the longitude and latitude variables expressed in degrees (e.g., -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is the longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option.
h is specified by the bandwidth or window options. The intercept, α, provides an estimate of y at x_{0} and β provides an estimate of the slope, $d y / d x$ at x_{0}. When target="alldata", each data point in turn is used as a target point, x_{0}.

Since each estimate is a linear function of all n values for y, the full set of estimates takes the form $\hat{y}=L Y$, where L is an $n x n$ matrix. Loader (1999) suggests two measures of the number of degrees of freedom used in estimation, $d f 1=\operatorname{tr}(L)$ and $d f 2=\operatorname{tr}\left(L^{\prime} L\right)$, both of which are stored by $l w r$. The diagonal elements of $\operatorname{tr}(L)$ are stored in the array infl. Again following Loader (1999), the degrees of freedom correction used to estimate the error variance, $\hat{\sigma^{2}}$, is $d f=2 * d f 1-d f 2$. Let e represent the vector of residuals, $e=y-\hat{y}$. The estimated variance is $\hat{\sigma^{2}}=\sum_{i} e_{i}^{2} /(n-d f)$. The covariance matrix is

$$
\hat{\sigma}^{2}\left(\sum_{i=1}^{n} Z_{i} K\left(\psi_{i} / h\right) Z_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} Z_{i}\left(K\left(\psi_{i} / h\right)\right)^{2} Z_{i}^{\top}\right)\left(\sum_{i=1}^{n} Z_{i} K\left(\psi_{i} / h\right) Z_{i}^{\top}\right)^{-1} .
$$

where $Z=\left(1 x-x_{0}\right)$.
Estimation can be very slow when target $=$ "alldata". The maketarget command can be used to identify target points. The smooth 12 command is then used to interpolate the coefficient estimates, the standard errors, and the values used to form $d f 1$ and $d f 2$.
h can be specified to be either a fixed bandwidth or a window size set to a percentage of the sample size. Optionally, the lwrgrid command can be used to specify a vector of values for h with $l w r$ picking the one that minimizes a criterion function. In general, the window option will be preferable because it provides more accurate estimates in regions where x is relatively sparse.
Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function K(z)
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$

Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target	The target points for the original estimation of the function.
ytarget	The predicted values of y at the original target points.
dtarget1	The estimated derivatives $d y / d x l$ at the target points.
dtarget2	The estimated derivatives $d y / d x 2$ at the target points. All zeros if the model has only one explanatory variable.
ytarget.se	Standard errors for the predicted values of y at the target points.
dtarget1.se	Standard errors for the derivatives $d y / d x 1$ at the target points.
dtarget2.se	Standard errors for the derivatives $d y / d x 2$ at the target points. All zeros if the model has only one explanatory variable.
yhat	The predicted values of y for the full data set.
dhat1	The estimated derivatives $d y / d x 1$ for the full data set.
dhat2	The estimated derivatives $d y / d x 2$ for the full data set. All zeros if the model has only one explanatory variable.
yhat.se	Standard errors for the predicted values of y for the full data set.
dhat1.se	Standard errors for the estimated derivatives $d y / d x 1$ for the full data set.
dhat2.se	Standard errors for the estimated derivatives $d y / d x 2$ for the full data set. All zeros if the model has only one explanatory variable.
df1	$\operatorname{tr}(L)$, a measure of the degrees of freedom used in estimation.
df2	$\operatorname{tr}\left(L^{\prime} L\right)$, an alternative measure of the degrees of freedom used in estimation.
sig2	Estimated residual variance, sig2 $=r s s /(n-2 * d f 1+d f 2)$.
cV	Cross-validation measure. $c v=\operatorname{mean}\left(((y-y h a t) /(1-i n f l))^{\wedge} 2\right)$, where y hat is vector of predicted values for y and infl is the vector of diagonal terms for L.
gcv	$g c v=n *(n * \operatorname{sig} 2) /\left((n-n r e g)^{\wedge} 2\right)$, where sig2 is the estimated residual variance and $n r e g=2 * d f 1-d f 2$.
infl	A vector containing the diagonal elements of L.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.

McMillen, Daniel P., "Employment Densities, Spatial Autocorrelation, and Subcenters in Large Metropolitan Areas," Journal of Regional Science 44 (2004), 225-243.
McMillen, Daniel P. and John F. McDonald, "A Nonparametric Analysis of Employment Density in a Polycentric City," Journal of Regional Science 37 (1997), 591-612.
McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

Silverman, A. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York (1986).

See Also

cparlwr
cubespline
fourier
lwrgrid
maketarget
semip

Examples

```
# 1. Monte Carlo data
n = 1000
x <- runif(n,0,2*pi)
x <- sort(x)
ybase <- x - .1*(x^2) + sin(x) - cos(x) -. 5* sin(2*x) + . 5* cos(2*x)
sig = sd(ybase)/2
y <- ybase + rnorm(n,0,sig)
par(ask=TRUE)
plot(x,y)
lines(x,ybase,col="red")
fit <- lwr(y~x, window=.15)
# plot 95% confidence intervals for predicted y
predse <- sqrt(fit$sig2 + fit$yhat.se^2)
lower <- fit$yhat + qnorm(.025)*predse
upper <- fit$yhat + qnorm(.975)*predse
plot(x, ybase, type="l", ylim=c(min(lower), max(upper)),
    main="Estimated Function", xlab="x", ylab="y")
lines(x, fit$yhat, col="red")
lines(x, lower, lty="dashed", col="red")
lines(x, upper, lty="dashed", col="red")
legend("topleft", c("Base", "Predicted", "95 Percent CI"),
    col=c("black", "red", "red"), lty=c("solid", "solid", "dashed"), lwd=1)
# plot 95% confidence intervals for slopes
dxbase <- 1 - . 2*x + cos(x) + sin(x) - cos(2*x) - sin(2*x)
lower <- fit$dhat1 + qnorm(.025)*fit$dhat1.se
```

```
upper <- fit$dhat1 + qnorm(.975)*fit$dhat1.se
plot(x, dxbase, type="l", ylim=c(min(lower), max(upper)),
    main="Estimated Slopes", xlab="x", ylab="y")
lines(x, fit$dhat1, col="red")
lines(x, lower, lty="dashed", col="red")
lines(x, upper, lty="dashed", col="red")
legend("topright", c("Base", "Predicted", "95 Percent CI"),
    col=c("black", "red", "red"),lty=c("solid", "solid", "dashed"), lwd=1)
# Derivative estimates with larger window size
fit <- lwr(y~x,window=.20)
lower <- fit$dhat1 + qnorm(.025)*fit$dhat1.se
upper <- fit$dhat1 + qnorm(.975)*fit$dhat1.se
plot(x, dxbase, type="l", ylim=c(min(lower), max(upper)),
    main="Estimated Slopes", xlab="x", ylab="y")
lines(x, fit$dhat1, col="red")
lines(x, lower, lty="dashed", col="red")
lines(x, upper, lty="dashed", col="red")
legend("topright", c("Base", "Predicted", "95 Percent CI"),
    col=c("black", "red", "red"), lty=c("solid", "solid", "dashed"), lwd=1)
## Not run:
#2. Population density data
library(RColorBrewer)
cook <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cook$obs <- seq(1:nrow(cook))
# measure distance to Chicago city center
lmat <- coordinates(cook)
cook$LONGITUDE <- lmat[,1]
cook$LATITUDE <- lmat[,2]
cook$DCBD <- geodistance(longvar=cook$LONGITUDE,latvar=cook$LATITUDE,
    lotarget=-87.627800,latarget=41.881998,dcoor=FALSE)$dist
# population density = population/acres, acres = square mile x 640
cook$LNDENS <- log(cook$POPULATION/(cook$AREA*640))
densdata <- data.frame(cook[cook$POPULATION>0,])
par(ask=TRUE)
# lndens = f(longitude, latitude), weights are function of straight-line distance
fit <- lwr(LNDENS~LONGITUDE+LATITUDE, window=.10,
    distance="Latlong",data=densdata)
c(fit$df1, fit$df2, 2*fit$df1-fit$df2)
cook$lwrhat[densdata$obs] <- fit$yhat
brks <- seq(min(cook$lwrhat,na.rm=TRUE),max(cook$lwrhat,na.rm=TRUE),length=9)
spplot(cook,"lwrhat",at=brks,col.regions=rev(brewer.pal(9,"RdBu")),
    main="Log Density LWR Estimates")
## End(Not run)
```


Description

Finds the value of a user-provided array of window or bandwidth values that provides the lowest $c v$ or $g c v$ for an LWR model. Calls $l w r$ and returns its full output for the chosen value of h.

Usage

lwrgrid(form, window=0, bandwidth=0, kern="tcub", method="gcv", print=TRUE, distance="Mahal",target=NULL, data=NULL)

Arguments

form	Model formula
window	Vector of possible window sizes. Default: none.
bandwidth	Vector of possible bandwidths. Default: none.
method	Specifies "gcv" or "cv" criterion function. Default: method="gcv". print kern
	If TRUE, prints $g c v$ or $c v$ values for each value of the window or bandwidth. Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss". distance
	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "great- circle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: lwr looks for the first two letters to determine which variable is latitude and which is longitude, so data set must be attached first or specified
using the data option; options like data\$latitude will not work. Default: Mahal.	

Value

target The target points for the original estimation of the function.
ytarget \quad The predicted values of y at the original target points.
dtarget1 The estimated derivatives $d y / d x l$ at the target points.
dtarget2 The estimated derivatives $d y / d x 2$ at the target points. All zeros if the model has only one explanatory variable.
ytarget.se Standard errors for the predicted values of y at the target points.

dtarget1.se	Standard errors for the derivatives $d y / d x 1$ at the target points.
dtarget2.se	Standard errors for the derivatives $d y / d x 2$ at the target points. All zeros if the model has only one explanatory variable.
yhat	The predicted values of y for the full data set.
dhat1	The estimated derivatives $d y / d x l$ for the full data set.
dhat2	The estimated derivatives $d y / d x 2$ for the full data set. All zeros if the model has only one explanatory variable.
yhat.se	Standard errors for the predicted values of y for the full data set.
dhat1.se	Standard errors for the estimated derivatives $d y / d x 1$ for the full data
dhat2.se	Standard errors for the estimated derivatives $d y / d x 2$ for the full data set. All zeros if the model has only one explanatory variable.
df1	$\operatorname{tr}(L)$, a measure of the degrees of freedom used in estimation.
df2	$\operatorname{tr}\left(L^{\prime} L\right)$, an alternative measure of the degrees of freedom used in estimation.
sig2	Estimated residual variance, sig2 $=r s s /(n-2 * d f 1+d f 2)$.
cv	Cross-validation measure. $c v=\operatorname{mean}(((y-y h a t) /(1-$ infl $l) \wedge 2)$, where yhat is vector of predicted values for y and $i n f l$ is the vector of diagonal terms for L.
gcv	$g c v=n^{*}(n * \operatorname{sig} 2) /\left((n-n r e g)^{\wedge} 2\right)$, where $\operatorname{sig} 2$ is the estimated residual variance and $n r e g=2 * d f 1-d f 2$.
infl	A vector containing the diagonal elements of L.
minh	Value of window or bandwidth the minimizes the criterion function.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.
McMillen, Daniel P., "Employment Densities, Spatial Autocorrelation, and Subcenters in Large Metropolitan Areas," Journal of Regional Science 44 (2004), 225-243.

McMillen, Daniel P. and John F. McDonald, "A Nonparametric Analysis of Employment Density in a Polycentric City," Journal of Regional Science 37 (1997), 591-612.
McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.
Silverman, A. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York (1986).

See Also

lwr
maketarget

Examples

```
par(ask=TRUE)
n = 1000
z1 <- runif(n,0,2*pi)
z1 <- sort(z1)
z2 <- runif(n,0,2*pi)
o1 <- order(z1)
o2 <- order(z2)
ybase1 <- z1 - . 1*(z1^2) + sin(z1) - cos(z1) - . 5* sin(2*z1) + . 5* cos(2*z1)
ybase2 <- -z2 + . 1*(z2^2) - sin(z2) + cos(z2) + . 5*sin(2*z2) - . 5* cos(2*z2)
ybase <- ybase1+ybase2
sig = sd(ybase)/2
y <- ybase + rnorm(n,0,sig)
summary(lm(y~ybase))
# Single variable estimation
fit1 <- lwrgrid(y~z1,window=seq(.10,.30,.05))
c(fit1$df1,fit1$df2, 2*fit1$df1-fit1$df2)
plot(z1[o1],ybase1[o1],type="l",ylim=c(min(ybase1,fit1$yhat),max(ybase1,fit1$yhat)),
    xlab="z1",ylab="y")
# Make predicted and actual values have the same means
fit1$yhat <- fit1$yhat - mean(fit1$yhat) + mean(ybase1)
lines(z1[o1],fit1$yhat[o1], col="red")
legend("topright", c("Base", "LWR"), col=c("black","red"),lwd=1)
fit2 <- lwrgrid(y~z2,window=seq(.10,.90,.10))
fit2$yhat <- fit2$yhat - mean(fit2$yhat) + mean(ybase2)
c(fit2$df1,fit2$df2,2*fit2$df1-fit2$df2)
plot(z2[o2],ybase2[o2],type="l",ylim=c(min(ybase2,fit2$yhat),max(ybase2,fit2$yhat)),
    xlab="z1",ylab="y")
lines(z2[o2],fit2$yhat[o2], col="red")
legend("topright", c("Base", "LWR"), col=c("black","red"),lwd=1)
#both variables
fit3 <- lwrgrid(y~z1+z2,window=seq(.03,.09,.02))
yhat1 <- fit3$yhat - mean(fit3$yhat) + mean(ybase1)
plot(z1[01],yhat1[o1], xlab="z1",ylab="y")
lines(z1[o1],ybase1[o1],col="red")
yhat2 <- fit3$yhat - mean(fit3$yhat) + mean(ybase2)
plot(z2[o2],yhat2[o2], xlab="z2",ylab="y")
lines(z2[o2],ybase2[o2],col="red")
```

maketarget

Description

Identifies target points at which to evaluate nonparametric models with one or two explanatory variables.

Usage

```
maketarget(form,window=.25,bandwidth=0,kern="tcub", actualobs=FALSE,data=NULL)
```


Arguments

form The model formula to be used to determine target points. The dependent variable is irrelevant, so form $=y \sim x$ and form $=\sim x$ are equivalent. No more than two explanatory variables should be listed.
window The window size.
bandwidth The bandwidth. The window option is ignored if bandwidth >0.
kern The kernel weight function.
actualobs If FALSE, the points identifed as targets are not constrained to be actual data points. Specifying actualobs $=$ TRUE produces target points that are drawn from the original data matrix implied by form.
data A data frame containing the data. Default: use data in the current working directory

Details

The maketarget function uses the locfit package's adaptive decision tree approach to identify target locations. If actualobs $=T R U E$, the output of maketarget is set of actual data points closest to these target locations, along with the convex hull identified by the chull command. The variable obs can be used to indicate the target observations for actualobs models. This actualobs $=$ TRUE option is required by the following commands: lwr, lwrgrid, cparlwr, cparlwrgrid, and semip.

Value

target The set of target points.
obs If actualobs $=T R U E, o b s$ is the list of observation numbers in the original data set from which the target points are drawn. obs $=N U L L$ if actualobs $=F A L S E$.

References

Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999. Section 12.2.

See Also

cparlogit cparlwr cparlwrgrid cparmlogit cparprobit lwr lwrgrid qregcpar qreglwr semip

Examples

```
data(cookdata)
target <- maketarget(~LONGITUDE+LATITUDE,window=.25, data=cookdata)$target
```


Description

Constructs a spatial weight matrix from a shape file or a matrix of geographic coordinates

Usage

makew(shpfile=NULL, coormat=NULL, method="queen", knum=10, ringdist=.25,kern="tcub", window=.10, eigenvalues=FALSE)

Arguments

shpfile	A shape file.
coormat	A matrix of geographic coordinates. The first column should be the longitude and the second latitude, in degrees.
method	Options using shape files to identify first-order contiguity are "queen" and "rook" Options requiring a matrix of geographic coordinates are "knear", "ring", and "kernel". The coordinate matrix can be inputted directly with the coormat option, or it can be calculated directly from the shape file. The shape file takes precedence if both shapefile and coormat are specified.
knum	The number of nearest neighbors for the knear option. Default: $k n u m=10$
ringdist	The maximum distance for the ring option. Default: ringdist $=.25$
kern	The kernel function for the kernel option. Options include "rect", "tria", "epan", "bisq", "tcub" and "trwt".
window	Window size for the kernel option. Default: window $=.25$
eigenvalues	If TRUE, calculates eigenvalues. Default: eigenvalues $=F A L S E$.

Details

If method=rook or method=queen, an nxn contiguity matrix is defined using the spdep package. A queen definition of contiguity means that two tracts are defined as contiguous if they share at least one point. A better definition of rook might be "non-queen": two tracts are defined as contiguous if they share two or more points. The rook and queen options require a shape file. The contiguity matrix is row-normalized to form the weight matrix.

If method=knear, the k nearest neighbors are each given a weight of $1 / \mathrm{k}$ to form W . The calculations are made using the spdep package. Either a shape file or a matrix of geographic coordinates can be provided to the knear option.
If method=ring, each observation within a distance of ringdist from observation i is given equal weight in row i. More distant observations receive a weight of zero.

If method=kernel, a kernel weight function is used to define W , with the window size determined by the window option. The kernel weight function is defined by the kern option. The weights
are $W_{i j}=K\left(d_{i j} / h\right) / h$ for $d_{i j}<h$ and $W_{i j}=0$ for $\mathrm{i}=\mathrm{j}$ and $d_{i j}>h$. The matrix is then row-normalized.
Eigenvalues are returned if the eigenvalues $=T$ is specified.

Value

wmat	The nxn spatial weight matrix. The matrix is row-normalized.
eigvar	The eigvenvalues of wmat. Calculated if eigenvalues=TRUE.

See Also

$$
\begin{aligned}
& \text { sarml } \\
& \text { qregspiv }
\end{aligned}
$$

Examples

```
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$POPULATION>0&cmap$AREA>0,]
cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
lmat <- coordinates(cmap)
fit <- makew(shpfile=cmap,method="queen")
# fit <- makew(coormat=lmat,method="ring",ringdist=1)
```

```
matchdata Matched samples of house sales in Chicago for 1995 and 2005
```


Description

Sales prices, structural characteristics, and location variables for 1602 single-family homes in the City of Chicago in 1995 and a matched sample of 1602 homes in 2005.

Usage

data(matchdata)

Format

A data frame with 3204 observations on the following 18 variables.
year Year of sale, 1995 or 2005
lnland Log of land area in square feet
lnbldg Log of building area in square feet
rooms Number of rooms
bedrooms Number of bedrooms
bathrooms Number of bathrooms
centair Home has central air conditioning
fireplace Home has one or more fireplaces
brick Brick or brick/frame construction
garage1 Garage, 1 car
garage2 Garage, 2+ cars
dcbd Distance from the central business district or "CBD" - the traditional center of Chicago at the intersection of State and Madison Streets, at approximately -87.627800 longitude and 41.881998 latitude
rr Within .25 miles of a rail line
yrbuilt Year the home was built
carea a factor with levels. Community area, a traditional definition of neighborhood in Chicago.
latitude Latitude in degrees
longitude Longitude in degrees
lnprice Log of sales price

Details

Includes all sales of single-family homes on the Far North Side of Chicago listed in the cleaned Illinois Department of Revenue file for 1995. A matched sample is created from comparable 2005 sales using the MatchIt package. Matches are created based on propensity scores estimated using a logit model for the probability that a home sold in 2005 rather than 1995. The commands used to create the matched sample are the following:
hedonic\$carea <- as.factor(hedonic\$cname)
m.out <- matchit(y~lnland $+\operatorname{lnbldg}+$ rooms + bedrooms + bathrooms + centair + fireplace + brick + garage $1+$ garage $2+$ dcbd + elstop + lake $+r r+$ yrbuilt + carea + latitude + longitude, data=hedonic,method="nearest",discard="both")
mdata <- match.data(m.out)
attach(mdata)
matchdata <- data.frame(year, lnland, lnbldg, rooms, bedrooms, bathrooms, centair, fireplace, brick, garage 1, garage 2 , dcbd, rr, yrbuilt, carea, latitude, longitude, lnprice)

The elstop and lake variables, which are not included here, indicate whether a home is within .25 miles of and EL stop and within .5 miles of Lake Michigan.

Source

Daniel McMillen. Sales data were provided originally by the Illinois Department of Revenue. Structural characteristics are drawn from the 1997 assessment file from the Cook County Assessor's Office.

References

Deng, Yongheng, Sing Tien Foo, and Daniel P. McMillen, "Private Residential Price Indices in Singapore," Regional Science and Urban Economics, 42 (2012), 485-494.
Ho, D., Imai, K., King, G, Stuart, E., "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis 15 (2007), 199-236.
Ho, D., Imai, K., King, G, Stuart, E., "MatchIt: Nonparametric preprocessing for parametric causal inference," Journal of Statistical Software 42 (2011), 1-28..

McMillen, Daniel P., "Repeat Sales as a Matching Estimator," Real Estate Economics 40 (2012), 743-771.

Examples

```
data(matchdata)
matchdata$year05 <- matchdata$year==2005
matchdata$age <- matchdata$year - matchdata$yrbuilt
fit <- lm(lnprice~lnland+lnbldg+rooms+bedrooms+bathrooms+centair+fireplace+brick+
    garage1+garage2+dcbd+rr+age+year05+factor(carea), data=matchdata)
summary(fit)
```

matchmahal

Description

Creates a matched sample data frame based on mahalanobis distances

Usage

matchmahal(form, data=NULL, discard="none", distance="logit", m. order="none", nclose=0, ytreat=1)

Arguments

form	Model formula
data	A data frame containing the data. Default: use data in the current working directory
discard	Observations to be discarded based on the propensity score. If discard = "con- trol", only control observations are discarded. If discard $=$ "treat", only treat- ment observations are discarded. If discard $=$ "both", both control and treatment observations are deleted. Default: discard = "none"; no options are discarded and propensity scores are not estimated.
distance	The link formula to be passed on to the glm command if discard = "control", "treat", or "both"; default = "logit"

$$
\begin{array}{ll}
\text { m.order } & \begin{array}{l}
\text { Order by which estimated distances are sorted before starting the matching pro- } \\
\text { cess. Options: "decreasing", "increasing", "random", and "none". As the "de- } \\
\text { creasing" and "increasing" options are based on propensity scores, they are only } \\
\text { applicable when discard = "control", "treat", or "both". }
\end{array} \\
\text { nclose } & \begin{array}{l}
\text { If nclose }>0, \text { sorts the matched observations by the distance measure and chooses } \\
\text { the nclose matches with the smallest distances. }
\end{array} \\
\text { ytreat } & \text { The value of the dependent variable for the treatment group. Default: ytreat = } \\
\text { 1. Constructs matched samples for all other values of the dependent variable. } \\
\text { If discard="treat" or discard="both", only treatment observations that were dis- } \\
\text { carded for every control value of the dependent variable are omitted from the } \\
\text { final data set. }
\end{array}
$$

Details

Creates a matched sample data set by matching each treatment variable to the closest control variable based on mahalanobis distances. Like matchprop, matchmahal is particularly useful for creating a series of matched sample data sets over time relative to a base time period.

Let $X 1$ be the matrix of explanatory variables for the treatment observations and let $X 2$ be the comparable matrix for the control observations. The mahalanobis measure of distance between the i th row of $X 1$ and all control observations is $d_{i}=\operatorname{mahalanobis}(X 2, X 1[i],, \operatorname{cov}(\operatorname{rbind}(X 2, X 1)))$. The first observation of $X 1$ is matched with the closest observation in $X 2$ based on this distance measure. The row is then removed from $X 2$ and the second observation of $X 1$ is matched with the closest of the remaining control observations. The process is repeated until there are no more observations left in one of the matrices.

By default, matchprop matches every treatment observation with a control observation. If the number of treatment observations (n 1) is less than the number of control observations (n 2), then the first n 2 treatment observations will be in the final matched sample data set. By default, the observations are matched in the order in which they appear in the original data set. Alternatively, the observations can be matched in random order by specifying $m . o r d e r=$ "random".

The distance option allows the user to specify a metric by which observations are determined to be outside the probability support. The same options are available as in the matchprop command. The natural one is distance $=$ "mahal" combined with discard $=$ "control", "treat" or "both" and m.order = "increasing", "decreasing", or "random". Other options are listed in the documentation for the matchprop command, e.g., distance $=$ "logit" or "probit". Any of the these distance options produces a propensity score, p. When distance $=$ "mahal", the propensity score is the mahalanobis distance of each observation from the vector of means. The discard option determines how observations are handled that are outside the probability support. For example, if the treatment is set to ytreat $=1$ and the alternative value of the dependent variable is $y=2$, then:
discard $=$ "control": observations with $\mathrm{p}[\mathrm{y}==2]<\min (\mathrm{p}[\mathrm{y}==1])$ are discarded from the $\mathrm{y}==2$ sample
discard $=$ "treat": observations with $\mathrm{p}[\mathrm{y}==1]>\max (\mathrm{p}[\mathrm{y}==2])$ are discarded from the $\mathrm{y}==1$ sample
discard $=$ "both": both sets of observations are deleted
If discard $=$ "treat" or "both" and the dependent variable has more than two values, a different set of treatment observations may be discarded as being outside the support of the two propensity measures. Only treatment observations that are rejected by both models will end up being omitted from the final data set.

Value

Returns the matched sample data frame. Adds the following variables to the data set:
origobs: The observation number in the original data set
matchobs: The observation number in the matched data set to which the observation is matched. matchobs refers to the observation's number in the original data set, i.e., to the variable origobs.
Note: If the original data set includes variables named origobs and matchobs, they will be overwritten by the variables produced by matchmahal.

References

Deng, Yongheng, Sing Tien Foo, and Daniel P. McMillen, "Private Residential Price Indices in Singapore," Regional Science and Urban Economics, 42 (2012), 485-494.

Ho, D., Imai, K., King, G, Stuart, E., "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis 15 (2007), 199-236.
Ho, D., Imai, K., King, G, Stuart, E., "MatchIt: Nonparametric preprocessing for parametric causal inference," Journal of Statistical Software 42 (2011), 1-28..
McMillen, Daniel P., "Repeat Sales as a Matching Estimator," Real Estate Economics 40 (2012), 743-771.

See Also

matchprop
matchqreg

Examples

```
set.seed(189)
n = 1000
x<- rnorm(n)
x <- sort(x)
y<- x*1 + rnorm(n, 0, sd(x)/2)
y <- ifelse(y>0,1,0)
table(y)
fit <- matchmahal(y~x,ytreat=1)
table(fit$y)
```

matchprop Matched sample data frame based on propensity scores

Description

Creates a matched sample data frame based on propensity scores

Usage

matchprop(form, data=NULL, distance="logit", discard="both", reestimate="FALSE", m. order="none", nclose=0, ytreat=1)

Arguments

form	Model formula
data	A data frame containing the data. Default: use data in the current working directory
distance	The link formula to be passed on to the glm command - usually "probit" or "logit", but other standard options also work.
discard	Observations to be discarded based on the propensity score or the value of the mahalanobis distance measure if distance="mahal". If discard = "control", only control observations are discarded. If discard = "treat", only treatment observa- tions are discarded. If discard = "both", both control and treatment observations are deleted.
reestimate	If reestimate=TRUE, the propensity score is reestimated after observations are discarded
m. order	Order by which estimated distances are sorted before starting the matching pro- cess. Options: "decreasing", "increasing", "random", and "none".
nclose	If nclose>0, sorts the matched observations by the distance measure and chooses the $n c l o s e ~ m a t c h e s ~ w i t h ~ t h e ~ s m a l l e s t ~ d i s t a n c e s . ~$
ytreat	The value of the dependent variable for the treatment group. Default: ytreat $=$ 1. Constructs matched samples for all other values of the dependent variable.
If discard="treat" or discard="both", only treatment observations that were dis-	
carded for every control value of the dependent variable are omitted from the	
final data set.	

Details

Creates a matched sample data set using procedures based on the Matchlt program. MatchIt's routines are generally preferable for creating a single matched data set, although by doing less the matchprop command is somewhat faster than MatchIt. matchprop is particularly useful for creating a series of matched sample data sets over time relative to a base time period.
Unless distance $=$ "mahal", the glm command is used to estimate the propensity scores using a series of discrete choice models for the probability, p, that the dependent variable equals y treat rather than each alternative value of the dependent variable. The default link function is distance $=$ "logit". Alternative link functions are specified using the distance option. Links include the standard ones for a glm model with family = binomial, e.g., "probit", "cauchit", "log", and "cloglog".
If mahal= T, matchprop implements MatchIt's version of mahalanobis matching. Letting X be the matrix of explanatory variables specified in form, the mahalanobis measure of distance from the vector of mean values is $p=$ mahalanobis $(X, \operatorname{colMeans}(X), \operatorname{cov}(X))$. Although this version of mahalanobis matching is fast, it may not be the best way to construct matches because it treats observations that are above and below the mean symmetrically. For example, if X is a single variable with $\operatorname{mean}(X)=.5$ and $\operatorname{var}(X)=1$, mahalanobis matching treats $X=.3$ and $X=.7$ the same: mahalanobis $(.3, .5,1)=.04$ and mahalanobis $(.7, .5, .1)=.04$. The function matchmahal is slower but
generally preferable for mahalanobis matching because it pairs each treatment observation with the closest control observation, i.e., min(mahalanobis $(X 0, X 1[i],, \operatorname{cov}(X)))$, where $X 0$ is the matrix of explanatory variables for the control observations, $X 1$ is the matrix for the treatment observations, X is the pooled explanatory variable matrix, and i is the target treatment observation.
To illustrate how matchprop constructs matched samples, suppose that the dependent variable takes on three values, $y=1,2,3$, and assume that $y=1$ is the treatment group. First, the $y=1$ and $y=2$ observations are pooled and a propensity score p is constructed by, e.g., estimating a logit model for the probability that $y=1$ rather than 2 . Unless m.order $=$ "none", the data frame is then sorted by p - from largest to smallest if m.order = "largest", from smallest to largest if m.order = "smallest", and randomly if $m . o r d e r=$ "random". The first treatment observation is then paired with the closest control observation, the second treatment observation is paired with the closest of the remaining control observations, and so on until the last observation is reached for one of the groups. No control observation is matched to more than one treatment observation, and only pairwise matching is supported using matchprop. The process is then repeated using the $y=1$ and $y=3$ observations. If the number of treatment observations is n 1 , the final data set will have roughly $3 * \mathrm{n} 1$ observations - the n 1 treatment observations and n 1 observations each from the $y=2$ and $y=3$ observations. The exact number of observations will differ depending on how observations are treated by the discard option, and there will be fewer than n1 observations for, e.g., group 2 if $\mathrm{n} 2<\mathrm{n} 1$.
The discard option determines how observations are handled that are outside the probability support. In the above example, let p be the propensity score for the logit model for the probability that $y=1$ rather than 2. If discard $=$ "control", observations with $\mathrm{p}[\mathrm{y}==2]<\min (\mathrm{p}[\mathrm{y}==1])$ are discarded from the $\mathrm{y}==2$ sample. If discard $=$ "treat", observations with $\mathrm{p}[\mathrm{y}==1]>\max (\mathrm{p}[\mathrm{y}==2])$ are discarded from the $y==1$ sample. If discard $=$ "both", both sets of observations are deleted. The process is then repeated for the $y=1$ and $y=3$ observations. If discard $=$ "treat" or "both", a different set of treatment observations may be discarded as being outside the support of the two propensity measures. Only treatment observations that are rejected by both models will end up being omitted from the final data set.
If reestimate $=\mathrm{T}$, the propensity scores are reestimated after any observations are discarded. Otherwise, matches are based on the original propensity scores.

Value

Returns the matched sample data frame. Adds the following variables to the data set:
origobs: The observation number in the original data set
matchobs: The observation number in the matched data set to which the observation is matched. matchobs refers to the observation's number in the original data set, i.e., to the variable origobs.
Note: If the original data set includes variables named origobs and matchobs, they will be overwritten by the variables produced by matchprop.

References

Deng, Yongheng, Sing Tien Foo, and Daniel P. McMillen, "Private Residential Price Indices in Singapore," Regional Science and Urban Economics, 42 (2012), 485-494.
Ho, D., Imai, K., King, G, Stuart, E., "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis 15 (2007), 199-236.
Ho, D., Imai, K., King, G, Stuart, E., "MatchIt: Nonparametric preprocessing for parametric causal inference," Journal of Statistical Software 42 (2011), 1-28..

McMillen, Daniel P., "Repeat Sales as a Matching Estimator," Real Estate Economics 40 (2012), 743-771.

See Also

matchmahal
matchqreg

Examples

```
set.seed(189)
n = 1000
x <- rnorm(n)
x <- sort(x)
y <- x*1 + rnorm(n, 0, sd(x)/2)
y<- ifelse(y>0,1,0)
table(y)
fit <- matchprop(y~x,m.order="largest",ytreat=1)
table(fit$y)
```

matchqreg

Sample quantiles and means over time for a matched sample data set

Description

Calculates and graphs sample means and quantiles over time. Intended for but not limited to a data set constructed with matchprop or matchmahal

Usage

matchqreg(form, taumat $=c(.10, .25, .50, .75, .90)$, qreglwr. smooth=TRUE, window=.50,bandwidth=0,kern="tcub", alldata=FALSE, graph. yhat=TRUE,graph.mean=TRUE, data)

Arguments

form A formula of the type $y \sim x$, where x represents time.
taumat Vector of quantiles. Default: taumat=c(.10, .25, .50, .75, .90).
qreglwr.smooth If qreglwr.smooth=T, uses qreglwr to smooth the quantile series. If qreglwr.smooth $=F$, calculates period by period quantiles.
window Window size to be passed to qreglwr if qreglwr.smooth=T. Default: 0.50.
bandwidth Bandwidth to be passed to qreglwr if qreglwr.smooth=T. Default: 0, i.e., not used.

kern	Kernel weighting function to be passed to qreglwr if qreglwr.smooth=T. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
alldata	Indicates how the alldata option should be treated for qreglwr if qreglwr.smooth=T. Default: alldata=F
graph.yhat	If graph.yhat=T, graphs the series of quantile lines. Default: graph.yhat=T. graph.mean
If graph.mean=T, graphs the means over time. Default: graph.yhat=T.	
data	A data frame containing the data. Default: use data in the current working directory.

Details

Calculates means and quantiles of y for each time period present in the variable on the right hand side of the model formula. The quantiles can be varied with the taumat option. If qreglwr.smooth=T, matchqreg uses the qreglwr command to smooth the quantile lines and stores the results in the matrix $y h a t$. The unsmoothed, actual quantile values are stored in yhat if qreglwr.smooth=F. The window, bandwidth, kern, and alldata options are passed on to qreglwr if qreglwr.smooth=T.
Although matchqreg is meant to follow the matchprop or matchmahal command, it can be applied to any data set.

Value

yhat	Matrix of quantiles for y ; actual quantiles if qreglwr.smooth $=F$ and smoothed values if qreglowr.smooth=T. Rows represent time periods and columns repre- sent quantiles.
ymean	Average value of y for each time period. timevect

References

Deng, Yongheng, Sing Tien Foo, and Daniel P. McMillen, "Private Residential Price Indices in Singapore," Regional Science and Urban Economics, 42 (2012), 485-494.
Ho, D., Imai, K., King, G, Stuart, E., "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis 15 (2007), 199-236.

Ho, D., Imai, K., King, G, Stuart, E., "MatchIt: Nonparametric preprocessing for parametric causal inference," Journal of Statistical Software 42 (2011), 1-28..
McMillen, Daniel P., "Repeat Sales as a Matching Estimator," Real Estate Economics 40 (2012), 743-771.

```
See Also
matchmahal
matchprop
qreglwr
```


Examples

```
set.seed(189)
n = 500
# sale dates range from 0-10
# mean and variance of x increase over time, from 1 to 2
# price index for y increases from 0 to 1
timesale <- array(0,dim=n)
x <- rnorm(n,0,1)
for (j in seq(1,10)) {
    timesale <- c(timesale, array(j, dim=n))
    x <- c(x, rnorm(n,j/10,1+j/10))
}
n = length(x)
y <- x*1 + timesale/10 + rnorm(n, 0, sd(x)/2)
fit <- lm(y~x+factor(timesale))
summary(fit)
heddata <- data.frame(y,x,timesale)
summary(heddata)
par(ask=TRUE)
matchdata <- matchprop(timesale~x, data=heddata,ytreat=0,
    distance="logit",discard="both")
table(matchdata$timesale)
fit <- matchqreg(y~timesale,qreglwr.smooth=FALSE,
    graph.yhat=TRUE,graph.mean=TRUE,data=matchdata)
```

qregbmat Quantile Regression for Multiple Quantiles

Description

Returns estimated coefficients from a series of quantile regressions.

Usage

qregbmat(form, taumat=seq(.10,.90, .10), graphb=TRUE, graph.factor=FALSE, data=NULL)

Arguments

form	Model formula
taumat	Vector of target quantiles. Default: taumat=seq(.10,.90,.10)
graphb	If graphb=TRUE, prints graphs of the coefficient estimates. Default: graphb=TRUE.
graph.factor	If graph.factor=TRUE and graphb=TRUE, prints graphs of the coefficient esti- mates for any factor variables. Default: graph.factor=TRUE.
data	A data frame containing the data. Default: use data in the current working directory.

Details

Estimates a series of quantile regressions using the quantreg packages. The quantiles are listed in taumat. The qregbmat command is intended primarily as a first stage before the qregsiml or qregsim 2 commands.

Value

Returns the length(taumat) x k matrix of estimated coefficients, where k is the number of explanatory variables.

References

Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005.

See Also

```
qregsim1
```

qregsim2
qregcpar
qreglwr

Examples

```
par(ask=TRUE)
data(matchdata)
matchdata$age <- matchdata$year - matchdata$yrbuilt
bmat <- qregbmat(lnprice~lnland+lnbldg+age+factor(year), data=matchdata,
    graph.factor=TRUE)
summary(bmat)
```

qregcdf

Nonparametric quantiles based on conditional CDF functions

Description

Estimates conditional quantile functions based on nonparametric conditional CDF functions

Usage

```
qregcdf(form, taumat=c(.10,.25,.50,.75,.90),hx=0, hy=0,nx=20, ny=100,
    targetx=0,targety=0,graph.target=FALSE,graph.yhat=FALSE, data=NULL)
```


Arguments

form
taumat Vector of quantiles. Default: taumat=c(.10, .25,.50, .75, .90)
hx
hy Bandwidth for y in $\Phi\left(\left(y-Y_{i}\right) / h y\right)$ Default: $h y=1.06 * \min (\operatorname{sd}(\mathrm{y})$, (quantile (y, 75)quantile($\mathrm{y}, .25$))/1.349)*($\left.\mathrm{n}^{\wedge}(-.2)\right)$
$\mathrm{nx} \quad$ Number of target points for x if using an evenly spaced grid. Default is $n x=20$. If $n x>0$, then $\operatorname{target} x<-\operatorname{seq}(\min (x), \max (x)$, length $=\mathrm{nx})$
ny \quad Number of target points for y if using an evenly spaced grid. Default is $n y=200$. If $n y>0$, then targety $<-\operatorname{seq}(\min (y), \max (y)$, length $=n y)$
targetx Vector of user-provided target values for x. An alternative to using $n x$ to specify a uniformly spaced grid. Default: not specified.
targety Vector of user-provided target values for y. An alternative to using $n x y$ to specify a uniformly spaced grid. Default: not specified.
graph.target If graph.target $=T$, graph of results is produced based on target values. Default: graph.target $=F$.
graph.yhat If graph.yhat=T, graph of results is produced based on interpolations to actual values of x and y. Default: graph. yhat $=F$.
data A data frame containing the data. Default: use data in the current working directory

Details

Following Li and Racine (2007), equation 6.3, a smoothed version of the conditional CDF of y given a value of x can be written:

$$
F(y \mid x)=\frac{\frac{1}{n} \sum_{i} \Phi\left(\frac{y-y_{i}}{h_{y}}\right) h_{x}^{-1} K\left(\frac{X_{i}-x}{h_{x}}\right)}{h_{x}^{-1} \sum_{i} K\left(\frac{X_{i}-x}{h_{x}}\right)}
$$

The estimation procedure begins by evaluating this expression at each point in the grid determined by the values of target. x and target. y
The result is an $n x x$ ny matrix of values for $F(y \mid x)$. Let $f\left(x_{j}\right)$ represent the $n y$-vector of values of $F\left(y \mid x_{j}\right)$, and let f_{k} indicate the entry of $F\left(y \mid x_{j}\right)$ associated with $y_{k}, \mathrm{k}=1, \ldots$, ny. Finally, let τ represent an entry of taumat. Then the value of yhat.target associated with quantile τ and x_{j} is the largest value of f_{k} such that $f_{k}<\tau<f_{k}+1$. The resulting $n x x$ length(taumat) matrix is available after estimation as yhat.target. The smooth 12 is used to interpolate each column of yhat.target to span the full vector of original values of x. The result is the $n x$ length(taumat) matrix yhat.
Note: The default bandwidth may prove too small if there are regions where x is sparse. It may be necessary to experiment with larger bandwidths for $h x$ and hy. The function qreglwr is more flexible, allowing nearest neighbor approaches as well as fixed bandwidths.

Value

yhat	Matrix of quantile predictions. Dimension is $n x$ length(taumat)
yhat. target	Matrix of quantile predictions at target values of x. Dimension is length(targetx) x length (taumat).
targetx	Vector of target values for x.
targety	Vector of target values for y.
taumat	Vector of target quantile values.
hx	Bandwidth for x.
hy	Bandwidth for y.

References

Li, Oi and Jeffrey Scott Racine. Nonparametric Econometrics: Theory and Practice. Princeton, NJ: Princeton University Press, 2007. Chapter 6.

See Also

condens

Examples

```
data(dupage99)
dupage99$ratio <- dupage99$av/dupage99$price
o <- order(dupage99$price)
dupage99 <- dupage99[o,]
attach(dupage99)
price <- price/1000
fit <- qregcdf(ratio~price)
ymin = min(fit$yhat)
ymax = max(fit$yhat)
plot(price, fit$yhat[,1],type="l",xlab="Sales Price (1000s)",ylab="Assessment Ratio",
    ylim=c(ymin,ymax),main="Nonparametric Conditional CDF Quantile Regression")
for (j in seq(2,5)) {
    lines(price,fit$yhat[,j])
}
fit$hx
fit$hy
```

qregcpar Conditionally Parametric LWR Quantile Estimation

Description

Estimates a model of the form $y=X B(z)+u$ using locally weighted quantile regression for a set of user-provided quantiles. z can include one or two variables.

Usage

```
qregcpar(form,nonpar,taumat=c(.10,.25,.50,.75,.90),
    window=.25,bandwidth=0, kern="tcub",distance="Mahal",
    target=NULL,data=NULL)
```


Arguments

form	Model formula
nonpar	List of either one or two variables for z. Formats: qregcpar($y \sim x$ xist, nonpar $=\sim z 1$, \ldots...) or qregcpar ($y \sim$ xlist, nonpar $=\sim z 1+z 2, \ldots$). Important: note the " \sim " before the first z variable.
taumat	Vector of target quantiles. Default: taumat=c(.10,.25,.50,.75,.90) .
window	Window size. Default: 0.25 .
bandwidth	Bandwidth. Default: not used.
kern	Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance	Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: qregcpar looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
target	If target $=$ NULL, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observation is used as a target value for x. A set of target values can be supplied directly.
data	A data frame containing the data. Default: use data in the current working directory

Details

The list of explanatory variables is specified in the base model formula while Z is specified using nonpar. X can include any number of explanatory variables, but Z must have at most two.

The estimated value of y at a target value z_{0} and a quantile τ is the predicted value from a weighted quantile regression of y on X with weights given by K. When Z includes a single variable, K is a simple kernel weighting function: $K\left(\left(z-z_{0}\right) /(s d(z) * h)\right)$. When Z includes two variables (e.g, nonpar=~z1+z2), the method for specifying K depends on the distance option. Under either option, the i th row of the matrix $Z=(\mathrm{z} 1, \mathrm{z} 2)$ is transformed such that $z_{i}=\sqrt{z_{i} * V * t\left(z_{i}\right)}$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(Z)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(Z))$. After this transformation, the weights again reduce to the simple kernel weighting function $K\left(\left(z-z_{0}\right) /(s d(z) * h)\right)$.
The great circle formula is used to define K when distance $=$ "Latlong"; in this case, the variable
 the longitude and latitude variables expressed in degrees (e.g., -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude
are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is the longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option. h is specified by the bandwidth or window option.
For each quantile, the estimated coefficient matrix, xcoef, includes an intercept (the first column in k of x coef) and the coefficients for the explanatory variables. The dimension of xcoef is $n x$ ntau x k.

Estimation can be very slow when target $=$ "alldata". The maketarget command can be used to identify target points.

Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target The target points for the original estimation of the function.
xcoef.target The matrix of estimated coefficients, $B(z)$, at the target values of z. Dimension $=$ ntarget x ntau $x k$, where ntarget $=$ number of target poitns, ntau $=$ number of quantiles, and $k=$ number of explanatory variables including the intercept.
xcoef.target.se
The matrix of standard errors for $B(z)$ at the target values of z. Dimension $=$ ntarget x ntau x.
xcoef The matrix of estimated coefficients, $B(z)$, at the original data points. Dimension $=n \times$ ntau $x k$.
xcoef.se The matrix of standard errors for $B(z)$ with z evaluated at all points in the data set. Dimension $=n x$ ntau $x k$.
yhat The matrix of predicted values of y at the original data points. Dimension $=n x$ ntau.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.

Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.

Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005. Chapter 7 and Appendix A.9.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.
McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

See Also

qreglwr

Examples

```
data(cookdata)
cookdata$obs <- seq(1,nrow(cookdata))
cookdata <- cookdata[!is.na(cookdata$FAR),]
par(ask=TRUE)
# 1. CPAR LWR estimates, y = a(DCBD) + b(dcbd)*DCBD + u
fit <- qregcpar(LNFAR~DCBD,nonpar=~DCBD, taumat=c(.10,.50,.90),
    kern="bisq", window=.30, data=cookdata)
o <- order(cookdata$DCBD)
plot(cookdata$DCBD[o], fit$yhat[o,1],type="l", main="Log Floor Area Ratio",
    xlab="Distance from CBD",ylab="Log FAR")
lines(cookdata$DCBD[o], fit$yhat[o,2])
lines(cookdata$DCBD[o], fit$yhat[o,3])
## Not run:
# 2. CPAR estimates, y = a(lat,long) + b(lat,long)xDCBD + u
fit <- qregcpar(LNFAR~DCBD, nonpar=~LATITUDE+LONGITUDE, taumat=c(.10,.90),
    kern="bisq", window=.30, distance="LATLONG", data=cookdata)
plot(cookdata$DCBD, cookdata$LNFAR,main="Log Floor Area Ratio",
    xlab="Distance from CBD",ylab="Log FAR")
points(cookdata$DCBD, fit$yhat[,1], col="red")
plot(cookdata$DCBD, cookdata$LNFAR,main="Log Floor Area Ratio",
    xlab="Distance from CBD",ylab="Log FAR")
points(cookdata$DCBD, fit$yhat[,2], col="red")
library(RColorBrewer)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap$yhat10[cookdata$obs] <- fit$yhat[,1]
cmap$yhat90[cookdata$obs] <- fit$yhat[,2]
cmap$yhat1090 <- cmap$yhat90 - cmap$yhat10
brks <- seq(min(cmap$yhat1090,na.rm=TRUE),max(cmap$yhat1090,na.rm=TRUE),length=9)
spplot(cmap, "yhat1090", at=brks,col.regions=rev(brewer.pal(9,"RdBu")),
    main="Difference between . }10\mathrm{ and. }90\mathrm{ Quantiles")
## End(Not run)
```

qreglwr Locally Weighted Quantile Regression

Description

Estimates a model of the form $y=f(x)$ using locally weighted quantile regression for a set of userprovided quantiles. x can include either one or two variables. Returns estimated values, derivatives, and standard errors for both $f(x)$ and $d f(x) / d x$.

Usage

```
qreglwr(form, taumat=c(.10,.25,.50,.75,.90), window=.25,bandwidth=0,
    kern="tcub", distance="Mahal",target=NULL,data=NULL)
```


Arguments

form	Model formula
taumat	Vector of target quantiles. Default: taumat=c(.10,.25,.50,.75,.90) .
window	Window size. Default: 0.25.
bandwidth	Bandwidth. Default: not used. kern Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss". distanceOptions: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "great- circle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: qreglwr looks for the first two letters to determine which variable is latitude and which is longitude, so the data set must be attached first or specified using the data option; options like data\$latitude will not work.
target	Default: Mahal. If target = NULL, uses the maketarget command to form targets using the values specified for window, bandwidth, and kern. If target="alldata", each observa- tion is used as a target value for x. A set of target values can be supplied directly.
data	A data frame containing the data. Default: use data in the current working directory.

Details

Serves as an interface to the quantreg package. Uses a kernel weight function in quantreg's "weight" option to estimate quantile regressions at a series of target values of x. x may include either one or two variables. The target values are found using locfit's adaptive decision tree approach. The predictions are then interpolated to the full set of x values using the smooth 12 command. If alldata $=T$, the procedure is applied to every value of x rather than a set of target points.

The weights at a target value x_{0} are given by $K(\psi / h)$, where ψ is a measure of the distance between x and x_{0} and h is the bandwidth or window. When x includes a single variable, $\psi=x-x_{0}$. When x includes two variables, the method for specifying ψ depends on the distance option. If
distance $=$ "Mahal" or distance $=$ "Euclid", the i th row of the matrix $X=(\mathrm{x} 1, \mathrm{x} 2)$ is transformed such that $x_{i}=\operatorname{sqrt}\left(x_{i} * V * t\left(x_{i}\right)\right)$. Under the "Mahal" option, V is the inverse of $\operatorname{cov}(X)$. Under the "Euclid" option, V is the inverse of $\operatorname{diag}(\operatorname{cov}(X))$. By reducing x from two dimensions to one, this transformation leads again to the simple kernel weighting function $K\left(\left(x-x_{0}\right) /(s d(x) * h)\right)$. h is specified by the bandwidth or window options.
The great circle formula is used to define K when distance $=$ "Latlong"; in this case, the explanatory variable list must be specified as $\sim l a t i t u d e+l o n g i t u d e$ (or $\sim l o+l a$ or $\sim l a t+l o n g$, etc), with the longitude and latitude variables expressed in degrees (e.g., -87.627800 and 41.881998 for one observation of longitude and latitude, respectively). The order in which latitude and longitude are listed does not matter and the function only looks for the first two letters to determine which variable is latitude and which is longitude. It is important to note that the great circle distance measure is left in miles rather than being standardized. Thus, the window option should be specified when distance $=$ "Latlong" or the bandwidth should be adjusted to account for the scale. The kernel weighting function becomes K (distance/h) under the "Latlong" option.
Since qreglwr estimates weighted quantile regressions of the dependent variable, y, on $x-x_{0}$, the intercept provides an estimate of y at x_{0} and β provides an estimate of the slope of the quantile line, $d y / d x$, at x_{0}. quantreg's standard error for the intercept is stored in ytarget.se (target points) and yhat.se (all observations). The standard errors for the slopes are stored in dtarget1.se, dtarget2.se, dhat1.se, and dhat2.se.
When alldata $=T$, each data point in turn is used as a target point, x_{0}. Fixed bandwidths may prove too small if there are regions where x is sparse. A nearest neighbor approach is generally preferable (e.g, window=.50). Estimation can be very slow when target $=$ "alldata". The maketarget command can be used to identify target points. The smooth 12 command is then used to interpolate the coefficient estimates and standard errors.
Available kernel weighting functions include the following:

Kernel	Call abbreviation	Kernel function $\mathrm{K}(\mathrm{z})$
Rectangular	"rect"	$\frac{1}{2} I(\|z\|<1)$
Triangular	"tria"	$(1-\|z\|) I(\|z\|<1)$
Epanechnikov	"epan"	$\frac{3}{4}\left(1-z^{2}\right) * I(\|z\|<1)$
Bi-Square	"bisq"	$\frac{15}{16}\left(1-z^{2}\right)^{2} * I(\|z\|<1)$
Tri-Cube	"tcub"	$\frac{70}{81}\left(1-\|z\|^{3}\right)^{3} * I(\|z\|<1)$
Tri-Weight	"trwt"	$\frac{35}{32}\left(1-z^{2}\right)^{3} * I(\|z\|<1)$
Gaussian	"gauss"	$(2 \pi)^{-.5} e^{-z^{2} / 2}$

Value

target
ytarget
dtarget 1 The matrix of estimated derivatives $d y / d x 1$ at the target points, by quantile. Rows represent targets; columns are quantiles.
dtarget2 The matrix of estimated derivatives $d y / d x 2$ at the target points, by quantile. Rows represent targets; columns are quantiles. All zeros if the model has only one explanatory variable.

ytarget.se	The matrix of standard errors for the predicted values of y at the target points, by quantile. Rows represent targets; columns are quantiles.
dtarget1.se	The matrix of standard errors for the derivatives $d y / d x l$ at the target points, by quantile. Rows represent targets; columns are quantiles.
dtarget2.se	The matrix of standard errors for the derivatives $d y / d x 2$ at the target points, by quantile. Rows represent targets; columns are quantiles. All zeros if the model has only one explanatory variable.
yhat	The matrix of predicted values of y for the full data set, by quantile. Dimension $=\mathrm{nx}$ length(taumat).
dhat1	The matrix of estimated derivatives $d y / d x l$ for the full data set, by quantile. Dimension $=\mathrm{nx}$ length (taumat) .
dhat2	The matrix of estimated derivatives $d y / d x 2$ for the full data set, by quantile. Dimension $=\mathrm{n} x$ length(taumat). All zeros if the model has only one explanatory variable.
yhat.se	The matrix of standard errors for the predicted values of y for the full data set, by quantile. Dimension $=n x$ length(taumat).
dhat1.se	The matrix of standard errors for the estimated derivatives $d y / d x 1$ for the full data set, by quantile. Dimension $=\mathrm{n} x$ length(taumat).
dhat2.se	The matrix of standard errors for the estimated derivatives $d y / d x 2$ for the full data set, by quantile. Dimension $=\mathrm{n} x$ length(taumat). All zeros if the model has only one explanatory variable.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.

Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005. Chapter 7 and Appendix A.9.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.

See Also

lwr

Examples

```
data(cookdata)
cookdata <- cookdata[cookdata$CHICAGO==1,]
cookdata$obs <- seq(1:nrow(cookdata))
cookdata <- cookdata[cookdata$CHICAGO==1&cookdata$POPULATION>0,]
par(ask=TRUE)
# lndens = f(dcbd)
fit <- lwr(LNDENS~DCBD,window=.20,data=cookdata)
fit1 <- qreglwr(LNDENS~DCBD, taumat=c(.10,.50,.90),window=.30,kern="rect",data=cookdata)
o <- order(cookdata$DCBD)
```

```
ymin = min(fit1$yhat)
ymax = max(fit1$yhat)
plot(cookdata$DCBD[o], fit$yhat[o], type="l", ylim=c(ymin,ymax),
    xlab="Distance to CBD", ylab="Log of Population Density")
lines(cookdata$DCBD[o], fit1$yhat[o,1], col="red", lty="dashed")
lines(cookdata$DCBD[o], fit1$yhat[o,2], col="red")
lines(cookdata$DCBD[o], fit1$yhat[o,3], col="red", lty="dashed")
legend("topright", c("LWR", "tau = 50", "tau = 10, 90"), col=c("black","red", "red"),
    lwd=1, lty=c("solid","solid","dashed"))
## Not run:
library(RColorBrewer)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1,]
# lndens = f(longitude, latitude), weights are function of straight-line distance
fit <- qreglwr(LNDENS~LONGITUDE+LATITUDE,taumat=c(.10,.50,.90),window=.20,data=cookdata)
cmap$lwr10[cookdata$obs] <- fit$yhat[,1]
cmap$lwr50[cookdata$obs] <- fit$yhat[,2]
cmap$lwr90[cookdata$obs] <- fit$yhat[,3]
cmap$lwr1090[cookdata$obs] <- fit$yhat[,3] - fit$yhat[,1]
brks <- seq(min(cmap$lwr10, na.rm=TRUE), max(cmap$lwr10, na.rm=TRUE), length=9)
spplot(cmap,"lwr10",at=brks,col.regions=rev(brewer.pal(8, "RdBu")),
        main="Log Density Estimates, tau = .10")
brks <- seq(min(cmap$lwr50, na.rm=TRUE), max(cmap$lwr50, na.rm=TRUE), length=9)
spplot(cmap,"lwr50",at=brks,col.regions=rev(brewer.pal(8,"RdBu")),
    main="Log Density Estimates, tau = . 50")
brks <- seq(min(cmap$lwr90,na.rm=TRUE), max(cmap$lwr90, na.rm=TRUE), length=9)
spplot(cmap,"lwr90",at=brks,col.regions=rev(brewer.pal(8, "RdBu")),
    main="Log Density Estimates, tau = .90")
brks <- seq(min(cmap$lwr1090,na.rm=TRUE),max(cmap$lwr1090, na.rm=TRUE),length=9)
spplot(cmap,"lwr1090",at=brks,col.regions=rev(brewer.pal(8, "RdBu")),
    main="Difference in Log Density, tau = .90 - . 10")
## End(Not run)
```

qregsim1 Changes in Distributions Implied by Quantile Regression Estimates

Description

Uses quantile regression results to simulate the effects of an explanatory variable on the distribution of the dependent variable.

Usage

qregsim1 (formall, formx, bmat, taumat, xvalues=NULL, ytarget=NULL, xcolors=NULL,graphx=TRUE, graphy=TRUE, graphsim=TRUE, histogram=FALSE, histfreq=FALSE, yname=NULL, xname=NULL, nsim=0, bwadjust=1, legloc="topright", data=NULL)

Arguments

formall	Formula with the dependent variable and all explanatory variables, as provided to the qregbmat or qregcpar command.
formx	The explanatory variable to be analyzed. Specified as a formula, e.g., formx= x.
bmat	Matrix of coefficient estimates from the qregbmat or qregcpar command.
taumat	The vector of quantile values represented in bmat.
xvalues	Vector of explanatory variable values for discrete changes. If xvalues $=$ NULL, the values are set to xvalues <- quantile(x,c(.25,.75)).
ytarget	Vector of target values for the density functions involving y. The values in ytarget are used as the target points for the predicted and actual values of y. The same values of ytarget are also used as the target values for the simulations.
xcolors	Vector of colors for the density function graphs. Default for two values of xvalues is c("black","red"). For more than two values, the default is drawn from the RColorBrewer package: xcolors = brewer.pal($n x$, "Blues").
graphx	If graphx $=T$, presents the kernel density function for the explanatory variable.
graphy	If graphy=T, presents density functions for the actual and predicted values of the dependent variable.
graphsim	If graphsim=T, presents graphs of the density functions for the predicted values of y at the values specified in xvalues.
histogram	If histogram $=T$ and graph $x=T$, the density function for the explanatory variable is presented as a histogram. Not relevant if graph $x=F$.
histfreq	If histogram $=T$ and graph $x=T$, the histogram is presented using frequencies rather than densities. Not relevant if graph $x=F$ or histogram $=F$.
yname	A label used for the dependent variable in the density graphs, e.g., yname $=$ "Log of Sale Price".
xname	A label for graphs involving the explanatory variable, e.g., xname = "xl".
nsim	Number of simulations for quantile distributions. Default: $n \operatorname{sim}=0$.
bwadjust	Factor used to adjust bandwidths for kernel densities. Smoother functions are produced when bwadjust >1. Passed directly to the density function's adjust option. Default: bwadjust=1.
legloc	The legend location.
data	A data frame containing the data. Default: use data in the current working directory.

Details

The conditional quantile function is $y(\tau)=\alpha(\tau)+\beta(\tau) * x+\lambda(\tau) * z$. The complete model specification is listed in formall, while x is specified in formx, e.g., formall $<-y \sim x+z$ and formx $<-$ $\sim x$. When nsim $=0$, the qregsiml command simply calculates predicted values of y at each value of x listed in xvalues and at each τ list in taumat. Thus, the first column of densyhat holds the estimated density function for $\hat{y}(\tau)=\hat{\alpha}(\tau)+\hat{\beta}(\tau) * \operatorname{xvalues}[1]+\hat{\lambda}(\tau) * z$, the second column holds the predictions at xvalues[2], and so on. The estimates are evaluated at each value of τ, which
leads to an $n x$ length(taumat) set of predictions for each value of x values. Kernel density estimates are then calculated for these predictions.

The qregsiml command can follow either qregbmat or qregcpar. All that differs is the dimension of bmat: using qregcpar, the coefficients vary by observation.

If $n \operatorname{sim}>0$, the qregsiml function uses a simulation procedure based on the Machado-Mata (2005) approach to simulate the effect of an explanatory variable on the distribution of the dependent variable. The function begins by drawing (with replacement) nsim values from the rows of the explanatory variable matrix and nsim values of τ. With $n \operatorname{sim}$ values of both the explanatory variables and coefficient vectors, the predictions are simply $\hat{y}_{j}(\tau)=\hat{\alpha}(\tau)+\hat{\beta}(\tau) *$ xvalues $[j]+\hat{\lambda}(\tau) * z$ for $j=1, \ldots$, length(xvalues).

The $n x$ length(xvalues) matrix densyhat holds the full set of predictions.
In addition to the predicted values of y at x values, the qregsiml command can produce the following:

1. The estimated density function for the explanatory variable (if graphx=T). Presented as a histogram if histogram=T.
2. The estimated quantile regression coefficients for the variable specified by formx. This graph is produced if $\operatorname{graph} b=T$.

Value

\(\left.$$
\begin{array}{ll}\text { ytarget } & \begin{array}{l}\text { The values for the horizontal axis of the quantile predictions at xvalues. } \\
\text { densyhat }\end{array}
$$

Matrix of predictions for the predicted values of y at the values specified in

xvalues. The dimension of the matrix is n length(xvalues).\end{array}\right\}\)| The values of the density function for the actual values of the dependent variable. |
| :--- |
| densyl $=N U L L$ if graphy $=F$. |

References

Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005.
Machado, J.A.F. and Mata, J., "Counterfactual Decomposition of Changes in Wage Distributions using Quantile Regression," Journal of Applied Econometrics 20 (2005), 445-465.

McMillen, Daniel P., "Changes in the Distribution of House Prices over Time: Structural Characteristics, Neighborhood or Coefficients?" Journal of Urban Economics 64 (2008), 573-589.

See Also

qregbmat
qregsim2
qregcpar

Examples

```
par(ask=TRUE)
data(matchdata)
matchdata$age <- matchdata$year - matchdata$yrbuilt
tvect <- seq(.10,.90,.10)
bmat <- qregbmat(lnprice~lnland+lnbldg+age+factor(year), data=matchdata,
    graph.factor=TRUE, taumat=tvect,graphb=FALSE)
xvect <- signif(quantile(matchdata$lnland,c(.25,.75)),4)
fit <- qregsim1(lnprice~lnland+lnbldg+age+factor(year), ~lnland, bmat,
    tvect,xvalues=xvect,data=matchdata)
#Simulation for 1995
smalldata <- matchdata[matchdata$year==1995,]
bmat95 <- bmat[,1:4]
fit <- qregsim1(lnprice~lnland+lnbldg+age,~lnland,bmat95,tvect,
    xvalues=xvect, data=smalldata)
#Simulation for 2005
smalldata <- matchdata[matchdata$year==2005,]
bmat05 <- bmat[,1:4]
bmat05[,1] <- bmat05[,1] + bmat[,5]
fit <- qregsim1(lnprice~lnland+lnbldg+age, ~lnland,bmat05,tvect,
    xvalues=xvect, data=smalldata)
```

 qregsim2 Machado-Mata Decomposition of Changes in Distributions

Description

Decomposes quantile regression estimates of changes in the distribution of a dependent variable into the components associated with changes in the distribution of the explanatory variables and the coefficient estimates.

Usage

```
qregsim2(formall, formx, dataframe1, dataframe2, bmat1, bmat2,
    graphx=TRUE, graphb=TRUE, graphy=TRUE, graphdy=TRUE, nbarplot=10,
    yname=NULL, xnames=NULL, timenames=c("1","2"),
    leglocx="topright",leglocy="topright",leglocdy="topright",
    nsim=20000, bwadjx=1,bwadjy=1,bwadjdy=1)
```


Arguments

formall Model formula. Must match the model formula used for qregbmat.

formx	Model formula for the variables used for the decompositions, e.g., form $x=\sim x 1+x 2$. The coefficients and variables for the other variables are held at their time 2 values for the simulations.
dataframe1	The data frame for regime 1. Should include all the variables listed in formall.
dataframe2	The data frame for regime 2. Should include all the variables listed in formall.
bmat1	Matrix of values for regime 1 quantile coefficient matrices; the output from running qregbmat using dataframel.
bmat2	Matrix of values for regime 2 quantile coefficient matrices; the output from running qregbmat using dataframe 2 .
graphx	If graphx $=T$, presents kernel density estimates of each of the explanatory variables in formx.
graphb	If graphb=T, presents graphs of the quantile coefficient estimates for the variables in formx.
graphy	If graphy $=T$, presents of the predicted values of y for time1, time2, and the counterfactual.
graphdy	If graphdy $=T$, presents graphs of the changes in densities.
nbarplot	Specifies the maximum number of values taken by an explanatory variable before bar plots are replaced by smooth kernel density functions. Only relevant when graphx $=T$.
yname	A label used for the dependent variable in the density graphs, e.g., yname $=$ "Log of Sale Price".
xnames	Labels for graphs involving the explanatory variables, e.g., xnames $=$ " $x 1$ " for one explanatory variable, or xnames $=c(" x 1 ", " x 2 ")$ for two variables.
timenames	A vector with labels for the two regimes. Must be entered as a vector with character values. Default: c("1","2").
leglocx	Legend location for density plots of the explanatory variables, e.g., leglocx $=$ "topright" for one explanatory variable, or leglocx $=c$ ("topright", "topleft") for two variables.
leglocy	Legend location for density plots of predicted values of the dependent variable. Default: leglocy = "topright".
leglocdy	Legend location for plot of density changes. Default: leglocdy = "topright".
nsim	Number of simulations for the decompositions.
bwadjx	Factor used to adjust bandwidths for kernel density plots of the explanatory variables. Smoother functions are produced when bwadjust >1. Passed directly to the density function's adjust option. Default: bwadjx=1.
bwadjy	Factor used to adjust bandwidths for kernel density plots predicted values of the dependent variable.
bwadjdy	Factor used to adjust bandwidths for plots of the kernel density changes.

Details

The base models are $y_{1}=X_{1} \beta_{1}+Z_{1} \gamma_{1}$ for regime 1 and $y_{2}=X_{2} \beta_{2}+Z_{2} \gamma_{2}$ for regime 2. The counterfactual model is $y_{12}=X_{1} \beta_{2}+Z_{2} \gamma_{2}$. The full list of variable (both X and Z) are provided by form; this list must correspond exactly with the list provided to qregbmat. The subset of variables that are the subject of the decompositions are listed in formx.
The matrices bmatl and bmat2 are intended to represent the output from qregbmat. The models must include the same set of explanatory variables, and the variables must be in the same order in both bmatl and bmat2. In contrast, the data frames dataframel and dataframe 2 can have different numbers of observations and different sets of explanatory, as long as they include the dependent variable and the variables listed in bmatl and bmat2.
The output from qregsim2 is a series of graphs. If all options are specified, the graphs appear in the following order:

1. Kernel density estimates for each variable listed in formx. Estimated using density with default bandwidths and the specified value for bwadjx. Not shown if graphx $=F$. The xnames and leglocx options can be used to vary the names used to label the x -axis and the legend location.
2. Quantile coefficient estimates for the variables listed in formx. Not listed if graphb=F.
3. Kernel density estimates for the predicted values of $X_{1} \beta_{1}+Z_{1} \gamma_{1}$ and $X_{2} \beta_{2}+Z_{2} \gamma_{2}$, and the counterfactual, $X_{1} \beta_{2}+Z_{2} \gamma_{2}$. Estimated using density with default bandwidths and the specified value for bwadjy. Not shown if graphy $=F$. The label for the x -axis can be varied with the yname option. The three estimated density functions are returned after estimation as yhatll, yhat22, and yhat12.
4. A graph showing the change in densities, d2211 = f22-f11, along with the Machado-Mata decomposition showing:
(a) the change in densities due to the variables listed in formx: $\mathrm{d} 2212=\mathrm{f} 22-\mathrm{f} 12$.
(b) the change in densities due to the coefficients: $\mathrm{d} 1211=\mathrm{f} 12-\mathrm{f} 11$.

These estimates are returned after estimation as $d 2211, d d 2212$, and $d 1211$. The density changes are not shown if graphdy=F. The label for the x-axis can be varied with the yname option. The bandwidth for the original density functions $\mathrm{f} 11, \mathrm{f} 22$, and f 12 can be varied with bwadjdy. It is generally desirable to set bwadjdy > bwadjy because additional smoothing is needed to make the change in densities appear smooth.
The distributions are simulated by drawing nsim samples with replacement from xobsl<-seq(1:n1), xobs $2<-\operatorname{seq}(1: n 2)$, and bobs <- seq(1:length(taumat)). The commands for the simulations are:
xobs1 <- sample(seq(1:n1),nsim,replace=TRUE)
xobs2 <- sample(seq(1:n2),nsim,replace=TRUE)
bobs $<-$ sample(seq(1:ntau),nsim,replace=TRUE)
xhat $1<-$ allmat 1 [xobs1,]
xhat2 <- allmat2[xobs2,]
znames <- setdiff(colnames(allmat1), colnames(xmat1))
if (identical(znames,"(Intercept)")) xhat $12<-$ xhat1
if (!identical(znames,"(Intercept)"))
xhat $12<-$ cbind(xhat2[,znames], xhat1[,colnames(xmat1)])
xhat12 $<-$ xhat 12 [,colnames(allmat1)]
bhat $1<-$ bmat 1 [bobs,]
bhat2 $<-$ bmat2[bobs,]
where allmat and xmat denote the matrices defined by explanatory variables listed in formall (including the intercet) and formx. Since the bandwidths are simply the defaults from the density function, they are likely to be different across regimes as the number of observations and the standard deviations may vary across times. Thus, the densities are re-estimated using the average across regimes of the original bandwidths.

Value

ytarget The values for the x -axis for the density functions.
yhat11 The kernel density function for $X_{1} \beta_{1}+Z_{1} \gamma_{1}$.
yhat22 The kernel density function for $X_{2} \beta_{2}+Z_{2} \gamma_{2}$.
yhat12 The kernel density function for $X_{1} \beta_{2}+Z_{2} \gamma_{2}$.
d2211 The difference between the density functions for $X_{2} \beta_{2}+Z_{2} \gamma_{2}$ and $X_{1} \beta_{1}+Z_{1} \gamma_{1}$. Will differ from yhat22 - yhat11 if bwadjy and bwadjdy are different.
d2212 The difference between the density functions for $X_{2} \beta_{2}+Z_{2} \gamma_{2}$ and $X_{1} \beta_{2}+Z_{2} \gamma_{2}$. Will differ from yhat22-yhat12 if bwadjy and bwadjdy are different.
d1211 The difference between the density functions for $X_{1} \beta_{2}+Z_{2} \gamma_{2}$ and $X_{1} \beta_{1}+Z_{1} \gamma_{1}$. Will differ from yhat 12 - yhat11 if bwadjy and bwadjdy are different.

References

Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005.
Machado, J.A.F. and Mata, J., "Counterfactual Decomposition of Changes in Wage Distributions using Quantile Regression," Journal of Applied Econometrics 20 (2005), 445-465.

McMillen, Daniel P., "Changes in the Distribution of House Prices over Time: Structural Characteristics, Neighborhood or Coefficients?" Journal of Urban Economics 64 (2008), 573-589.

See Also

dfldens
qregbmat
qregsim1
qregcpar
qreglwr

Examples

$\operatorname{par}(\mathrm{ask}=$ TRUE $)$
$n=5000$
set.seed(484913)
x1 <- rnorm(n, 0,1)
u1 <- rnorm(n,0,.5)

```
y1<- x1 + u1
# no change in x. Coefficients show quantile effects
tau <- runif(n,0,.5)
x2 <- x1
y2 <- (1 + (tau-.5))*x2 + .5*qnorm(tau)
dat <- data.frame(rbind(cbind(y1,x1,1), cbind(y2,x2,2)))
names(dat) <- c("y","x","year")
bmat1 <- qregbmat(y~x,data=dat[dat$year==1,],graphb=FALSE)
bmat2 <- qregbmat(y~x,data=dat[dat$year==2,],graphb=FALSE)
fit1 <- qregsim2(y~x,~x,dat[dat$year==1,],dat[dat$year==2,],
    bmat1,bmat2,bwadjdy=2)
# Distribution of x changes. Coefficients and u stay the same
x2 <- rnorm(n,0,2)
y2 <- x2 + u1
dat <- data.frame(rbind(cbind(y1,x1,1), cbind(y2,x2,2)))
names(dat) <- c("y","x","year")
bmat1 <- qregbmat(y~x,data=dat[dat$year==1,],graphb=FALSE)
bmat2 <- qregbmat(y~x,data=dat[dat$year==2,],graphb=FALSE)
fit1 <- qregsim2(y~x,~x,dat[dat$year==1,],dat[dat$year==2,],
    bmat1,bmat2,bwadjdy=2)
```

qregspiv IV Estimator for the Spatial AR Quantile Model

Description

Uses the Kim and Muller (2004) or Chernozhukov and Hansen (2006) method to estimate a quantile version of the spatial AR Model

Usage

qregspiv(form,wy=NULL, wmat=NULL, inst=NULL, winst=NULL, shpfile=NULL, tau=.5, rhomat=NULL, printsariv=FALSE, silent=FALSE, nboot $=100$, alpha=. 05 , data=NULL)

Arguments

form
wy
wmat Directly enter wmat rather than creating it from a shape file. Default: not specified. wmat is needed unless $W Y$ is provided and a full instrument list is specified using inst. Default: $W=$ NULL.

inst	List of instruments not to be pre-multiplied by W. Entered as inst=~w1+w2 ... Default: inst=NULL. See details for more information.
winst	List of instruments to be pre-multiplied by W before use. Entered as winst $=\sim w 1+w 2$... Default: inst=NULL. See details for more information.
shpfile	Shape file used to construct W based on first order contiguity using a queen criterion. Needed if wmat is not provided when the program requires it.
tau	The quantile. Default: $\mathrm{tau}=.5$
rhomat	A vector of values for ρ. If rhomat=NULL, uses the Kim and Muller (2004) twostage approach to estimate the model. If rhomat is a vector with two or more entries, uses the Chernozhukov and Hansen (2006) IV approach to estimate the model. Default: rhomat=NULL.
printsariv	If TRUE, also estimates a standard spatial AR model using an IV approach. Instruments for WY are based on the inst and winst options. Default: printsariv=FALSE.
silent	If TRUE, no results are printed. Useful for Monte Carlo.
nboot	The number of simulations for the bootstrap standard errors. Needed for the Kim and Muller (2004) model. Default: nboot=100.
alpha	Probability for the confidence intervals, calculated by the percentile method for the Kim and Muller (2004) model. Default: alpha=.05, i.e., a 95 percent confidence interval.
data	A data frame containing the data. Default: use data in the current working directory.

Details

The procedure is intended for quantile estimation of the spatial AR model, $Y=\rho W Y+X \beta+u$. It can also be for quantile IV estimation of any model with one endogenous explanatory variable.

Kim and Muller (2004):

The Kim and Muller 2004 estimation procedure is the default. The procedure has two stages. In the first stage, an instrumental variable is constructed for $W Y$ using the predicted values from a quantile regression of $W Y$ on a set of instruments, Z. The second stage is a quantile regression of Y on X and the predicted values of $W Y$. The same quantile, tau, is used for both regressions.
Standard errors are calculated using a simple bootstrap estimator. New samples are constructed by drawing with replacement from the rows of the data frame holding $y, W Y, X$, and Z. Both stages are re-estimated nboot times using the series of bootstrap samples. The bootstrap standard errors are the standard deviations of the nboot re-calculations of the coefficient estimates. The confidence intervals are based on the percentile method: for any coefficient b, the 1-alpha confidence interval is (quantile(b, alpha/2), quantile(b, 1-alpha/2)).

Chernozhukov and Hansen (2006):

The Chernozhukov and Hansen (2006) procedure is used when a vector of possible values for ρ is specified using the rhomat option, e.g., rhomat $=\operatorname{seq}(0, .9, .05)$. The qregspiv command implements a simple version of the Chernzhukov and Hansen estimator in which the explanatory variable WY is replaced by the predicted values from an OLS regression of $W Y$ on the instruments, Z. This instrumental variable is then used as an explanatory variable for a series of quantile regressions of $Y-\rho W Y$ on X and $\hat{W} Y$ - one regression for each value of ρ listed in rhomat. The estimated
value of ρ is the value that leads the coefficient on $\hat{W} Y$ to be closest to zero. After finding $\hat{\rho}$, the estimated values of β are calculated by a quantile regression of $Y-\hat{\rho} W Y$ on X.
Standard errors are based on equations 3.13 and 3.14 in Chernozhukov and Hansen (2006). Let e represent the residuals from the quantile regression of $Y-\hat{\rho} W Y$ on X, and define $f_{i}=I\left(\left|e_{i}\right|<\right.$ $h) /(2 h)$, where $h=1.06 * s d(e) * n^{-.2}$. Also, let Φ represent the predicted value of $W Y$ from an OLS regression of $W Y$ on Z, and let D represent the actual values of $W Y$. Finally, define $\Phi_{i}^{*}=f_{i} \Phi_{i}$ and $X_{i}^{*}=f_{i} X_{i}$. Then the covariance matrix for $\hat{\theta}=(\hat{\rho}, \hat{\beta})$ is .

$$
V(\hat{\theta})=J(\tau)^{-1} S(\tau)\left(J^{t}\right)^{-1}
$$

where $J(\tau)=\left(\begin{array}{cc}\Phi^{* t} D & \Phi^{* t} X \\ X^{* t} D & X^{* t} X\end{array}\right)$ and $S(\tau)=\tau(1-\tau)\left(\begin{array}{cc}\Phi^{t} D & \Phi^{t} X \\ X^{t} D & X^{t} X\end{array}\right)$

Instruments:

By default, the instrument list includes X and $W X$, where X is the original explanatory variable list and W is the spatial weight matrix. It is also possible to directly specify the full instrument list or to include only a subset of the X variables in the list that is to be pre-multiplied by W. The results of both the quantile IV estimator and the standard IV estimator can be quite sensitive to the choice of instruments for the spatial AR model.

Let listl and list 2 be user-provided lists of the form list $=\sim z 1+z 2$. The combinations of defaults ($N U L L$) and lists for inst alter the final list of instruments as follows:

$$
\begin{aligned}
& \text { inst }=\text { NULL }, \text { winst }=\text { NULL: } Z=(X, W X) \\
& \text { inst }=\text { list } 1, \text { winst }=N U L L: Z=\text { list } 1 \\
& \text { inst }=N U L L, \text { winst }=\text { list } 2: Z=\left(X, W^{*} \text { list } 2\right) \\
& \text { inst }=\text { list } 1, \text { winst }=\text { list } 2: Z=\left(\text { list } 1, W^{*} \text { list } 2\right)
\end{aligned}
$$

Note that when inst=listl and winst=NULL it is up to the user to specify at least one variable in listl that is not also included in X.

Non-Quantile IV Estimates:

Standard, non-quantile IV estimates are presented if printsariv $=T$. The first stage is a regression of $W Y$ on Z. The second stage is a regression of Y on X and the predicted values of $W Y$. Let \hat{G} be the matrix of explanatory variables in the second stage (i.e., $\hat{G}=(Z, W)$), the covariance matrix is $\hat{\sigma}^{2}\left(\hat{G}^{\prime} \hat{G}\right)^{-1}$, where $\hat{\sigma}^{2}=e^{\prime} e / n$ and $e=Y-\hat{\rho} W Y-X \hat{\beta}$. Note that the variance calculation uses actual values of $W Y$ while $\left(\hat{G}^{\prime} \hat{G}\right)^{-1}$ uses predicted values.

Value

A table showing the coefficient estimates, standard errors, and z-values. Also includes a 1-alpha confidence interval based on the percentile method when the Kim and Muller is estimated, i.e., when r homat $=$ NULL .

References

Chernozhukov, Victor and Christian Hansen, "Instrumental Quantile Regression Inference for Structural and Treatment Effect Models," Journal of Econometrics 132 (2006), 491-525.

Kim, Tae-Hwan and Christophe Muller, "Two-Stage Quantile Regression when the First Stage is Based on Quantile Regression, Econometrics Journal 7 (2004), 218-231.
Koenker, Roger. Quantile Regression. New York: Cambridge University Press, 2005.
Kostov, Philip, "A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices," Spatial Economic Analysis 4 (2009), 53-72.
Zietz, Joachim, Emily Norman Zietz, and G. Stacy Sirmans, "Determinants of House Prices: A Quantile Regression Approach," Journal of Real Estate Finance and Economics 37 (2008), 317333.

See Also

$$
\begin{aligned}
& \text { sarml } \\
& \text { qregbmat } \\
& \text { qregsim1 } \\
& \text { qregsim2 } \\
& \text { qregcpar } \\
& \text { qreglwr }
\end{aligned}
$$

Examples

```
data(matchdata)
set.seed(4849189)
mdata <- matchdata[matchdata$year==2005,]
obs <- sample(seq(1,nrow(mdata)),400)
mdata <- mdata[obs,]
mdata$age <- 2005 - mdata$yrbuilt
lmat <- cbind(mdata$longitude,mdata$latitude)
fit <- makew(coormat=lmat,method="ring",ringdist=.50)
wmat <- fit$wmat
form <- lnprice~lnland+lnbldg
fit <- qregspiv(form,wmat=wmat,data=mdata,tau=.5)
```

 repsale Repeat Sales Estimation

Description

Standard and Weighted Least Squares Repeat Sales Estimation

Usage

repsale(price0, time0, price1,time1, mergefirst=1, graph=TRUE, graph. conf=TRUE, conf=.95, stage3=FALSE, stage3_xlist=~timesale, print=TRUE)

Arguments

$\left.\begin{array}{ll}\text { price0 } & \text { Earlier price in repeat sales pair } \\ \text { time0 } & \text { Earlier time in repeat sales pair } \\ \text { price1 } & \text { Later price in repeat sales pair } \\ \text { time1 } & \text { Later time in repeat sales pair } \\ \text { mergefirst } & \begin{array}{l}\text { Number of initial periods with coefficients constrained to zero. Default: merge- } \\ \text { first=1 }\end{array} \\ \text { graph } & \text { If TRUE, graph results. Default: graph=T } \\ \text { graph.conf } & \begin{array}{l}\text { If TRUE, add confidence intervals to graph. Default: graph.conf=T } \\ \text { conf } \\ \text { stage3 }\end{array} \\ & \begin{array}{l}\text { Confidence level for intervals. Default: .95 }\end{array} \\ \text { If stage3 = NULL, no corrections for heteroskedasticty. If stage3="abs", uses } \\ \text { the absolute value of the first-stage residuals as the dependent variable in the } \\ \text { second-stage regression. If stage3="square", uses the square of the first-stage } \\ \text { residuals as the dependent variable. Default: stage3=NULL. }\end{array}\right\}$

Details

The repeat sales model is

$$
y_{t}-y_{s}=\delta_{t}-\delta_{s}+u_{t}-u_{s}
$$

where y is the \log of sales price, s denotes the earlier sale in a repeat sales pair, and t denotes the later sale. Each entry of the data set should represent a repeat sales pair, with price $0=y_{s}$, price $1=y_{t}$, time $0=s$, and time $1=t$. The function repsaledata can help transfer a standard hedonic data set to a set of repeat sales pairs.
Repeat sales estimates are sometimes very sensitive to sales from the first few time periods, particularly when the sample size is small. The option mergefirst indicates the number of time periods for which the price index is constrained to equal zero. The default is mergefirst $=1$, meaning that the price index equals zero for just the first time period. The repsale command does not have an option for including an intercept in the model.
Following Case and Shiller (1987), many authors use a three-stage procedure to construct repeat sales price indexes that are adjusted for heteroskedasticity related to the length of time between sales. Common specifications for the second-stage function are $e^{2}=\alpha_{0}+\alpha_{1}(t-s)$ or $|e|=\alpha 0+$ $\alpha 1(t-s)$, where e represents the first-stage residuals. The first equation implies an error variance of $\hat{\sigma^{2}}=\hat{e^{2}}$ and the second equation leads to $\hat{\sigma^{2}}=|\hat{e}|^{2}$. The repsale function uses a standard F test to determine whether the slope cofficients are significant in the second-stage regression. The results are reported if print $=T$.

The third-stage equation is

$$
\frac{y_{t}-y_{s}}{\hat{\sigma}}=\frac{\delta_{t}-\delta_{s}}{\hat{\sigma}}+\frac{u_{t}-u_{s}}{\hat{\sigma}}
$$

This equation is estimated by regressing $y_{t}-y_{s}$ on the series of indicator variables implied by $\delta_{t}-\delta_{s}$ using the weights option in $l m$ with weights $=1 / \hat{\sigma^{2}}$

Value

fit Full regression model.
pindex The estimated price index.
lo The lower bounds for the price index confidence intervals.
hi The upper bounds for the price index confidence intervals.
dy The dependent variable for the repeat sales regression, $d y=$ pricel-price 0 .
xmat The matrix of explanatory variables for the repeat sales regressions. $\operatorname{dim}(x m a t)=$ $n t$ - mergefirst, where $n t=$ the number of time periods and mergefirst is specified in the call to repsale.

References

Case, Karl and Robert Shiller, "Prices of Single-Family Homes since 1970: New Indexes for Four Cities," New England Economic Review (1987), 45-56.

See Also

repsaledata
repsalefourier
repsaleqreg

Examples

```
set.seed(189)
n = 2000
# sale dates range from 0-10
# drawn uniformly from all possible time0, time1 combinations with time0<time1
tmat <- expand.grid(seq}(0,10),\operatorname{seq}(0,10)
tmat <- tmat[tmat[,1]<tmat[,2], ]
tobs <- sample(seq(1:nrow(tmat)),n,replace=TRUE)
time0 <- tmat[tobs,1]
time1 <- tmat[tobs,2]
timesale <- time1-time0
table(timesale)
# constant variance; index ranges from 0 at time 0 to 1 at time 10
y0 <- time0/10 + rnorm(n,0,.2)
y1 <- time1/10 + rnorm(n,0,.2)
fit <- repsale(price0=y0, price1=y1, time0=time0, time1=time1)
```

```
# variance rises with timesale
# var(u0) = . 2^2; var(u1) = (.2 + timesale/10)^2
# var(u1-u0) = var(u0) + var(u1) = 2*(. .2^2) + .4*timesale/10 + (timesale^2)/100
y0 <- time0/10 + rnorm(n,0,.2)
y1 <- time1/10 + rnorm(n,0,.2+timesale/10)
par(ask=TRUE)
fit <- repsale(price0=y0, price1=y1, time0=time0, time1=time1)
summary(fit$pindex)
fit <- repsale(price0=y0, price1=y1, time0=time0, time1=time1, stage3="abs")
summary(fit$pindex)
timesale2 <- timesale^2
fit <- repsale(price0=y0, price1=y1, time0=time0, time1=time1, stage3="square",
    stage3_xlist=~timesale+timesale2)
```

repsaledata

Preparation of a Repeat Sales Data Set

Description

Identifies repeat sales from a data set with observations on sale price, time of sale, and a property id. Returns a data frame in which each observation is a repeat sales pair.

Usage

repsaledata(price,timevar,id)

Arguments

price Variable representing sale price
timevar Variable representing date of sale
id
Property id

Details

The input to repsaledata is meant to be a set of variables from a standard hedonic data set - the sale price, date, and an id number for the individual property. The function identifies the subset of properties that sold at least twice and forms a new data set in which each observation is a repeat sales pair, with " 0 " denoting the earlier time and " 1 " denoting the later date in the variable names. The observations are ordered first by id, then by timevar, and then by price. A repeat sales pair is formed by matching an observation for which $\operatorname{id}(\mathrm{t})=\mathrm{id}(\mathrm{t}-1)$ and timevar $(\mathrm{t})=\operatorname{timevar}(\mathrm{t}-1)$. Thus, a property that sold in times 1,2 , and 3 will produce 2 repeat sales pairs: $(1) t=1$ and 2 , and (2$) t=$ 2 and 3.
The output of repsaledata is a data frame with 5 variables. If some of the original hedonic data set variables need to be included in the repeat sales data set, the original hedonic data set and the repsaledata data frame can be merged by the id variable.

Value

id	Property id
price0	Sale price at earlier date
time0	Earlier sales date
price1	Sale price at later date
time1	Later sales date

See Also

repsale
repsalefourier
repsaleqreg

Examples

```
id <- c(1,1,1, 2,2,2, 3,3,3, 4,4,4, 5,5,5)
timevar <- c(1,2,3, 1,2,2, 3,1,1, 1,1,2, 2, 2,3)
price <- seq(1:15)
basedata <- data.frame(id,timevar,price)
basedata
rdata <- repsaledata(price,timevar,id)
rdata
```

 repsalefourier Repeat Sales Estimation using Fourier Expansions

Description

Standard and Weighted Least Squares Repeat Sales Estimation using Fourier Expansions

Usage

repsalefourier(price0,time0, price1,time1, mergefirst=1, q=1, graph=TRUE, graph. conf=TRUE , conf=.95, stage3=FALSE, stage3_xlist=~timesale, print=TRUE)

Arguments

price0	Earlier price in repeat sales pair
time0	Earlier time in repeat sales pair
price1	Later price in repeat sales pair
time1	Later time in repeat sales pair

mergefirst	Number of initial periods with coefficients constrained to zero. Default: merge- first=1
q	Sets Q for the fourier expansion. Default: $q=1$.
graph	If TRUE, graph results. Default: graph=T
graph.conf	If TRUE, add confidence intervals to graph. Default: graph.conf=T
conf	Confidence level for intervals. Default: .95
stage3	If stage3 = NULL, no corrections for heteroskedasticty. If stage3="abs", uses the absolute value of the first-stage residuals as the dependent variable in the second-stage regression. If stage3="square", uses the square of the first-stage residuals as the dependent variable. Default: stage3=NULL.
stage3_xlist	List of explanatory variables for heteroskedasticity. By default, the single vari- able timesale $=$ timel-time0 is constructed and used as the explanatory variable
when stage3="abs" or stage3="square". Alternatively, a formula can be pro-	
vided for a user-specified list of explanatory variables, e.g., stage3_xlist=~xl+x2.	

Details

The repeat sales model is

$$
y_{t}-y_{s}=\delta_{t}-\delta_{s}+u_{t}-u_{s}
$$

where y is the \log of sale price, s denotes the earlier sale in a repeat sales pair, and t denotes the later sale. Each entry of the data set should represent a repeat sales pair, with price $0=y_{s}$, price $1=y_{t}$, time $0=s$, and time $1=t$. The function repsaledata can help transfer a standard hedonic data set to a set of repeat sales pairs.
The repeat sales model can be derived from a hedonic price function with the form $y_{i, t}=\delta_{t}+X_{i} \beta+$ $u_{i, t}$ where X_{i} is a vector of variables that are assumed constant over time. repsalefourier replaces δ_{t} with a smooth continuous function, $g\left(T_{i}\right)$ where T_{i} denotes the time of sale for observation i. Letting $g\left(T_{i}\right)=\alpha_{0}+\alpha_{1} z_{i}+\alpha_{2} z_{i}^{2}+\sum_{i=1}^{Q}\left\{\lambda_{q} \sin \left(q z_{i}\right)+\gamma_{q} \cos \left(q z_{i}\right)\right\}$, where $z_{i}=2 \pi\left(T_{i}-\right.$ $\left.\min \left(T_{i}\right)\right) /\left(\max \left(T_{i}\right)-\min \left(T_{i}\right)\right)$, the repeat sales model becomes $y_{i, t}-y_{i, s}=g\left(T_{i}\right)-g\left(T_{i}^{s}\right)=$
$\alpha_{1}\left(z_{i}-z_{i}^{s}\right)+\alpha_{2}\left(z_{i}^{2}-z_{i}^{s 2}\right)+\sum_{q=1}^{Q}\left\{\lambda_{q}\left(\sin \left(q z_{i}\right)-\sin \left(q z_{i}^{s}\right)\right)+\gamma_{q}\left(\cos \left(q z_{i}\right)-\cos \left(z_{i}^{s}\right)\right)\right\}+u_{i, t}-u_{i, t-s}$
After imposing the constraint that the price index in the base time period equals zero, the index is constructed from the estimated regression using the following expression:

$$
g\left(T_{i}\right)=\alpha_{1} z_{i}+\alpha_{2} z_{i}^{2}+\sum_{q=1}^{Q}\left\{\lambda_{q} \sin \left(q z_{i}\right)+\gamma_{q}\left(\cos \left(q z_{i}\right)-1\right)\right\}
$$

More details can be found in McMillen and Dombrow (2001).
Repeat sales estimates are sometimes very sensitive to sales from the first few time periods, particularly when the sample size is small. The option mergefirst indicates the number of time periods for
which the price index is constrained to equal zero. The default is mergefirst $=1$, meaning that the price index equals zero for just the first time period. The repsalefourier command does not have an option for including an intercept in the model.

Following Case and Shiller (1987), many authors use a three-stage procedure to construct repeat sales price indexes that are adjusted for heteroskedasticity related to the length of time between sales. Common specifications for the second-stage function are $e^{2}=\alpha_{0}+\alpha_{1}(t-s)$ or $|e|=$ $\alpha 0+\alpha 1(t-s)$, where e represents the first-stage residuals. The first equation implies an error variance of $\hat{\sigma^{2}}=\hat{e^{2}}$ and the second equation leads to $\hat{\sigma^{2}}=|\hat{e}|^{2}$. The repsalefourier function uses a standard F test to determine whether the slope cofficients are significant in the second-stage regression. The results are reported if print $=T$.

The third-stage equation is

$$
\frac{y_{t}-y_{s}}{\hat{\sigma}}=\frac{g\left(T_{i}\right)-g\left(T_{i}^{s}\right)}{\hat{\sigma}}+\frac{u_{t}-u_{s}}{\hat{\sigma}}
$$

This equation is estimated by regressing $y_{t}-y_{s}$ on $z, z^{2}, \sin (z) \ldots \sin (Q z), \cos (z) \ldots \cos (Q z)$ using the weights option in $l m$ with weights $=1 / \hat{\sigma^{2}}$

Value

fit Full regression model.
pindex The estimated price index.
lo The lower bounds for the price index confidence intervals.
hi The upper bounds for the price index confidence intervals.
$\mathrm{dy} \quad$ The dependent variable for the repeat sales regression, $d y=$ pricel-price 0 .
xmat The matrix of explanatory variables for the repeat sales regressions. $\operatorname{dim}(x m a t)=$ $2+2 Q$.

References

Case, Karl and Robert Shiller, "Prices of Single-Family Homes since 1970: New Indexes for Four Cities," New England Economic Review (1987), 45-56.

McMillen, Daniel P. and Jonathan Dombrow, "A Flexible Fourier Approach to Repeat Sales Price Indexes," Real Estate Economics 29 (2001), 207-225.

See Also

repsale
repsaledata
repsaleqreg

Examples

```
set.seed(189)
n = 2000
# sale dates range from 0-50
# drawn uniformly from all possible time0, time1 combinations with time0<time1
tmat <- expand.grid(seq}(0,50),\operatorname{seq}(0,50)
tmat <- tmat[tmat[,1]<tmat[,2], ]
tobs <- sample(seq(1:nrow(tmat)),n,replace=TRUE)
time0 <- tmat[tobs,1]
time1 <- tmat[tobs,2]
timesale <- time1-time0
timesale2 <- timesale^2
par(ask=TRUE)
z0 <- 2*pi*time0/50
z0sq <- z0^2
sin}0<- sin(z0
cos0 <- cos(z0)
z1 <- 2*pi*time1/50
z1sq <- z1^2
sin1 <- sin(z1)
cos1 <- cos(z1)
ybase0 <- z0 + .05*z0sq -. 5*sin0 - . 5* cos0
miny <- min(ybase0)
ybase0 <- ybase0-miny
ybase1 <- z1 + .05*z1sq -.5*sin1 - . 5*cos1 - miny
maxy <- max(ybase1)
ybase0 <- ybase0/maxy
ybase1 <- ybase1/maxy
summary(data.frame(ybase0,ybase1))
sig1 = sd(c(ybase0,ybase1))/2
y0 <- ybase0 + rnorm(n,0,sig1)
y1 <- ybase1 + rnorm(n,0,sig1)
fit <- lm(y0~z0+z0sq+\operatorname{sin}0+\operatorname{cos}0)
summary(fit)
plot(time0,fitted(fit))
fit <- lm(y1~z1+z1sq+sin1+cos1)
summary(fit)
plot(time1,fitted(fit))
fit1 <- repsale(price1=y1,price0=y0,time1=time1,time0=time0,graph=FALSE,
    mergefirst=5)
fit2 <- repsalefourier(price1=y1,price0=y0,time1=time1,time0=time0, q=1,
    graph=FALSE,mergefirst=5)
timevar <- seq(0,50)
plot(timevar,fit1$pindex, type="l",xlab="Time",ylab="Index",
    ylim=c(min(fit1$pindex),max(fit2$pindex)))
lines(timevar,fit2$pindex)
# variance rises with timesale
```

```
# var(u0) = sig1^2; var(u1) = (sig1 + timesale/50)^2
# var(u1-u0) = var(u0) + var(u1) = 2*(sig1^2) + 2*sig1*timesale/10 + (timesale^2)/2500
y0 <- ybase0 + rnorm(n,0,sig1)
y1 <- ybase1 + rnorm(n,0,sig1+timesale/50)
par(ask=TRUE)
fit1 <- repsalefourier(price0=y0, price1=y1, time0=time0, time1=time1,
    graph=FALSE)
fit2 <- repsalefourier(price0=y0, price1=y1, time0=time0, time1=time1,
    graph=FALSE,stage3="abs",stage3_xlist=~timesale+timesale2)
plot(timevar,fit1$lo, type="l",xlab="Time",ylab="Index",
    ylim=c(min(fit1$lo,fit2$lo), max(fit1$hi,fit2$hi)))
lines(timevar,fit1$hi)
lines(timevar,fit2$lo,col="red")
lines(timevar,fit2$hi,col="red")
```

repsaleqreg

Quantile Repeat Sales Estimation

Description

Median-Based Repeat Sales Estimation

Usage

repsaleqreg(price0, time0, price1, time1, mergefirst=1, graph=TRUE, graph.conf=TRUE, conf=.95, print=TRUE)

Arguments

price0 \quad Earlier price in repeat sales pair
time0 Earlier time in repeat sales pair
price1 Later price in repeat sales pair
time1 Later time in repeat sales pair
mergefirst Number of initial periods with coefficients constrained to zero. Default: mergefirst $=1$
graph If TRUE, graph results. Default: graph=T
graph.conf If TRUE, add confidence intervals to graph. Default: graph.conf=T
conf Confidence level for intervals. Default: . 95
print If print $=T$, prints the regression results. Default: print $=T$.

Details

The repeat sales model is

$$
y_{t}-y_{s}=\delta_{t}-\delta_{s}+u_{t}-u_{s}
$$

where y is the \log of sales price, s denotes the earlier sale in a repeat sales pair, and t denotes the later sale. Each entry of the data set should represent a repeat sales pair, with price $0=y_{s}$, price $1=y_{t}$, time $0=s$, and time $1=t$. The function repsaledata can help transfer a standard hedonic data set to a set of repeat sales pairs.
Repeat sales estimates are sometimes very sensitive to sales from the first few time periods, particularly when the sample size is small. The option mergefirst indicates the number of time periods for which the price index is constrained to equal zero. The default is mergefirst $=1$, meaning that the price index equals zero for just the first time period.
The repsaleqreg function uses the quantreg package to estimate a quantile regression for the . 50 quantile, i.e., the median. A median-based estimator is less sensitive to outliers than linear regression. McMillen and Thorsnes (2006) show that the quantile approach is less sensitive to the inclusion of properties that have undergone renovations between sales. repsaleqreg first fits a standard quantile model, including the interecpt. The coefficient vector is then rotated to have a zero intercept using the formula for transforming unrestricted linear regression estimates to the restricted (zero intercept) values:

```
fit \(<-\mathrm{rq}(\mathrm{dy} \sim \mathrm{x})\)
b <- fit\$coef
fit1 <- summary(fit,covariance=TRUE)
vmat <- fit1\$cov
\(\mathrm{k}=\) length(b1)
rmat <- diag(k)
\(\operatorname{rmat}[, 1]<-\operatorname{rmat}[, 1]-\operatorname{vmat}[1,] / \operatorname{vmat}[1,1]\)
bmat <- rmat
```


Value

fit Full quantile regression model.
pindex The estimated price index.
lo The lower bounds for the price index confidence intervals.
hi The upper bounds for the price index confidence intervals.

References

Case, Karl and Robert Shiller, "Prices of Single-Family Homes since 1970: New Indexes for Four Cities," New England Economic Review (1987), 45-56.
McMillen, Daniel P. and Paul Thorsnes, "Housing Renovations and the Quantile Repeat Sales Price Index," Real Estate Economics 34 (2006), 567-587.

See Also

repsale
repsaledata
repsalefourier

Examples

```
set.seed(189)
n = 2000
# sale dates range from 0-10
# drawn uniformly from all possible time0, time1 combinations with time0<time1
tmat <- expand.grid(seq}(0,10),\operatorname{seq}(0,10)
tmat <- tmat[tmat[,1]<tmat[,2], ]
tobs <- sample(seq(1:nrow(tmat)),n,replace=TRUE)
time0 <- tmat[tobs,1]
time1 <- tmat[tobs,2]
timesale <- time1-time0
table(timesale)
# constant variance; index ranges from 0 at time 0 to 1 at time 10
y0 <- time0/10 + rnorm(n,0,.2)
y1 <- time1/10 + rnorm(n,0,.2)
fit <- repsaleqreg(price0=y0, price1=y1, time0=time0, time1=time1)
# variance rises with timesale
# var(u0) = . 2^2; var(u1) = (.2 + timesale/10)^2
# var(u1-u0) = var(u0) + var(u1) = 2*(.2^2) + .4*timesale/10 + (timesale^2)/100
y0 <- time0/10 + rnorm(n,0,.2)
y1 <- time1/10 + rnorm(n,0,.2+timesale/10)
par(ask=TRUE)
fit <- repsaleqreg(price0=y0, price1=y1, time0=time0, time1=time1)
summary(fit$pindex)
```

sarml Spatial AR Maximum-Likelihood Estimation

Description

Estimates the model $Y=\rho W Y+X \beta+u$ by maximizing the log-likelihood function.

Usage

sarml(form, wmat=NULL, shpfile=NULL, wy=NULL, eigvar=NULL, startrho=NULL, print=TRUE, data=NULL)

Arguments

form Model formula
wmat \quad The W matrix. If not specified, W will be calculated from the shape file. Default: $W=$ NULL .
shpfile Shape file. Needed unless (1) wy and eigvar are both provided, or (2) wmat and eigvar are provided

wy	The $W Y$ variable. Default: not specified; program attempts to calculate $W Y$ using $w m a t$ or shpfile.
eigvar	The vector of eigenvalues for W. Default: not provided. shpfile must be specified to calculate the eigenvalues within the sarml command.
startrho	A starting value for ρ. Default: startrho=0. Estimation will generally be faster if startrho $=0$.
print	If print $=F$, no results are printed. Default: print=T. data
A data frame containing the data. Default: use data in the current working directory	

Details

The primary motivation for the sarml command is to provide a convenient way to estimate multiple spatial AR models without having to calculate the eigenvalues of W each time. Under the assumption that the errors, u, are independently and identically distributed normal, the log-likelihood function for the spatial AR model is

$$
\ln l=-\frac{n}{2} \log (\pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i} u_{i}^{2}+\sum_{i} \log \left(1-\rho * \text { eigvar }_{i}\right)
$$

where eigvar is the vector of eigenvalues of W. Though spdep provides a convenient and fast method for calculating the eigenvalues from a shape file, the calculation can nonetheless take a very long time for large data sets. The sarml command allows the user to input the vector of eigenvalues directly, which saves time when several models are estimated using the same W matrix. Unless a vector of eigenvalues is provided using the eigvar option, the eigenvalues are calculated from the shape file (provided using the shpfile option) using the spdep package.
Conditional on the value of ρ, the maximum likelihood estimate of β is simply the vector of coefficients from a regression of $Y-\rho W Y$ on X . The estimate of the error variance also has a closed form solution: $\hat{\sigma^{2}}=\sum_{i} u_{i}^{2} / n$. Substituting these estimates into the log-likelihood functions leads to the following concentrated log-likelihood function:

$$
l c=-\frac{n}{2}(\log (\pi)+1)-\frac{n}{2} \log \left(\sum_{i} u_{i}^{2}\right)+\sum_{i} \log \left(1-\rho * \text { eigvar }_{i}\right)
$$

Working with the concentrated likelihood function reduces the optimization problem to a onedimensional search for the value of ρ that maximizes $l c$. Unless a value is provided for startrho, the sarml procedure begins by using the optimize command to find the value of ρ that maximizes $l c$. This estimate of ρ (or the value provided by the startrho option) is then used to calculate the implied values of β and σ^{2}, and these values are used as starting values to maximize lnl using the nlm command.

The covariance matrix for the estimates of β and ρ, vmat, is the inverse of $\left(1 / \sigma^{2}\right) V . V$ has partitions $V_{11}=X^{\prime} X, V_{12}=X^{\prime} W Y, V_{21}=Y^{\prime} W^{\prime} X$, and $V_{22}=Y^{\prime} W^{\prime} W Y+\sigma^{2} \sum_{i} \frac{\text { eigvar }_{i}}{\left(1-\rho * \text { eigvar }_{i}\right)^{2}}$.

Value

beta The estimated vector of coefficients, β.

rho	The estimated value of ρ.
sig2	The estimated error variance, σ^{2}.
vmat	The covariance matrix for $\left(\beta, \rho^{2}\right)$.
eigvar	The vector of eigenvalues

See Also

```
makew
qregspiv
qregbmat
qregsim1
qregsim2
qregcpar
qreglwr
```


Examples

```
library(spdep)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
samppop <- cmap$POPULATION>0&cmap$AREA>0
cmap <- cmap[samppop,]
cmap$lndens <- log(cmap$POPULATION/cmap$AREA)
lmat <- coordinates(cmap)
cmap$LONGITUDE <- lmat[,1]
cmap$LATITUDE <- lmat[,2]
cmap$dcbd <- geodistance(longvar=cmap$LONGITUDE,latvar=cmap$LATITUDE,
    lotarget=-87.627800, latarget=41.881998)$dist
fit <- makew(shpfile=cmap,eigenvalues=TRUE)
wmat <- fit$wmat
eigvar <- fit$eigvar
# input w, calculate eigvar within sarml
fit <- sarml(lndens~dcbd,wmat=wmat,eigvar=eigvar,data=cmap)
```

semip
Semi-Parametric Regression

Description

Estimates a semi-parametric model with the form $y=X \beta+f(z)+u$, where $\mathrm{f}(\mathrm{z})$ is either fully nonparametric with $f(z)=f\left(z_{1}\right)$ or conditionally parametric with $f(z)=z_{2} \lambda\left(z_{1}\right)$.

Usage

```
semip(form,nonpar, conpar,window1=.25, window 2=.25,bandwidth1=0, bandwidth2=0,
    kern="tcub",distance="Mahal",targetfull=NULL, print.summary=TRUE, data=NULL)
```


Arguments

form \quad Model formula. Specifies the base parametric form of the model, $y=X \beta$. Any number of variables can be included in X. Format: semip($\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2 \ldots, \ldots$....
nonpar List of variables in z_{1}. Formats: semip(..., nonpar=~z1a, ...) or semip(..., nonpar=~z1a+zb, ...). Important: note the " \sim " before the first z1 variable. At most two variables can be included in z_{1}.
conpar List of variables in z_{2}. By default, conpar $=$ NULL and $f(z)$ has the fully nonparametric form $f(z)=f\left(z_{1}\right)$; in this case the variables in z_{1} are taken from the list provided by nonpar. If a list of variables is provided for nonpar, the conditionally parametric form $f(z)=z_{2} \lambda\left(z_{1}\right)$ is assumed for $\mathrm{f}(\mathrm{z})$, and the variables for z_{2} are provided by conpar. Any number of variables can be included in conpar. Format: semip (..., conpar=~z2a+z2b+z2c+..., ...). Important: note the " \sim " before the first $z 2$ variable.
window1 Window size for the LWR or CPAR regressions of y and x on z. Default $=.25$.
window2 Window size for the LWR or CPAR regression of $y-X \hat{\beta}$ on z. Default $=.25$.
bandwidth1 Bandwidth for the LWR or CPAR regressions of y and x on z. Default: not specified.
bandwidth2 Bandwidth for the LWR or CPAR regression of $y-X \hat{\beta}$ on z. Default: not specified.
kern Kernel weighting functions. Default is the tri-cube. Options include "rect", "tria", "epan", "bisq", "tcub", "trwt", and "gauss".
distance Options: "Euclid", "Mahal", or "Latlong" for Euclidean, Mahalanobis, or "greatcircle" geographic distance. May be abbreviated to the first letter but must be capitalized. Note: semip looks for the first two letters to determine which variable is latitude and which is longitude, so data set must be attached first or specified using the data option; options like data\$latitude will not work. Default: Mahal.
targetfull Target options to be passed to the $l w r$ command if conpar $=$ NULL or the cparlwr command if a list of variables is provided for conpar. Options include NULL, "alldata", or the full output of the maketarget command. The appropriate argument will then be passed on to the $l w r$ or cparlwr command.
print. summary If print.summary=T, prints a summary of the regression results for $e y$ on $e x$, i.e., the parametric portion of the model. Default: print.summary=T.
data A data frame containing the data. Default: use data in the current working directory

Details

If conpar $=N U L L$, the function implements Robinson's (1988) semi-parametric estimator for the model $y=X \beta+f(z)+u$. In this case, the list of variables in z is taken from nonpar and z can have at most two variables. If a list of variables is provided for conpar, the function implements the semi-parametric estimator for the model $f(z)=z_{2} \lambda\left(z_{1}\right)$. In this case, the list of variables in $z 1$ is taken from nonpar and the list of variables in z_{2} is taken from conpar. z_{1} can have at most two variables. There is no limit on the number of variables in z_{2}.
The estimation procedure has the following three steps under either specification:

1. Nonparametric regressions of y on z and each X on z using the $l w r$ function when conpar=NULL and the cparlwr function when a list of variables is provided for cparlwr. The window or bandwidth for these regressions is set by windowl or bandwidthl.
2. OLS regression of $y-\hat{y}$ on the $k-1$ variables in $X-\hat{X}$, omitting the intercept. The coefficients from this regression are the estimated values of β.
3. Nonparametric regression of $y-X \hat{\beta}$ on z using the $l w r$ function when conpar=NULL and the cparlwr function when a list of variables is provided for cparlwr. The window or bandwidth for these regressions is set by window 2 or bandwidth 2 .
The stage-two OLS regressions use k degrees of freedom. The stage-three nonparametric regression uses $2 * d f 1-d f 2$ degrees of freedom, where $d f 1=\operatorname{tr}(L)$ and $d f 2=\operatorname{tr}\left(L^{\prime} L\right)$ and L is the $n x n$ matrix for the $l w r$ or cparlwr regression $L(Y-X \hat{\beta})$. The estimated variance is $\hat{\sigma^{2}}=r s s /(n-2 *$ $d f 1+d f 2)$, where $r s s=\sum_{i}\left(y_{i}-X_{i} \beta-f\left(z_{i}\right)\right)^{2}$. The covariance matrix estimate for β is $\hat{\sigma^{2}}\left((X-\hat{X})^{\prime}(X-\hat{X})\right)^{-1}$. The covariance matrix is stored as vmat.
The nonparametric regressions are estimated using either the $l w r$ or cparlwr function. See their descriptions for more information.

Value

xcoef	The estimated coefficients for the parametric part of the model, β.
vmat	The covariance matrix for the estimates of β.
xbhat	The predicted values of y for the full data set.
nphat	The predicted values of $f(z)$ for the full data set. mean(xbhat)+mean(nphat) will be close but not necessarily identical to mean(y).
nphat.se	Standard errors for the predicted values of y for the full data set.
npfit	The complete set of $l w r$ or cparlwr results from the nonparametric regression of $y-X \beta$ on Z .
df1	$k+\operatorname{tr}(L)$, where k is the number of explanatory variables in $X \beta$ (including the constant) and L is the $n \times n$ matrix used to calculate the final-stage nonparametric or conditionally parametric regression of $Y-X \hat{\beta}$ on Z. dfl is one measure of the degrees of freedom used in estimation.
df2	An alternative measure of the degrees of freedom used in estimation, $d f 2=$ $k+\operatorname{tr}\left(L^{\prime} L\right)$.
sig2	Estimated residual variance, $s i g 2=r s s /(n-2 * d f 1+d f 2)$.

References

Cleveland, William S. and Susan J. Devlin, "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting," Journal of the American Statistical Association 83 (1988), 596-610.
Loader, Clive. Local Regression and Likelihood. New York: Springer, 1999.
McMillen, Daniel P., "Issues in Spatial Data Analysis," Journal of Regional Science 50 (2010), 119-141.
McMillen, Daniel P., "Employment Densities, Spatial Autocorrelation, and Subcenters in Large Metropolitan Areas," Journal of Regional Science 44 (2004), 225-243.

McMillen, Daniel P. and Christian Redfearn, "Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions," Journal of Regional Science 50 (2010), 712-733.
Pagan, Adrian and Aman Ullah. Nonparametric Econometrics. New York: Cambridge University Press, 1999.

Robinson, Paul M. 1988. "Root-N-Consistent Semiparametric Regression," Econometrica, 56, 931954.

See Also

cparlwr
lwr
maketarget

Examples

```
# Single variable in f(z)
par(ask=TRUE)
n = 1000
x <- runif(n,0,2*pi)
x<- sort(x)
z <- runif(n,0,2*pi)
xsq <- x^2
sin}x<-\operatorname{sin}(x
cosx <- cos(x)
sin}2x<-\operatorname{sin}(2*x
cos2x <- cos(2*x)
ybase1 <- x - .1*xsq + sinx - cosx - . 5*sin2x + . 5* cos2x
ybase2 <- -z + .1*(z^2) - sin(z) + cos(z) + . 5* sin(2*z) - . 5* cos(2*z)
ybase <- ybase1+ybase2
sig = sd(ybase)/2
y <- ybase + rnorm(n,0,sig)
# Correct specification for x; z in f(z)
fit <- semip(y~x+xsq+\operatorname{sin}x+\operatorname{cos}x+\operatorname{sin}2x+\operatorname{cos}2x,nonpar=~z,window1=.20,window2=.20)
2*fit$df1 - fit$df2
yvect <- c(min(ybase1,fit$xbhat), max(ybase1, fit$xbhat))
xbhat <- fit$xbhat - mean(fit$xbhat) + mean(ybase1)
```

```
plot(x,ybase1,type="l",xlab="x",ylab="ybase1",ylim=yvect, main="Predictions for XB")
lines(x, xbhat, col="red")
predse <- sqrt(fit$sig2 + fit$nphat.se^2)
nphat <- fit$nphat - mean(fit$nphat) + mean(ybase2)
lower <- nphat + qnorm(.025)*fit$nphat.se
upper <- nphat + qnorm(.975)*fit$nphat.se
o <- order(z)
yvect <- c(min(lower), max(upper))
plot(z[o], ybase2[o], type="l", xlab="z", ylab="f(z) ",
    main="Predictions for f(z) ", ylim=yvect)
lines(z[o], nphat[o], col="red")
lines(z[o], lower[o], col="red", lty="dashed")
lines(z[o], upper[o], col="red", lty="dashed")
## Not run:
# Chicago Housing Sales
data(matchdata)
match05 <- data.frame(matchdata[matchdata$year==2005,])
match05$age <- 2005-match05$yrbuilt
tfit1 <- maketarget(~dcbd,window=.3,data=match05)
tfit2 <- maketarget(~longitude+latitude,window=.5,data=match05)
# nonparametric control for dcbd
fit <- semip(lnprice~lnland+lnbldg+rooms+bedrooms+bathrooms+centair+fireplace+brick+
garage1+garage2+ age+rr, nonpar=~dcbd, data=match05,targetfull=tfit1)
# nonparametric controls for longitude and latitude
fit <- semip(lnprice~lnland+lnbldg+rooms+bedrooms+bathrooms+centair+fireplace+brick+
garage1+garage2+ age+rr+dcbd, nonpar=~longitude+latitude, data=match05, targetfull=tfit2,
distance="Latlong")
# Conditionally parametric model: y = XB + dcbd*lambda(longitude,latitude) + u
fit <- semip(lnprice~lnland+lnbldg+rooms+bedrooms+bathrooms+centair+fireplace+
    brick+garage1+garage2+age+rr, nonpar=~longitude+latitude, conpar=~dcbd,
    data=match05, distance="Latlong",targetfull=tfit1)
# Conditional parametric model: y = XB + Z*lambda(longitude,latitude) + u
# Z = (dcbd,lnland,lnbldg,age)
fit <- semip(lnprice~rooms+bedrooms+bathrooms+centair+fireplace+brick+
garage1+garage2+rr, nonpar=~longitude+latitude, conpar=~dcbd+lnland+lnbldg+age,
    data=match05, distance="Latlong",targetfull=tfit2)
## End(Not run)
```


Description

Uses the Akima (1970) method for univariate interpolation and the Modified Shephard Algorithm for bivariate interpolation.

Usage

```
smooth12(x,y, xout,knum=16,std=TRUE)
```


Arguments

$x \quad$ The actual values of the x-variable(s). A simple numeric variable for univariate interpolation and a matrix of locations for bivariate interpolation.
$y \quad$ The variable to be interpolated.
xout Points on the x-axis where the function is to be evaluated. A single numeric variable in the case of univariate interpolation and a matrix of locations for bivariate interpolation.
knum The number of target points used for bivariate interpolation.
std If TRUE, re-scales the columns of x and xout by dividing by the standard deviation of the columns in x. Not applicable for univariate interpolation.

Details

The univariate version of the function is designed as a partial replacement for the aspline function in the akima package. It produces a smooth function that closely resembles the interpolation that would be done by hand. Values of y are averaged across any ties for x . The function does not allow for extrapolation beyond the $\min (x), \max (x)$ range.
The bivariate version of the function uses the modifed Shepard's method for interpolation. The function uses the RANN package to find the nearest knum target points to each location in xout. The following formula is used to interpolate from these target points to the locations given in xout:

$$
\frac{\sum_{i=1}^{k n u m} w_{i} y_{i}}{\sum_{i=1}^{k n u m} w_{i}}
$$

where
$w_{i}=\left(\left(\operatorname{maxd}-d_{i}\right)^{2}\right) /\left(\max d * d_{i}\right)$
and
$\operatorname{maxd}=\max \left(d_{1}, \ldots, d_{\text {knum }}\right)$.

Value

The values of y interpolated to the xout locations.

References

Akima, Hiroshi, "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures," Journal of the Association for Computing Machinery 17 (1970), 589-602.
Franke, R. and G. Neilson, "Smooth Interpolation of Large Sets of Scatter data," International Journal of Numerical Methods in Engineering 15 (1980), 1691-1704.

See Also

maketarget

Examples

```
    set.seed(484849)
    n = 1000
    x <- runif(n,-2*pi,2*pi)
    x<- sort(x)
    y<- sin}(x)+\operatorname{cos}(x)-.5*\operatorname{sin}(2*x)-.5*\operatorname{cos}(2*x)+\operatorname{sin}(3*x)/3+\operatorname{cos}(3*x)/
    x1 <- seq(-2*pi,2*pi,length=100)
    y1<- sin(x1) + cos(x1) -. . ** sin(2*x1) - . 5* cos(2*x1) + sin(3*x1)/3 + cos(3*x1)/3
    yout <- smooth12(x1,y1,x)
    plot(x,y, type="l")
    lines(x,yout,col="red")
    x<- seq(0,10)
    xmat <- expand.grid(x,x)
    y <- sqrt((xmat[,1]-5)^2 + (xmat[,2]-5)^2)
    xout <- cbind(runif(n,0,10),runif(n,0,10))
    y1<- sqrt((xout[,1]-5)^2 + (xout[,2]-5)^2)
    y2 <- smooth12(xmat,y,xout)
    cor(y1,y2)
```

 splogit
 Linearized GMM spatial logit

Description

Implements the Klier-McMillen (2008) linearized GMM logit model for a 0-1 dependent variable and an underlying latent variable of the form $Y^{*}=\rho W Y^{*}+X \beta+u$

Usage

splogit(form, inst=NULL, winst=NULL, wmat=NULL, shpfile=NULL, blockid=NULL, minblock=NULL, maxblock=NULL, data=NULL, silent=FALSE, minp=NULL)

Arguments

form Model formula
inst List of instruments not to be pre-multiplied by W. Entered as inst=~w1+w2 ... Default: inst=NULL. See details for more information.
winst List of instruments to be pre-multiplied by W before use. Entered as winst $=\sim w 1+w 2$
... Default: inst=NULL. See details for more information.

wmat	Directly enter wmat rather than creating it from a shape file. Default: not speci- fied. One of the wmat or shpfile options must be specified. shape file to be used for creating the W matrix. Default: not specified. One of the wmat or shpfile options must be specified. The order of the observations in wmat must be the same as the order of observations in data.
blockid	A variable identifying groups used to specify a block diagonal structure for the W matrix, e.g., blockid=state or blockid=region. Calculates a separate W matrix for each block. The shpfile option must be specified; wmat is ignored. Groups with fewer than minblock observations are omitted. Default is the num-
minblock	ber of explanatory variables, including $W X B$. This option helps to avoid singu- larity since the instrumental variables are constructed by a separate regression for each block.
maxblock	Groups with more than maxblock observations are omitted. Unlimited by de- fault. This option may be useful for very large data sets as full nblock x nblock matrices must be constructed for each block, where nblock is the number of observations in the block.
data	A data frame containing the data. Default: use data in the current working directory
silent	If silent=T, no output is printed
minp	Specifies limit for the estimated probability. Any estimated probability lower than minp will be set to minp and any probability higher than 1-minp will be set
to 1-minp. By default, the estimated probabilities are bounded by 0 and 1.	

Details

The linearized model is a three-step estimation procedure. Let y be the indicator value: $y=1$ when $y^{*}>0$ and $y=0$ when $y^{*}<0$. The first stage is standard logit of y on X. The probability estimates from this regression are $p=\exp (X \beta) /(1+\exp (X \beta))$. The second/third stage of the procedure is standard 2SLS estimation of $u=y-p+g X \hat{\beta}$ on $g X$ and $g W X \hat{\beta}$ using Z as instruments. g is the gradient vector, $d p / d \beta$. The covariance matrix (equation 3 in Klier-McMillen, 2008) is estimated using the car package. The final estimates minimize $(y-p)^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(y-p)$ with p linearized around $\hat{\beta}$ and $p=0$.
splogit provides flexibility in specifying the list of instruments. By default, the instrument list includes X and $W X$, where X is the original explanatory variable list and W is the spatial weight matrix. Either wmat or shpfile must be specified if inst and winst are set to their default values.
It is also possible to directly specify the full instrument list or to include only a subset of the X variables in the list that is to be pre-multiplied by W. Let listl and list 2 be user-provided lists of the form list $=\sim z 1+z 2$. The combinations of defaults ($N U L L$) and lists for inst produce the following results for Z :

1. inst $=$ NULL, winst $=$ NULL, and either shpfile or wmat specified: $Z=(X, W X)$
2. inst $=$ list1, winst $=$ NULL, and either shpfile or wont specified: $Z=$ list 1
3. inst $=$ NULL, winst $=$ list 2 , and either shpfile or wmat specified: $Z=\left(X, W^{*}\right.$ list 2$)$
4. inst $=$ list 1, winst $=$ list 2 , and either shpfile or wmat specified: $Z=\left(\right.$ list $\left.1, W^{*} l i s t 2\right)$
5. inst $=$ list 1, winst $=$ list 2 , and both shpfile and wmat NOT specified: $Z=($ list 1, list 2)

Note that when inst=listl and winst=NULL it is up to the user to specify at least one variable in listl that is not also included in X.
The difference between cases (4) and (5) is that the list 2 variables are left unaltered in case (5) rather than being pre-multiplied by W. The case (5) option makes it possible to avoid manipulations of large matrices from within splogit. The idea is that W^{*} list2 should be calculated prior to running splogit, with the variables implied by W^{*} list2 being provided directly to splogit using the winst option.

Value

coef Coefficient estimates.
se Standard error estimates.
u The generalized error term.
gmat The matrix of gradient terms, G.

References

Klier, Thomas and Daniel P. McMillen, "Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial Logit for Large Samples," Journal of Business and Economic Statistics 26 (2008), 460-471.

See Also

cparlogit
cparprobit
cparmlogit
gmmlogit
gmmprobit
spprobit
spprobitml

Examples

```
set.seed(9947)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
wmat <- makew(cmap)$wmat
n = nrow(wmat)
rho = .4
x <- runif(n,0,10)
ystar <- as.numeric(solve(diag(n) - rho*wmat)%*%(x + rnorm(n,0,2)))
y <- ystar>quantile(ystar,.4)
fit <- splogit(y~x, wmat=wmat)
```

```
spprobit
```


Description

Implements the Klier-McMillen (2008) linearized GMM probit model for a 0-1 dependent variable and an underlying latent variable of the form $Y^{*}=\rho W Y^{*}+X \beta+u$

Usage

```
spprobit(form,inst=NULL,winst=NULL,wmat=NULL, shpfile=NULL,blockid=NULL,
    minblock=NULL,maxblock=NULL, data=NULL, silent=FALSE,minp=NULL)
```


Arguments

form	Model formula
inst	List of instruments not to be pre-multiplied by W. Entered as inst=~w1+w2 ... Default: inst=NULL. See details for more information.
winst	List of instruments to be pre-multiplied by W before use. Entered as winst $=\sim w 1+w 2$... Default: inst=NULL. See details for more information.
wmat	Directly enter wmat rather than creating it from a shape file. Default: not specified.
shpfile	Shape file to be used for creating the W matrix. The order of the observations in wmat must be the same as the order of observations in data.
blockid	A variable identifying groups used to specify a block diagonal structure for the W matrix, e.g., blockid=state or blockid=region. Calculates a separate W matrix for each block. The shpfile option must be specified; wmat is ignored.
minblock	Groups with fewer than minblock observations are omitted. Default is the number of explanatory variables, including $W X B$. This option helps to avoid singularity since the instrumental variables are constructed by a separate regression for each block.
maxblock	Groups with more than maxblock observations are omitted. Unlimited by default. This option may be useful for very large data sets as full nblock x nblock matrices must be constructed for each block, where nblock is the number of observations in the block.
data	A data frame containing the data. Default: use data in the current working directory
silent	If silent=T, no output is printed
minp	Specifies a limit for the estimated probability. Any estimated probability lower than minp will be set to minp and any probability higher than 1-minp will be set to 1-minp. By default, the estimated probabilities are bounded by 0 and 1.

Details

The linearized model is a three-step estimation procedure. Let y be the indicator value: $y=1$ when $y^{*}>0$ and $y=0$ when $y^{*}<0$. The first stage is standard probit of y on X. The probability estimates from this regression are $p=\Phi(X \hat{\beta})$ and the generalized error is $e=(y-p) \phi(X \hat{\beta}) /(p(1-$ $p)$). The second/third stage of the procedure is standard 2SLS estimation of $u=e+g X \hat{\beta}$ on $g X$ and $g W X \hat{\beta}$ using Z as instruments, where g is the gradient vector, $-d e / d \hat{\beta}$. The covariance matrix (equation 3 in Klier-McMillen, 2008) is estimated using the car package. The final estimates minimize $e^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} e$ with e linearized around $\hat{\beta}$ and $p=0$.
spprobit provides flexibility in specifying the list of instruments. By default, the instrument list includes X and $W X$, where X is the original explanatory variable list and W is the spatial weight matrix. Either wmat or shpfile must be specified if inst and winst are set to their default values.

It is also possible to directly specify the full instrument list or to include only a subset of the X variables in the list that is to be pre-multiplied by W. Let list 1 and list 2 be user-provided lists of the form list $=\sim z 1+z 2$. The combinations of defaults ($N U L L$) and lists for inst produce the following results for Z :

1. inst $=$ NULL, winst $=N U L L$, and either shpfile or wmat specified: $Z=(X, W X)$
2. inst $=$ list 1 , winst $=$ NULL, and either shpfile or wot specified: $Z=$ list 1
3. inst $=$ NULL, winst $=$ list 2 , and either shpfile or wmat specified: $Z=\left(X, W^{*} l i s t 2\right)$
4. inst $=$ list 1, winst $=$ list2, and either shpfile or wmat specified: $Z=\left(l i s t 1, W^{*} l i s t 2\right)$
5. inst $=$ list 1, winst $=$ list 2 , and both shpfile and wmat NOT specified: $Z=($ list 1, list 2$)$

Note that when inst=listl and winst=NULL it is up to the user to specify at least one variable in listl that is not also included in X.

The difference between cases (4) and (5) is that the list 2 variables are left unaltered in case (5) rather than being pre-multiplied by W. The case (5) option makes it possible to avoid manipulations of large matrices from within spprobit. The idea is that W^{*} list 2 should be calculated prior to running spprobit, with the variables implied by W^{*} list2 being provided directly to spprobit using the winst option.

Value

coef	Coefficient estimates.
se	Standard error estimates.
u	The generalized error term.
gmat	The matrix of gradient terms, G.

References

Klier, Thomas and Daniel P. McMillen, "Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial Logit for Large Samples," Journal of Business and Economic Statistics 26 (2008), 460-471.

See Also

cparlogit
cparprobit
cparmlogit
gmmlogit
gmmprobit
splogit
spprobitml

Examples

```
set.seed(9947)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
    cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
    wmat <- makew(cmap)$wmat
    n = nrow(wmat)
    rho = . 4
    x <- runif(n,0,10)
    ystar <- as.numeric(solve(diag(n) - rho*wmat)%*%(x + rnorm(n,0,2)))
    y <- ystar>quantile(ystar,.4)
    fit <- spprobit(y~x, wmat=wmat)
```

 spprobitml
 Maximum Likelihood Estimation of a Spatial Probit Model

Description

Probit estimation for a model with an underlying latent variable of the form $Y^{*}=\rho W Y^{*}+X \beta+u$

Usage

spprobitml(form, wmat=NULL, shpfile=NULL,blockid=NULL, minblock=NULL, maxblock=NULL, stdprobit=TRUE, data=NULL)

Arguments

form	Model formula
wmat	Directly enter wmat rather than creating it from a shape file. Default: not speci- fied. One of the wmat or shpfile options must be specified.
shpfile	Shape file to be used for creating the W matrix. Default: not specified. One of the wmat or shpfile options must be specified. The order of the observations in wmat must be the same as the order of observations in data.

blockid	A variable identifying groups used to specify a block diagonal structure for the W matrix, e.g., blockid=state or blockid=region. Calculates a separate W matrix for each block. The shpfile option must be specified; wmat is ignored.
minblock	Groups with fewer than minblock observations are omitted. Default is the num- ber of explanatory variables, including the spatial lag term.
maxblock	Groups with more than maxblock observations are omitted. Unlimited by de- fault. This option may be useful for very large data sets as full nblock x nblock matrices must be constructed for each block, where nblock is the number of observations in the block.
stdprobit	If $T R U E$, also prints standard probit model results. Default: stdprobit=TRUE. data\quadA data frame containing the data. Default: use data in the current working directory

Details

Estimation is based on the reduced form of the spatial AR model, $Y^{*}=(I-\rho W)^{-1}(X \beta+u)$. The model structure typically implies heteroskedasticity: the variance of the reduced form error term, $(I-\rho W)^{-1} u$, is $\sigma^{2} \operatorname{diag}\left\{(I-\rho W)^{-1}\left(I-\rho W^{\prime}\right)^{-1}\right\}$. For probit estimation, σ^{2} is normalized to one. Let s_{i}^{2} denote the variance for observation i, and define $X^{*}=(I-\rho W)^{-1} X$. Then the probability that $Y_{i}^{*}>0$ is $\Phi\left(X_{i}^{*} \beta / s_{i}\right)$, and the log-likelihood function is $\sum_{i}\left\{y_{i} \ln \left(\Phi_{i}\right)+\left(1-y_{i}\right) \ln \left(1-\Phi_{i}\right)\right\}$. The spprobitml commands estimates the model by maximizing this log-likelihood function with respect to β and ρ.
Variants of this approach - maximizing the log-likelihood function implied by the reduced form of the model - were proposed by Case (1992) and McMillen (1992). Case's estimation procedure relies on a simple form of the spatial weight matrix in which each observation within a district is affected equally by the other observations in the district. McMillen's (1992) approach is equivalent to the one used here, but he suggested using an EM algorithm to estimate the model. Neither author suggested a covariance matrix: Case (1992) appears to have relied on the standard probit estimate which applies when the model is estimated conditional on ρ, while McMillen (1992) proposed a bootstrap approach.
A consistent covariance matrix can be calculated using the gradient terms:

$$
V(\hat{\theta})^{-1}=\left(\sum_{i} \partial \ln L_{i} / \partial \hat{\theta}\right)\left(\sum_{i} \partial \ln L_{i} / \partial \hat{\theta}^{\prime}\right)
$$

The gradient term for $\hat{\rho}$ is calculated using numeric derivatives. The covariance matrix, $V(\hat{\theta})$, is not fully efficient because the estimation procedure only indirectly takes into account the autocorrelation structure. An analogous approach is used to calculate standard errors conditional on $\hat{\rho}$. In the conditional case, only the gradient terms for $\hat{\beta}$ are used; they are evaluated using the estimated values of ρ.
Estimation can be very slow because each iteration requires the inversion of an nxn matrix. To speed up the estimation process and to reduce memory requirements, it may be desirable to impose a block diagonal structure on W. For example, it may be reasonable to impose that each state or region has its own error structure, with no correlation of errors across regions. The blockid option specifies a block diagonal structure such as blockid=region. If there are G groups, estimation requires G submatrices to be inverted rather than one $n x n$ matrix, which greatly reduces memory requirements and
significantly reduces the time required in estimation. The weight matrix must be calculated from shpfile if the blockid option is specified; the wmat option should be set to NULL.

Value

coef Coefficient estimates.
logl The log-likelihood value.
vmat1 The covariance matrix for $\hat{\beta}$, conditional on $\hat{\rho}$.
vmat2 The unconditional covariance matrix for $\hat{\theta}=(\hat{\beta}, \hat{\rho})$.

References

Case, Anne C., "Neighborhood Influence and Technological Change," Regional Science and Urban Economics 22 (1992), 491-508.
McMillen, Daniel P., "Probit With Spatial Autocorrelation," Journal of Regional Science 32 (1992), 335-348.

See Also

cparlogit
cparprobit
cparmlogit
gmmlogit
gmmprobit
makew
splogit
spprobit

Examples

```
set.seed(9947)
cmap <- readShapePoly(system.file("maps/CookCensusTracts.shp",
    package="McSpatial"))
cmap <- cmap[cmap$CHICAGO==1&cmap$CAREA!="O'Hare",]
lmat <- coordinates(cmap)
dnorth <- geodistance(lmat[,1],lmat[,2], lotarget=-87.627800,
latarget=41.881998,dcoor=TRUE)$dnorth
cmap <- cmap[dnorth>1,]
wmat <- makew(cmap)$wmat
n = nrow(wmat)
rho = . }
x <- runif(n,0,10)
ystar <- as.numeric(solve(diag(n) - rho*wmat)%*%(x + rnorm(n,0,2)))
y <- ystar>quantile(ystar,.4)
fit <- spprobitml(y~x, wmat=wmat)
```


Index

*Topic Conditional Density
condens, 3
qregcdf, 67
$*$ Topic Conditionally Parametric
cparlogit, 8
cparlwr, 11
cparlwrgrid, 15
cparmlogit, 18
cparprobit, 22
qregcpar, 69
*Topic Contiguity Matrix
makew, 56
$*$ Topic Datasets
CookCensusTracts, 6
cookdata, 7
dupage99, 29
*Topic Density Functions
condens, 3
geodensity, 32
kdensity, 43
ksim, 45
*Topic DiNardo-Levinsohn-McCrary dfldens, 27
*Topic Discrete Choice Models
cparlogit, 8
cparmlogit, 18
cparprobit, 22
gmmlogit, 38
gmmprobit, 40
splogit, 104
spprobit, 107
spprobitml, 109
*Topic Distance
geodistance, 34
geoshape, 36
*Topic Great-Circle Distance Formula geodistance, 34
*Topic Locally Weighted Regression cparlwr, 11
cparlwrgrid, 15
lwr, 47
lwrgrid, 52
*Topic Logit
cparlogit, 8
*Topic Machado-Mata
qregbmat, 66
qregsim1, 76
qregsim2, 79
*Topic Maps
CookCensusTracts, 6
geoshape, 36
*Topic Matching
matchmahal, 59
matchprop, 61
matchqreg, 64
*Topic Nonparametric
condens, 3
cparlogit, 8
cparlwr, 11
cparlwrgrid, 15
cparmlogit, 18
cparprobit, 22
dfldens, 27
geodensity, 32
kdensity, 43
ksim, 45
lwr, 47
lwrgrid, 52
qregcdf, 67
qregcpar, 69
qreglwr, 73
*Topic Parametric Models
sarml, 96
splogit, 104
spprobit, 107
spprobitml, 109
*Topic Parmametric Models
cubespline, 25
fourier, 30
gmmlogit, 38
gmmprobit, 40
*Topic Probit
cparprobit, 22
*Topic Quantile Regression
matchqreg, 64
qregbmat, 66
qregcdf, 67
qregcpar, 69
qreglwr, 73
qregsim1, 76
qregsim2, 79
qregspiv, 83
repsaleqreg, 94
*Topic Repeat Sales
repsale, 86
repsaledata, 89
repsalefourier, 90
repsaleqreg, 94
*Topic Semi-Parametric Models semip, 98
*Topic Series Expansions
cubespline, 25
fourier, 30
repsalefourier, 90
*Topic Spatial AR Model
gmmlogit, 38
gmmprobit, 40
makew, 56
qregspiv, 83
sarml, 96
splogit, 104
spprobit, 107
spprobitml, 109
*Topic datasets
matchdata, 57
condens, 3, 69
CookCensusTracts, 6, 7
cookdata, 7
cparlogit, 8, 21, 25, 40, 42, 55, 106, 109, 111
cparlwr, 11, 17, 27, 31, 50, 55, 101
cparlwrgrid, 15, 15, 55
cparmlogit, 10, 18, 25, 40, 42, 55, 106, 109, 111
cparprobit, 10, 21, 22, 40, 42, 55, 106, 109, 111
cubespline, $15,25,31,50$
dfldens, 27, 82
dfldens (dfldens), 27
dupage99, 29
fourier, 15, 27, 30, 50
geodensity, 32, 34, 36
geodistance, 33, 34, 36, 37
geogravity, 33, 35
geoshape, 34, 36
gmmlogit, 10, 21, 25, 38, 42, 106, 109, 111
gmmlogit (gmmlogit), 38
gmmprobit, 10, 21, 25, 40, 40, 106, 109, 111
gmmprobit (gmmprobit), 40
kdensity, 43, 46
kdensity (kdensity), 43
ksim, 44, 45
ksim (ksim), 45
lwr, 15, 27, 31, 47, 53, 55, 75, 101
lwrgrid, 15, 27, 31, 50, 52, 55
maketarget, 50, 53, 54, 101, 104
makew, 56, 98, 111
matchdata, 57
matchmahal, 59, 64, 65
matchprop, 61, 61, 65
matchqreg, 61, 64, 64
McSpatial (McSpatial-package), 3
McSpatial-package, 3
qregbmat, $66,78,82,86,98$
qregbmat (qregbmat), 66
qregcdf, 6, 67
qregcpar, 55, 67, 69, 78, 82, 86, 98
qreglwr, 55, 65, 67, 72, 73, 82, 86, 98
qregsim1, 67, 76, $82,86,98$
qregsim1 (qregsim1), 76
qregsim2, 29, 67, 78, 79, 86, 98
qregspiv, 57, 83, 98
qregspiv (qregspiv), 83
repsale, 86, 90, 92, 95
repsaledata, $88,89,92,95$
repsalefourier, 88, 90, 90, 95
repsaleqreg, 88, 90, 92, 94
sarml, 57, 86, 96
semip, 15, 27, 31, 50, 55, 98
smooth12, 102
splogit, 10, 21, 25, 40, 42, 104, 109, 111
splogit (splogit), 104
spprobit, 10, 21, 25, 40, 42, 106, 107, 111
spprobit (spprobit), 107
spprobitml, 10, 21, 25, 40, 106, 109, 109
spprobitml (spprobitml), 109

