
MatchIt: Nonparametric Preprocessing for
Parametric Causal Inference1

Daniel E. Ho,2 Kosuke Imai,3 Gary King,4 Elizabeth A. Stuart5

June 28, 2011

1We thank Olivia Lau for helpful suggestions about incorporating MatchIt into Zelig.
2Assistant Professor of Law & Robert E. Paradise Faculty Scholar, Stanford Law School (559

Nathan Abbott Way, Stanford CA 94305; http://dho.stanford.edu, dho@law.stanford.edu,
(650) 723-9560).

3Assistant Professor, Department of Politics, Princeton University (Corwin Hall 041, Depart-
ment of Politics, Princeton University, Princeton NJ 08544, USA; http://imai.princeton.edu,
kimai@Princeton.Edu).

4David Florence Professor of Government, Harvard University (Institute for Quantita-
tive Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA 02138;
http://GKing.Harvard.Edu, King@Harvard.Edu, (617) 495-2027).

5Assistant Professor, Departments of Mental Health and Biostatistics, Johns Hopkins
Bloomberg School of Public Health (624 N Broadway, Room 804, Baltimore, MD 21205;
http://www.biostat.jhsph.edu/∼estuart, estuart@jhsph.edu).

Contents

1 Introduction 3
1.1 What MatchIt Does . 3
1.2 Software Requirements . 3
1.3 Installing MatchIt . 4
1.4 Loading MatchIt . 4
1.5 Updating MatchIt . 4

2 Statistical Overview 5
2.1 Preprocessing via Matching . 6
2.2 Checking Balance . 7
2.3 Conducting Analyses after Matching . 7

3 User’s Guide to MatchIt 9
3.1 Preprocessing via Matching . 9

3.1.1 Quick Overview . 9
3.1.2 Examples . 9

3.1.2.1 Exact Matching . 10
3.1.2.2 Subclassification . 10
3.1.2.3 Nearest Neighbor Matching 11
3.1.2.4 Optimal Matching . 11
3.1.2.5 Full Matching . 11
3.1.2.6 Genetic Matching . 12
3.1.2.7 Coarsened Exact Matching 12

3.2 Checking Balance . 13
3.2.1 Quick Overview . 13
3.2.2 Details . 13

3.2.2.1 The summary() Command 13
3.2.2.2 The plot() Command . 14

3.3 Conducting Analyses after Matching . 16
3.3.1 Quick Overview . 16
3.3.2 Examples . 17

1

4 Reference Manual 22
4.1 matchit(): Implementation of Matching Methods 22

4.1.0.1 Syntax . 22
4.1.0.2 Arguments . 22
4.1.0.3 Output Values . 27

4.2 summary(): Numerical Summaries of Balance 28
4.2.0.4 Syntax . 28
4.2.0.5 Arguments . 29
4.2.0.6 Output Values . 29

4.3 plot(): Graphical Summaries of Balance . 30
4.3.1 Plot options for the matchit object 30

4.3.1.1 Syntax . 31
4.3.1.2 Arguments . 31
4.3.1.3 Output Values . 31

4.3.2 Plot options for the matchit summary object 32
4.3.2.1 Syntax . 32
4.3.2.2 Arguments . 32
4.3.2.3 Output Values . 32

4.4 match.data(): Extracting the Matched Data Set 32
4.4.1 Usage . 32
4.4.2 Arguments . 32
4.4.3 Examples . 33

5 Frequently Asked Questions 35
5.1 How do I Cite this Work? . 35
5.2 What if My datasets Are Big and Are Taking Up Too Much Memory? 35
5.3 How Exactly are the Weights Created? . 36
5.4 How Do I Create Observation Names? . 36
5.5 How Can I See Outcomes of Matched Pairs? 37
5.6 How Do I Ensure Replicability As MatchIt Versions Develop? 37
5.7 How Do I Use My Own Distance Measure with MatchIt ? 37
5.8 What Do I Do about Missing Data? . 38
5.9 Why Preprocessing? . 38

6 What’s New? 39

2

Chapter 1

Introduction

1.1 What MatchIt Does

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving
parametric statistical models and reducing model dependence by preprocessing data with
semi-parametric and non-parametric matching methods. After appropriately preprocessing
with MatchIt, researchers can use whatever parametric model and software they would have
used without MatchIt, without other modification, and produce inferences that are more
robust and less sensitive to modeling assumptions. (In addition, you may wish to use Zelig
(http://gking.harvard.edu/zelig/; Imai et al. 2006 for subsequent parametric analyses,
as it is designed to be convenient in analyzing MatchIt data sets.) MatchIt reduces the
dependence of causal inferences on commonly made, but hard-to-justify, statistical modeling
assumptions via the largest range of sophisticated matching methods of any software we know
of. The program includes most existing approaches to matching and even enables users to
access methods implemented in other programs through its single, unified, and easy-to-use
interface. In addition, we have written MatchIt so that adding new matching methods to
the software is as easy for anyone with the inclination as it is for us.

1.2 Software Requirements

MatchIt works in conjunction with the R programming language and statistical software,
and will run on any platform where R is installed (Windows, Unix, or Mac OS X). R is avail-
able free for download at the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org/. MatchIt has been tested on the most recent version of R. A good way to learn
R, if you don’t know it already, is to learn Zelig (available at http://gking.harvard.edu/zelig)
which includes a self-contained introduction to R and can be used to analyze the matched
data after running MatchIt.

3

1.3 Installing MatchIt

To install MatchIt for all platforms, type at the R command prompt,

> install.packages("MatchIt")

and MatchIt will install itself onto your system automatically. (During the installation
process you may either decide to keep or discard the installation files, which will not affect
the way MatchIt runs.)

1.4 Loading MatchIt

You need to install MatchIt only once, but you must load it prior to each use. You can do
this at the R prompt:

> library(MatchIt)

Alternatively, you can specify R to load MatchIt automatically at launch by editing the
Rprofile file located in the R program subdirectory, e.g. C:/R/rw2011/etc/, for Windows
systems or the .Rprofile file located in the home directory for Unix/Linux and Mac OS X
systems, and adding this line:

options(defaultPackages = c(getOption("defaultPackages"), "MatchIt"))

For this change to take effect, you need to restart R.

1.5 Updating MatchIt

We recommend that you periodically update MatchIt at the R prompt by typing:

> update.packages()

> library(MatchIt)

which will update all the libraries including MatchIt and load the new version of MatchIt.

4

Chapter 2

Statistical Overview

MatchIt is designed for causal inference with a dichotomous treatment variable and a
set of pretreatment control variables. Any number or type of dependent variables can be
used. (If you are interested in the causal effect of more than one variable in your data set,
run MatchIt separately for each one; it is unlikely in any event that any one parametric
model will produce valid causal inferences for more than one treatment variable at a time.)
MatchIt can be used for other types of causal variables by dichotomizing them, perhaps
in multiple ways (see also Imai and van Dyk 2004). MatchIt works for experimental data,
but is usually used for observational studies where the treatment variable is not randomly
assigned by the investigator, or the random assignment goes awry.

We adopt the same notation as in Ho, Imai, King, and Stuart (2007). Unless otherwise
noted, let i index the n units in the data set, n1 denote the number of treated units, n0

denote the number of control units (such that n = n0 + n1), and xi indicate a vector of
pretreatment (or control) variables for unit i. Let ti = 1 when unit i is assigned treatment,
and ti = 0 when unit i is assigned control. (The labels “treatment” and “control” and values
1 and 0 respectively are arbitrary and can be switched for convenience, except that some
methods of matching are keyed to the definition of the treated group.) Denote yi(1) as the
potential outcome of unit i under treatment — the value the outcome variable would take
if ti were equal to 1, whether or not ti in fact is 0 or 1 – and yi(0) the potential outcome
of unit i under control — the value the outcome variable would take if ti were equal to 0,
regardless of its value in fact. The variables yi(1) and yi(0) are jointly unobservable, and for
each i, we observe one yi = tiyi(1) + (1− ti)yi(0), and not the other.

Also denote a fixed vector of exogenous, pretreatment measured confounders as Xi. These
variables are defined in the hope or under the assumption that conditioning on them ap-
propriately will make inferences ignorable. Measures of balance should be computed with
respect to all of X, even if some methods of matching only use some components.

5

2.1 Preprocessing via Matching

If ti and Xi were independent, we would not need to control for Xi, and any parametric
analysis would effectively reduce to a difference in means of Y for the treated and control
groups. The goal of matching is to preprocess the data prior to the parametric analysis so
that the actual relationship between ti and Xi is eliminated or reduced without introducing
bias and or increasing inefficiency too much.

When matching we select, duplicate, or selectively drop observations from our data, and
we do so without inducing bias as long as we use a rule that is a function only of ti and Xi

and does not depend on the outcome variable Yi. Many methods that offer this preprocessing
are included here, including exact, subclassification, nearest neighbor, optimal, and genetic
matching. For many of these methods the propensity score–defined as the probability of
receiving the treatment given the covariates–is a key tool. In order to avoid changing the
quantity of interest, most MatchIt routines work by retaining all treated units and selecting
(or weighting) control units to include in the final data set; this enables one to estimate the
average treatment effect on the treated (the purpose of which is described in Section 2.3).

MatchIt implements and evaluates the choice of the rules for matching. Matching
sometimes increases efficiency by eliminating heterogeneity or deleting observations outside
of an area where a model can reasonably be used to extrapolate, but one needs to be careful
not to lose too many observations in matching or efficiency will drop more than the reduction
in bias that is achieved.

The simplest way to obtain good matches (as defined above) is to use one-to-one exact
matching, which pairs each treated unit with one control unit for which the values of Xi are
identical. However, with many covariates and finite numbers of potential matches, sufficient
exact matches often cannot be found. Indeed, many of the other methods implemented in
MatchIt attempt to balance the overall covariate distributions as much as possible, when
sufficient one-to-one exact matches are not available.

A key point in Ho, Imai, King, and Stuart (2007) is that matching methods by themselves
are not methods of estimation: Every use of matching in the literature involves an analysis
step following the matching procedure, but almost all analyses use a simple difference in
means. This procedure is appropriate only if exact matching was conducted. In almost all
other cases, some adjustment is required, and there is no reason to degrade your inferences
by using an inferior method of analysis such as a difference in means even when improving
your inferences via preprocessing. Thus, with MatchIt, you can improve your analyses in
two ways. MatchIt analyses are “doubly robust” in that if either the matching analysis or
the analysis model is correct (but not necessarily both) your inferences will be statistically
consistent. In practice, the modeling choices you make at the analysis stage will be much
less consequential if you match first.

6

2.2 Checking Balance

The goal of matching is to create a data set that looks closer to one that would result from
a perfectly blocked (and possibly randomized) experiment. When we get close, we break
the link between the treatment variable and the pretreatment controls, which makes the
parametric form of the analysis model less relevant or irrelevant entirely. To break this link,
we need the distribution of covariates to be the same within the matched treated and control
groups.

A crucial part of any matching procedure is, therefore, to assess how close the (empirical)
covariate distributions are in the two groups, which is known as “balance.” Because the
outcome variable is not used in the matching procedure, any number of matching methods
can be tried and evaluated, and the one matching procedure that leads to the best balance
can be chosen. MatchIt provides a number of ways to assess the balance of covariates after
matching, including numerical summaries such as the “mean Diff.” (difference in means)
or the difference in means divided by the treated group standard deviation, and summaries
based on quantile-quantile plots that compare the empirical distributions of each covariate.
The widely used procedure of doing t-tests of the difference in means is highly misleading
and should never be used to assess balance; see Imai et al. (2008).

These balance diagnostics should be performed on all variables in X, even if some are
excluded from one of the matching procedures.

2.3 Conducting Analyses after Matching

The most common way that parametric analyses are used to compute quantities of interest
(without matching) is by (statistically) holding constant some explanatory variables, chang-
ing others, and computing predicted or expected values and taking the difference or ratio,
all by using the parametric functional form. In the case of causal inference, this would mean
looking at the effect on the expected value of the outcome variable when changing T from 0
to 1, while holding constant the pretreatment control variables X at their means or medians.
This, and indeed any other appropriate analysis procedure, would be a perfectly reasonable
way to proceed with analysis after matching. If it is the chosen way to proceed, then either
treated or control units may be deleted during the matching stage, since the same parametric
structure is assumed to apply to all observations.

In other instances, researchers wish to reduce the assumptions inherent in their statistical
model and so want to allow for the possibility that their treatment effect to vary over
observations. In this situation, one popular quantity of interest used is the average treatment
effect on the treated (ATT). For example, for the treated group, the potential outcomes under
control, Yi(0), are missing, whereas the outcomes under treatment, Yi(1), are observed, and
the goal of the analysis is to impute the missing outcomes, Yi(0) for observations with Ti = 1.
We do this via simulation using a parametric statistical model such as regression, logit, or
others (as described below). Once those potential outcomes are imputed from the model, the

estimate of individual i’s treatment effect is Yi(1)− Ŷi(0) where Ŷi(0) is a predicted value of

7

the dependent variable for unit i under the counterfactual condition where Ti = 0. The in-
sample average treatment effect for the treated individuals can then be obtained by averaging
this difference over all observations i where in fact Ti = 1. Most MatchIt algorithms retain
all treated units, and choose some subset of or repeated units from the control group, so
that estimating the ATT is straightforward. If one chooses options that allow matching with
replacement, or any solution that has different numbers of controls (or treateds) within each
subclass or strata (such as full matching), then the parametric analysis following matching
must accomodate these procedures, such as by using fixed effects or weights, as appropriate.
(Similar procedures can also be used to estimate various other quantities of interest such
as the average treatment effect by computing it for all observations, but then one must
be aware that the quantity of interest may change during the matching procedure as some
control units may be dropped.)

The imputation from the model can be done in at least two ways. Recall that the model
is used to impute the value that the outcome variable would take among the treated units
if those treated units were actually controls. Thus, one reasonable approach would be to
fit a model to the matched data and create simulated predicted values of the dependent
variable for the treated units with Ti switched counterfactually from 1 to 0. An alternative
approach would be to fit a model without T by using only the outcomes of the matched
control units (i.e., using only observations where Ti = 0). Then, given this fitted model,
the missing outcomes Yi(0) are imputed for the matched treated units by using the values
of the explanatory variables for the treated units. The first approach will usually have
lower variance, since all observations are used, and the second may have less bias, since
no assumption of constant parameters across the models of the potential outcomes under
treatment and control is needed. See Ho, Imai, King, and Stuart (2007) for more details.

Other quantities of interest can also be computed at the parametric stage, following any
procedures you would have followed in the absence of matching. The advantage is that if
matching is done well your answers will be more robust to many small changes in parametric
specification.

8

Chapter 3

User’s Guide to MatchIt

3.1 Preprocessing via Matching

3.1.1 Quick Overview

The main command matchit() implements the matching procedures. A general syntax is:

> m.out <- matchit(treat ~ x1 + x2, data = mydata)

where treat is the dichotomous treatment variable, and x1 and x2 are pre-treatment co-
variates, all of which are contained in the data frame mydata. The dependent variable (or
variables) may be included in mydata for convenience but is never used by MatchIt or
included in the formula. This command creates the MatchIt object called m.out. Name
the output object to see a quick summary of the results:

> m.out

3.1.2 Examples

To run any of the examples below, you first must load the library and and data:

> library(MatchIt)

> data(lalonde)

Our example data set is a subset of the job training program analyzed in Lalonde (1986)
and Dehejia and Wahba (1999). MatchIt includes a subsample of the original data con-
sisting of the National Supported Work Demonstration (NSW) treated group and the com-
parison sample from the Population Survey of Income Dynamics (PSID).1 The variables in
this data set include participation in the job training program (treat, which is equal to 1
if participated in the program, and 0 otherwise), age (age), years of education (educ), race

1This data set, lalonde, was created using NSWRE74 TREATED.TXT and CPS3 CONTROLS.TXT
from http://www.columbia.edu/∼rd247/nswdata.

9

(black which is equal to 1 if black, and 0 otherwise; hispan which is equal to 1 if hispanic,
and 0 otherwise), marital status (married, which is equal to 1 if married, 0 otherwise), high
school degree (nodegree, which is equal to 1 if no degree, 0 otherwise), 1974 real earnings
(re74), 1975 real earnings (re75), and the main outcome variable, 1978 real earnings (re78).

3.1.2.1 Exact Matching

The simplest version of matching is exact. This technique matches each treated unit to all
possible control units with exactly the same values on all the covariates, forming subclasses
such that within each subclass all units (treatment and control) have the same covariate val-
ues. Exact matching is implemented in MatchIt using method = "exact". Exact matching
will be done on all covariates included on the right-hand side of the formula specified in the
MatchIt call. There are no additional options for exact matching. (Exact restrictions on a
subset of covariates can also be specified in nearest neighbor matching; see Section 3.1.2.3.)
The following example can be run by typing demo(exact) at the R prompt,

> m.out <- matchit(treat ~ educ + black + hispan, data = lalonde,

method = "exact")

3.1.2.2 Subclassification

When there are many covariates (or some covariates can take a large number of values),
finding sufficient exact matches will often be impossible. The goal of subclassification is to
form subclasses, such that in each the distribution (rather than the exact values) of covariates
for the treated and control groups are as similar as possible. Various subclassification schemes
exist, including the one based on a scalar distance measure such as the propensity score
estimated using the distance option (see Section 4.1.0.2.2). Subclassification is implemented
in MatchIt using method = "subclass".

The following example script can be run by typing demo(subclass) at the R prompt,

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "subclass")

The above syntax forms 6 subclasses, which is the default number of subclasses, based on a
distance measure (the propensity score) estimated using logistic regression. By default, each
subclass will have approximately the same number of treated units.

Subclassification may also be used in conjunction with nearest neighbor matching de-
scribed below, by leaving the default of method = "nearest" but adding the option subclass.
When you choose this option, MatchIt selects matches using nearest neighbor matching,
but after the nearest neighbor matches are chosen it places them into subclasses, and adds
a variable to the output object indicating subclass membership.

10

3.1.2.3 Nearest Neighbor Matching

Nearest neighbor matching selects the r (default=1) best control matches for each individual
in the treatment group (excluding those discarded using the discard option). Matching is
done using a distance measure specified by the distance option (default=logit). Matches
are chosen for each treated unit one at a time, with the order specified by the m.order

command (default=largest to smallest). At each matching step we choose the control unit
that is not yet matched but is closest to the treated unit on the distance measure.

Nearest neighbor matching is implemented in MatchIt using the method = "nearest"

option. The following example script can be run by typing demo(nearest):

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "nearest")

3.1.2.4 Optimal Matching

The default nearest neighbor matching method in MatchIt is “greedy” matching, where
the closest control match for each treated unit is chosen one at a time, without trying to
minimize a global distance measure. In contrast, “optimal” matching finds the matched
samples with the smallest average absolute distance across all the matched pairs. Gu and
Rosenbaum (1993) find that greedy and optimal matching approaches generally choose the
same sets of controls for the overall matched samples, but optimal matching does a better job
of minimizing the distance within each pair. In addition, optimal matching can be helpful
when there are not many appropriate control matches for the treated units.

Optimal matching is performed with MatchIt by setting method = "optimal", which
automatically loads an add-on package called optmatch (Hansen 2004). The following ex-
ample can also be run by typing demo(optimal) at the R prompt. We conduct 2:1 optimal
ratio matching based on the propensity score from the logistic regression.

> m.out <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

method = "optimal", ratio = 2)

3.1.2.5 Full Matching

Full matching is a particular type of subclassification that forms the subclasses in an optimal
way (Rosenbaum 2002; Hansen 2004). A fully matched sample is composed of matched sets,
where each matched set contains one treated unit and one or more controls (or one control
unit and one or more treated units). As with subclassification, the only units not placed
into a subclass will be those discarded (if a discard option is specified) because they are
outside the range of common support. Full matching is optimal in terms of minimizing a
weighted average of the estimated distance measure between each treated subject and each
control subject within each subclass.

Full matching can be performed with MatchIt by setting method = "full". Just as
with optimal matching, we use the optmatch package (Hansen 2004), which automatically

11

loads when needed. The following example with full matching (using the default propensity
score based on logistic regression) can also be run by typing demo(full) at the R prompt:

> m.out <- matchit(treat ~ age + educ + black + hispan + married +

nodegree + re74 + re75, data = lalonde, method = "full")

3.1.2.6 Genetic Matching

Genetic matching automates the process of finding a good matching solution (Diamond and
Sekhon 2005). The idea is to use a genetic search algorithm to find a set of weights for
each covariate such that the a version of optimal balance is achieved after matching. As
currently implemented, matching is done with replacement using the matching method of
Abadie and Imbens (2007) and balance is determined by two univariate tests, paired t-tests
for dichotomous variables and a Kolmogorov-Smirnov test for multinomial and continuous
variables, but these options can be changed.

Genetic matching can be performed with MatchIt by setting method = "genetic",
which automatically loads the Matching (?) package. The following example of genetic
matching (using the estimated propensity score based on logistic regression as one of the
covariates) can also be run by typing demo(genetic):

> m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree +

re74 + re75, data = lalonde, method = "genetic")

3.1.2.7 Coarsened Exact Matching

Coarsened Exact Matching (CEM) is a Monotonoic Imbalance Bounding (MIB) matching
method — which means that the balance between the treated and control groups is chosen by
the user ex ante rather than discovered through the usual laborious process of checking after
the fact and repeatedly reestimating, and so that adjusting the imbalance on one variable has
no effect on the maximum imbalance of any other. CEM also strictly bounds through ex ante
user choice both the degree of model dependence and the average treatment effect estimation
error, eliminates the need for a separate procedure to restrict data to common empirical
support, meets the congruence principle, is robust to measurement error, works well with
multiple imputation methods for missing data, and is extremely fast computationally even
with very large data sets. CEM also works well for multicategory treatments, determining
blocks in experimental designs, and evaluating extreme counterfactuals (?).

CEM can be performed with MatchIt by setting method = "cem", which automatically
loads the cem package. The following examples of CEM (with automatic coarsening) can
also be run by typing demo(cem):

m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree

+ re74 + re75, data = lalonde, method = "cem")

12

3.2 Checking Balance

3.2.1 Quick Overview

To check balance, use summary(m.out) for numerical summaries and plot(m.out) for graph-
ical summaries.

3.2.2 Details

3.2.2.1 The summary() Command

The summary() command gives measures of the balance between the treated and control
groups in the full (original) data set, and then in the matched data set. If the matching
worked well, the measures of balance should be smaller in the matched data set (smaller
values of the measures indicate better balance).

The summary() output for subclassification is the same as that for other types of match-
ing, except that the balance statistics are shown separately for each subclass, and the overall
balance in the matched samples is calculated by aggregating across the subclasses, where
each subclass is weighted by the number of units in the subclass. For exact matching, the
covariate values within each subclass are guaranteed to be the same, and so the measures of
balance are not output for exact matching; only the sample sizes in each subclass are shown.

• Balance statistics: The statistics the summary() command provides include means,
the original control group standard deviation (where applicable), mean differences,
standardized mean differences, and (median, mean and maximum) Quantile-Quantile
(Q-Q) plot differences. In addition, the summary() command will report (a) the
matched call, (b) how many units were matched, unmatched, or discarded due to
the discard option (described below), and (c) the percent improvement in balance for
each of the balance measures, defined as 100((|a| − |b|)/|a|), where a is the balance
before and b is the balance after matching. For each set of units (original and matched
data sets, with weights used as appropriate in the matched data sets), the following
statistics are provided:

1. “Means Treated” and “Means Control” show the weighted means in the treated
and control groups

2. “SD Control” is the standard deviation calculated in the control group (where
applicable)

3. “Mean Diff” is the difference in means between the groups

4. The final three columns of the summary output give summary statistics of a
Q-Q plot (see below for more information on these plots). Those columns give
the median, mean, and maximum distance between the two empirical quantile
functions (treated and control groups). Values greater than 0 indicate deviations
between the groups in some part of the empirical distributions. The plots of the

13

two empirical quantile functions themselves, described below, can provide further
insight into which part of the covariate distribution has differences between the
two groups.

• Additional options: Three options to the summary() command can also help with
assessing balance and respecifying the propensity score model, as necessary. First, the
interactions = TRUE option with summary() shows the balance of all squares and
interactions of the covariates used in the matching procedure. Large differences in
higher order interactions usually are a good indication that the propensity score model
(the distance measure) needs to be respecified. Similarly, the addlvariables option
with summary() will provide balance measures on additional variables not included in
the original matching procedure. If a variable (or interaction of variables) not included
in the original propensity score model has large imbalances in the matched groups, in-
cluding that variable in the next model specification may improve the resulting balance
on that variable. Because the outcome variable is not used in the matching procedure,
a variety of matching methods can be tried, and the one that leads to the best resulting
balance chosen. Finally, the standardize = TRUE option will print out standardized
versions of the balance measures, where the mean difference is standardized (divided)
by the standard deviation in the original treated group.

3.2.2.2 The plot() Command

We can also examine the balance graphically using the plot() command, which provides
three types of plots: jitter plots of the distance measure, Q-Q plots of each covariate, and
histograms of the distance measure. For subclassification, separate Q-Q plots can be printed
for each subclass. The jitter plot for subclassification is the same as that for other types of
matching, with the addition of vertical lines indicating the subclass cut-points. With the
histogram option, 4 histograms are provided: the original treated and control groups and
the matched treated and control groups. For the Q-Q plots and the histograms, the weights
that result after matching are used to create the plots.

Three examples of the output from the plot() command are shown in Figure 3.1. If
the empirical distributions are the same in the treated and control groups, the points in the
Q-Q plots would all lie on the 45 degree line (lower left panel of Figure 3.1). Deviations
from the 45 degree line indicate differences in the empirical distribution. The jitter plot (top
panel) shows the overall distribution of propensity scores in the treated and control groups.
In the jitter plot, which can be created by setting type = "jitter", the size of each point
is proportional to the weight given to that unit. Observation names can be interactively
identified by clicking the first mouse button near the units. The histograms (lower right
panel) can be plotted by setting type = "hist".

14

Distribution of Propensity Scores

Propensity Score
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Unmatched Treatment Units

Matched Treatment Units

Matched Control Units

Unmatched Control Units

Index

QQ Plots
All Matched

Control Units

T
re

at
ed

 U
ni

ts

I(re74/1000)

0
10

20
30

Index

I(re75/1000)

0
5

15
25

educ

0
5

10
15

Raw Treated

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8

Matched Treated

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8
12

Raw Control

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4

Matched Control

Propensity Score

D
en

si
ty

0.0 0.2 0.4 0.6

0
4

8

Figure 3.1: Examples of the three types of output from the plot command resulting from
matching on the /textttlalonde data set based on real earnings in 1974 (re74) divided by
1000, real earnings in 1975 (re75) divided by 1000, years of education (educ), Hispanic
(hispan) and marital status (married). Observations in both the treated and the control
groups outside the support of the distance measure were discarded. The upper plot shows
the jitter plot of the distance measure. The lower left plot shows the QQ plots for the
first three covariates (I(re74/1000), I(re75/1000), educ). The lower right plot shows the
histograms of the density of propensity scores for observations before and after matching.

15

3.3 Conducting Analyses after Matching

Any software package may be used for parametric analysis following MatchIt. This in-
cludes any of the relevant R packages, or other statistical software by exporting the resulting
matched data sets using R commands such as write.csv() and write.table() for ASCII
files or write.dta() in the foreign package for a STATA binary file.

When variable numbers of treated and control units have been matched to each other
(e.g., through exact matching, full matching, or k:1 matching with replacement), the weights
created by MatchIt should be used (e.g., in a weighted regression) to ensure that the matched
treated and control groups are weighted up to be similar. Users should also remember that
the weights created by MatchIt estimate the average treatment effect on the treated, with
the control units weighted to resemble the treated units. See below for more detail on the
weights. With subclassification, estimates should be obtained within each subclass and then
aggregated across subclasses. When it is not possible to calculate an effect within each
subclass, again the weights can be used to weight the matched units.

In this section, we show how to use Zelig with MatchIt. Zelig (Imai et al. 2006) is an
R package that implements a large variety of statistical models (using numerous existing R
packages) with a single easy-to-use interface, gives easily interpretable results by simulating
quantities of interest, provides numerical and graphical summaries, and is easily extensible
to include new methods.

3.3.1 Quick Overview

The general syntax is as follows. First, we use match.data() to create the matched data from
the MatchIt output object (m.out) by excluding unmatched units from the original data,
and including information produced by the particular matching procedure (i.e., primarily
a new data set, but also information that may result such as weights, subclasses, or the
distance measure).

> m.data <- match.data(m.out)

where m.data is the resulting matched data. Zelig analyses all use three commands — zelig,
setx, and sim. For example, the basic statistical analysis is performed first:

> z.out <- zelig(Y ~ treat + x1 + x2, model = mymodel, data = m.data)

where Y is the outcome variable, mymodel is the selected model, and z.out is the output
object from zelig. This output object includes estimated coefficients, standard errors, and
other typical outputs from your chosen statistical model. Its contents can be examined via
summary(z.out) or plot(z.out), but the idea of Zelig is that these statistical results are
typically only intermediate quantities needed to compute your ultimate quantities of interest,
which in the case of matching are usually causal inferences. To get these causal quantities,
we use Zelig’s other two commands. Thus, we can set the explanatory variables at their
means (the default) and change the treatment variable from a 0 to a 1:

16

> x.out <- setx(z.out, treat=0)

> x1.out <- setx(z.out, treat=1)

and finally compute the resulting estimates of the causal effects and examine a summary:

> s.out <- sim(z.out, x = x.out, x1 = x1.out)

> summary(s.out)

3.3.2 Examples

We now give four examples using the Lalonde data. They are meant to be read sequentially.
You can run these example commands by typing demo(analysis). Although we use the
linear least squares model in these examples, a wide range of other models are available
in Zelig (for the list of supported models, see http://gking.harvard.edu/zelig/docs/

Models_Zelig_Can.html.
To load the Zelig package after installing it, type

> library(Zelig)

Model-Based Estimates In our first example, we conduct a standard parametric analysis
and compute quantities of interest in the most common way. We begin with nearest
neighbor matching with a logistic regression-based propensity score, discarding control
units outside the convex hull of the treated units (King and Zeng 2006, 2007):

> m.out <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, method = "nearest", discard

= "hull.control", data = lalonde)

Then we check balance using the summary and plot procedures (which we don’t show
here). When the best balance is achieved, we run the parametric analysis:

> z.out <- zelig(re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out),

model = "ls")

and then set the explanatory variables at their means (the default) and change the
treatment variable from a 0 to a 1:

> x.out <- setx(z.out, treat=0)

> x1.out <- setx(z.out, treat=1)

and finally compute the result and examine a summary:

> s.out <- sim(z.out, x = x.out, x1 = x1.out)

> summary(s.out)

17

Average Treatment Effect on the Treated We illustrate now how to estimate the av-
erage treatment effect on the treated in a way that is quite robust. We do this by
estimating the coefficients in the control group alone.

We begin by conducting nearest neighbor matching with a logistic regression-based
propensity score:

> m.out1 <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, method = "nearest", data = lalonde)

Then we check balance using the summary and plot procedures (which we don’t show
here). We reestimate the matching procedure until we achieve the best balance possible.
(The running examples here are meant merely to illustrate, not to suggest that we’ve
achieved the best balance.) Then we go to Zelig, and in this case choose to fit a linear
least squares model to the control group only:

> z.out1 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out1, "control"),

model = "ls")

where the "control" option in match.data() extracts only the matched control units
and ls specifies least squares regression. In a smaller data set, this example should
probably be changed to include all the data in this estimation (using data = match.data(m.out1)

for the data) and by including the treatment indicator (which is excluded in the exam-
ple since its a constant in the control group.) Next, we use the coefficients estimated in
this way from the control group, and combine them with the values of the covariates set
to the values of the treated units. We do this by choosing conditional prediction (which
means use the observed values) in setx(). The sim() command does the imputation.

> x.out1 <- setx(z.out1, data = match.data(m.out1, "treat"), cond = TRUE)

> s.out1 <- sim(z.out1, x = x.out1)

Finally, we obtain a summary of the results by

> summary(s.out1)

Average Treatment Effect (Overall) To estimate the average treatment effect, we con-
tinue with the previous example and fit the linear model to the treatment group:

> z.out2 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out1, "treat"),

model = "ls")

18

We then conduct the same simulation procedure in order to impute the counterfactual
outcome for the control group,

> x.out2 <- setx(z.out2, data = match.data(m.out1, "control"), cond = TRUE)

> s.out2 <- sim(z.out2, x = x.out2)

In this calculation, Zelig is computing the difference between observed and the expected
values. This means that the treatment effect for the control units is the effect of
control (observed control outcome minus the imputed outcome under treatment from
the model). Hence, to combine treatment effects just reverse the signs of the estimated
treatment effect of controls.

> ate.all <- c(s.out1qiatt.ev, -s.out2qiatt.ev)

The point estimate, its standard error, and the 95% confidence interval is given by

> mean(ate.all)

> sd(ate.all)

> quantile(ate.all, c(0.025, 0.975))

Subclassification In subclassification, the average treatment effect estimates are obtained
separately for each subclass, and then aggregated for an overall estimate. Estimat-
ing the treatment effects separately for each subclass, and then aggregating across
subclasses, can increase the robustness of the ultimate results since the parametric
analysis within each subclass requires only local rather than global assumptions. How-
ever, fewer observations are obviously available within each subclass, and so this option
is normally chosen for larger data sets.

We begin this example by conducting subclassification with four subclasses,

> m.out2 <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde,

method = "subclass", subclass = 4)

When balance is as good as we can get it, we then fit a linear regression within each
subclass by controlling for the estimated propensity score (called distance) and other
covariates. In most software, this would involve running four separate regressions and
then combining the results. In Zelig, however, all we need to do is to use the by option:

> z.out3 <- zelig(re78 ~ re74 + re75 + distance,

data = match.data(m.out2, "control"),

model = "ls", by = "subclass")

19

The same set of commands as in the first example are used to do the imputation of
the counterfactual outcomes for the treated units:

> x.out3 <- setx(z.out3, data = match.data(m.out2, "treat"), fn = NULL,

cond = TRUE)

> s.out3 <- sim(z.out3, x = x.out3)

> summary(s.out3)

It is also possible to get the summary result for each subclass. For example, the
following command summarizes the result for the second subclass.

> summary(s.out3, subset = 2)

How Adjustment After Exact Matching Has No Effect Regression adjustment after
exact one-to-one exact matching gives the identical answer as a simple, unadjusted
difference in means. General exact matching, as implemented in MatchIt, allows one-
to-many matches, so to see the same result we must weight when adjusting. In other
words: weighted regression adjustment after general exact matching gives the identical
answer as a simple, unadjusted weighted difference in means. For example:

> m.out <- matchit(treat ~ educ + black + hispan, data = lalonde,

method = "exact")

> m.data <- match.data(m.out)

> ## weighted diff in means

> weighted.mean(mdata$re78[mdata$treat == 1], mdata$weights[mdata$treat==1])

- weighted.mean(mdata$re78[mdata$treat==0], mdata$weights[mdata$treat==0])

[1] 807

> ## weighted least squares without covariates

> zelig(re78 ~ treat, data = m.data, model = "ls", weights = "weights")

Call:

zelig(formula = re78 ~ treat, model = "ls", data = m.data, weights =

"weights")

Coefficients:

(Intercept) treat

5524 807

> ## weighted least squares with covariates

> zelig(re78 ~ treat + black + hispan + educ, data = m.data, model = "ls",

weights = "weights")

Call:

20

zelig(formula = re78 ~ treat + black + hispan + educ, model = "ls",

data = m.data, weights = "weights")

Coefficients:

(Intercept) treat black hispan educ

314 807 -1882 258 657

21

Chapter 4

Reference Manual

4.1 matchit(): Implementation of Matching Methods

Use matchit() to implement a variety of matching procedures including exact matching,
nearest neighbor matching, subclassification, optimal matching, genetic matching, and full
matching. The output of matchit() can be analyzed via any standard R package, by
exporting the data for use in another program, or most simply via Zelig in R.

4.1.0.1 Syntax

> m.out <- matchit(formula, data, method = "nearest", verbose = FALSE, ...)

4.1.0.2 Arguments

4.1.0.2.1 Arguments for All Matching Methods

• formula: formula used to calculate the distance measure for matching (e.g., the propen-
sity score model). It takes the usual syntax of R formulas, treat ~ x1 + x2, where
treat is a binary treatment indicator, and x1 and x2 are the pre-treatment covariates.
Both the treatment indicator and pre-treatment covariates must be contained in the
same data frame, which is specified as data (see below). All of the usual R syntax for
formulas work here. For example, x1:x2 represents the first order interaction term be-
tween x1 and x2, and I(x1 ^ 2) represents the square term of x1. See help(formula)
for details.

• data: the data frame containing the variables called in formula.

• method: the matching method (default = "nearest", nearest neighbor matching).
Currently, "exact" (exact matching), "full" (full matching), "nearest" (nearest
neighbor matching), "optimal" (optimal matching), "subclass" (subclassification),
"genetic" (genetic matching), and "cem" (coarsened exact matching) are available.
Note that within each of these matching methods, MatchIt offers a variety of options.
See below for more details.

22

• verbose: a logical value indicating whether to print the status of the matching algo-
rithm (default = FALSE).

4.1.0.2.2 Additional Arguments for Specification of Distance Measures The
following arguments specify distance measures that are used for matching methods. These
arguments apply to all matching methods except exact matching.

• distance: the method used to estimate the distance measure (default = "logit",
logistic regression) or a numerical vector of user’s own distance measure. Before using
any of these techniques, it is best to understand the theoretical groundings of these
techniques and to evaluate the results. Most of these methods (such as logistic or probit
regression) define the distance by first estimating the propensity score, defined as the
probability of receiving treatment, conditional on the covariates. Available methods
include:

– "mahalanobis": the Mahalanobis distance measure.

– binomial generalized linear models with one of the following link functions:

∗ "logit": logistic link

∗ "linear.logit": logistic link with linear propensity score1

∗ "probit": probit link

∗ "linear.probit": probit link with linear propensity score

∗ "cloglog": complementary log-log link

∗ "linear.cloglog": complementary log-log link with linear propensity score

∗ "log": log link

∗ "linear.log": log link with linear propensity score

∗ "cauchit" Cauchy CDF link

∗ "linear.cauchit" Cauchy CDF link with linear propensity score

– Choose one of the following generalized additive models (see help(gam) for more
options).

∗ "GAMlogit": logistic link

∗ "GAMlinear.logit": logistic link with linear propensity score

∗ "GAMprobit": probit link

∗ "GAMlinear.probit": probit link with linear propensity score

∗ "GAMcloglog": complementary log-log link

∗ "GAMlinear.cloglog": complementary log-log link with linear propensity
score

∗ "GAMlog": log link

∗ "GAMlinear.log": log link with linear propensity score,

1The linear propensity scores are obtained by transforming back onto a linear scale.

23

∗ "GAMcauchit": Cauchy CDF link

∗ "GAMlinear.cauchit": Cauchy CDF link with linear propensity score

– "nnet": neural network model. See help(nnet) for more options.

– "rpart": classification trees. See help(rpart) for more options.

• distance.options: optional arguments for estimating the distance measure. The
input to this argument should be a list. For example, if the distance measure is es-
timated with a logistic regression, users can increase the maximum IWLS iterations
by distance.options = list(maxit = 5000). Find additional options for general
linear models using help(glm) or help(family), for general additive models us-
ing help(gam), for neutral network models help(nnet), and for classification trees
help(rpart).

• discard: specifies whether to discard units that fall outside some measure of support
of the distance measure (default = "none", discard no units). Discarding units may
change the quantity of interest being estimated by changing the observations left in
the analysis. Enter a logical vector indicating which unit should be discarded or choose
from the following options:

– "none": no units will be discarded before matching. Use this option when the
units to be matched are substantially similar, such as in the case of matching
treatment and control units from a field experiment that was close to (but not
fully) randomized (e.g., Imai 2005), when caliper matching will restrict the donor
pool, or when you do not wish to change the quantity of interest and the para-
metric methods to be used post-matching can be trusted to extrapolate.

– "hull.both": all units that are not within the convex hull will be discarded. See
King and Zeng (2006, 2007) for information about the convex hull in this context
and as a measure of model dependence.

– "both": all units (treated and control) that are outside the support of the distance
measure will be discarded.

– "hull.control": only control units that are not within the convex hull of the
treated units will be discarded.

– "control": only control units outside the support of the distance measure of
the treated units will be discarded. Use this option when the average treatment
effect on the treated is of most interest and when you are unwilling to discard
non-overlapping treatment units (which would change the quantity of interest).

– "hull.treat": only treated units that are not within the convex hull of the
control units will be discarded.

– "treat": only treated units outside the support of the distance measure of the
control units will be discarded. Use this option when the average treatment effect
on the control units is of most interest and when unwilling to discard control
units.

24

• reestimate: If FALSE (default), the model for the distance measure will not be re-
estimated after units are discarded. The input must be a logical value. Re-estimation
may be desirable for efficiency reasons, especially if many units were discarded and so
the post-discard samples are quite different from the original samples.

4.1.0.2.3 Additional Arguments for Subclassification

• sub.by: criteria for subclassification. Choose from: "treat" (default), the number of
treatment units; "control", the number of control units; or "all", the total number of
units. Changing the default will likely also signal a change in your quantity of interest
from the average treatment effect on the treated to other quantities.

• subclass: either a scalar specifying the number of subclasses, or a vector of probabil-
ities bounded between 0 and 1, which create quantiles of the distance measure using
the units in the group specified by sub.by (default = subclass = 6).

4.1.0.2.4 Additional Arguments for Nearest Neighbor Matching

• m.order: the order in which to match treatment units with control units.

– "largest" (default): matches from the largest value of the distance measure to
the smallest.

– "smallest": matches from the smallest value of the distance measure to the
largest.

– "random": matches in random order.

• replace: logical value indicating whether each control unit can be matched to more
than one treated unit (default = replace = FALSE, each control unit is used at most
once – i.e., sampling without replacement). For matching with replacement, use
replace = TRUE. After matching with replacement, the weights can be used to re-
flect the frequency with which each control unit was matched.

• ratio: the number of control units to match to each treated unit (default = 1). If
matching is done without replacement and there are fewer control units than ratio

times the number of eligible treated units (i.e., there are not enough control units for
the specified method), then the higher ratios will have NA in place of the matching unit
number in match.matrix.

• exact: variables on which to perform exact matching within the nearest neighbor
matching (default = NULL, no exact matching). If exact is specified, only matches
that exactly match on the covariates in exact will be allowed. Within the matches
that match on the variables in exact, the match with the closest distance measure
will be chosen. exact should be entered as a vector of variable names (e.g., exact =

c("X1", "X2")).

25

• caliper: the number of standard deviations of the distance measure within which to
draw control units (default = 0, no caliper matching). If a caliper is specified, a control
unit within the caliper for a treated unit is randomly selected as the match for that
treated unit. If caliper != 0, there are two additional options:

– calclosest: whether to take the nearest available match if no matches are avail-
able within the caliper (default = FALSE).

– mahvars: variables on which to perform Mahalanobis-metric matching within each
caliper (default = NULL). Variables should be entered as a vector of variable names
(e.g., mahvars = c("X1", "X2")). If mahvars is specified without caliper, the
caliper is set to 0.25.

• subclass and sub.by: See the options for subclassification for more details on these
options. If a subclass is specified within method = "nearest", the matched units
will be placed into subclasses after the nearest neighbor matching is completed.

4.1.0.2.5 Additional Arguments for Optimal Matching

• ratio: the number of control units to be matched to each treatment unit (default =
1).

• ...: additional inputs that can be passed to the fullmatch() function in the optmatch
package. See help(fullmatch) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html
for details.

4.1.0.2.6 Additional Arguments for Full Matching See help(fullmatch) (part of
this information is copied below) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html for
details.

• min.controls: The minimum ratio of controls to treatments that is to be permitted
within a matched set: should be nonnegative and finite. If min.controls is not a
whole number, the reciprocal of a whole number, or zero, then it is rounded down to
the nearest whole number or reciprocal of a whole number.

• max.controls: The maximum ratio of controls to treatments that is to be permitted
within a matched set: should be positive and numeric. If max.controls is not a whole
number, the reciprocal of a whole number, or Inf, then it is rounded up to the nearest
whole number or reciprocal of a whole number.

• omit.fraction: Optionally, specify what fraction of controls or treated subjects are to
be rejected. If omit.fraction is a positive fraction less than one, then fullmatch()

leaves up to that fraction of the control reservoir unmatched. If omit.fraction is a
negative number greater than −1, then fullmatch() leaves up to |omit.fraction| of
the treated group unmatched. Positive values are only accepted if max.controls >= 1;

26

negative values, only if min.controls <= 1. If omit.fraction is not specified, then
only those treated and control subjects without permissible matches among the control
and treated subjects, respectively, are omitted.

• ...: Additional inputs that can be passed to the fullmatch() function in the optmatch
package.

4.1.0.2.7 Additional Arguments for Genetic Matching The available options are
listed below.

• ratio: the number of control units to be matched to each treatment unit (default =
1).

• ...: additional minor inputs that can be passed to the GenMatch() function in the
Matching package. See help(GenMatch) or
http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html for details.

4.1.0.2.8 Additional Arguments for Coarsened Exact Matching The available
options are listed here:

• cutpoints named list each describing the cutpoints for the variables. Each list element
is either a vector of cutpoints, a number of cutpoints, a method for automatic bin
contruction.

• k2k return k-to-k matching?

• verbose controls level of verbosity

• dist user defined distance function

• ...: additional minor inputs that can be passed to the cem() function in the cem

package. See help(cem) or http://gking.harvard.edu/cem for details.

4.1.0.3 Output Values

Regardless of the type of matching performed, the matchit output object contains the
following elements:2

• call: the original matchit() call.

• formula: the formula used to specify the model for estimating the distance measure.

• model: the output of the model used to estimate the distance measure. summary(m.out$model)
will give the summary of the model where m.out is the output object from matchit().

2When inapplicable or unnecessary, these elements may equal NULL. For example, when exact matching,
match.matrix = NULL.

27

• match.matrix: an n1× ratio matrix where:

– the row names represent the names of the treatment units (which match the row
names of the data frame specified in data).

– each column stores the name(s) of the control unit(s) matched to the treatment
unit of that row. For example, when the ratio input for nearest neighbor or
optimal matching is specified as 3, the three columns of match.matrix represent
the three control units matched to one treatment unit).

– NA indicates that the treatment unit was not matched.

• discarded: a vector of length n that displays whether the units were ineligible for
matching due to common support restrictions. It equals TRUE if unit i was discarded,
and it is set to FALSE otherwise.

• distance: a vector of length n with the estimated distance measure for each unit.

• weights: a vector of length n with the weights assigned to each unit in the matching
process. Unmatched units have weights equal to 0. Matched treated units have weight
1. Each matched control unit has weight proportional to the number of treatment units
to which it was matched, and the sum of the control weights is equal to the number of
uniquely matched control units.

• subclass: the subclass index in an ordinal scale from 1 to the total number of sub-
classes as specified in subclass (or the total number of subclasses from full or exact
matching). Unmatched units have NA.

• q.cut: the subclass cut-points that classify the distance measure.

• treat: the treatment indicator from data (the left-hand side of formula).

• X: the covariates used for estimating the distance measure (the right-hand side of
formula). When applicable, X is augmented by covariates contained in mahvars and
exact.

• nn: A basic summary table of matched data (e.g., the number of matched units)

4.2 summary(): Numerical Summaries of Balance

The summary() command returns numerical summaries of balance diagnostics.

4.2.0.4 Syntax

summary(object, interactions = FALSE, addlvariables = NULL, standardize = FALSE, ...)

28

4.2.0.5 Arguments

• object: the output from matchit().

• interactions: an option to calculate summary statistics in sum.all and sum.matched

for all covariates, their squares, and two-way interactions when interactions = TRUE

and only the covariates themselves when interactions = FALSE, (DEFAULT = FALSE).

• addlvariables: additional variables on which to calculate the diagnostic statistics (in
addition to the variables included in the matching procedure) (DEFAULT = NULL).
addlvariables: a data frame containing additional variables whose balance is exam-
ined. The data should come with the same number of units and units in the same
order as in the data set used for matchit().

• standardize: a logical variable indicating whether to standardize balance measures,
i.e., whether the difference in means should be divided by the standard deviation in
the original treated group. (DEFAULT = FALSE)

4.2.0.6 Output Values

The output from the summary() command includes the following elements, when applicable:

• The original assignment model call.

• sum.all: a data frame that contains variable names and interactions down the row
names, and summary statistics on all observations in each of the columns. The columns
in sum.all contain:

– means of all covariates X for treated and control units, where Means Treated=
µX|T=1 = 1

n1

∑
T=1 Xi and Means Control= µX|T=0 = 1

n0

∑
T=0 Xi,

– standard deviation in the control group for all covariates X, where applicable,

sx|T=0 =

√∑
i∈{i:Ti=0}(Xi − µX|T=0)2

n0 − 1
.

– balance statistics of the original data (before matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,
respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µX|T=1−µX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

29

• sum.matched: a data frame which contains variable names down the row names, and
summary statistics on only the matched observations in each of the columns. Specifi-
cally, the columns in sum.matched contain the following elements:

– weighted means for matched treatment units and matched control units of all co-
variates X and their interactions, where Means Treated= µwX|T=1 = 1

n1

∑
T=1 wiXi

and Means Control= µwX|T=0 = 1
n0

∑
T=0 wiXi,

– weighted standard deviations in the matched control group for all covariates X,

where applicable, where SD = swX =
√

1
n

∑
i(wiXi −X

∗
)2, where X

∗
is the

weighted mean of X in the matched control group, and

– balance statistics of the matched data (after matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,
respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µwX|T=1−µwX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

where w represents the vector of weights.

• reduction: the percent reduction in the difference in means achieved in each of the
balance measures in sum.all and sum.matched, defined as 100(|a| − |b|)/|a|, where a
was the value of the balance measure before matching and b is the value of the balance
measure after matching.

• nn: the sample sizes in the full and matched samples and the number of discarded
units, by treatment and control.

• q.table: an array that contains the same information as sum.matched by subclass.

• qn: the sample sizes in the full and matched samples and the number of discarded
units, by subclass and by treatment and control.

• match.matrix: the same object is contained in the output of matchit().

4.3 plot(): Graphical Summaries of Balance

4.3.1 Plot options for the matchit object

The plot() command allows you to check the distributions of propensity scores and co-
variates in the assignment model, squares, and interactions, and within each subclasses if

30

specified.

4.3.1.1 Syntax

> plot(m.out, discrete.cutoff = 5, type = "QQ",

numdraws = 5000, interactive = TRUE, which.xs = NULL, ...)

4.3.1.2 Arguments

• type: type of output graph. type = "QQ" (default) outputs empirical quantile-quantile
plots of each covariate to check balance of marginal distributions. Alternatively, type
= "jitter" outputs jitter plots of the propensity score for treated and control units.
Finally, type="hist" outputs histograms of the propensity score in the original treated
and control groups and weighted histograms of the propensity score in the matched
treated and control groups.

• discrete.cutoff: For quantile-quantile plots, discrete covariates that take 5 or fewer
values are jittered for visibility. This may be changed by setting this argument to any
other positive integer.

• interactive: If TRUE (default), users can identify individual units by clicking on the
graph with the left mouse button, and (when applicable) choose subclasses to plot.

• which.xs: For quantitle-quantile plots, specifies particular covariate names in a char-
acter vector to plot only a subset of the covariates.

• subclass: If interactive = FALSE, users can specify which subclass to plot.

4.3.1.3 Output Values

• Empirical quantile-quantile plot: This graph plots covariate values that fall in (approx-
imately) the same quantile of treated and control distributions. Control unit quantile
values are plotted on the x-axis, and treated unit quantile values are plotted on the
y-axis. If values fall below the 45 degree line, control units generally take lower values
of the covariate. Data points that fall exactly on the 45 degree line indicate that the
marginal distributions are identical.

• Jitter plots: This graph plots jittered estimated propensity scores of treated and control
units. Dark diamonds indicate matched units and grey diamonds indicate unmatched
or discarded units. The area of the diamond is proportional to the weights. Vertical
lines are plotted if subclassification is used.

• Histograms: This graph plots histograms of the estimated propensity scores in the orig-
inal treated and control groups and weighted histograms of the estimated propensity
scores in the matched treated and control groups. Plots can be compared vertically to
quickly check the balance before and after matching.

31

4.3.2 Plot options for the matchit summary object

You can also send a matchit summary object to the plot() command, to obtain a summary
of the balance on each covariate before and after matching. The summary() object must
have been created using the option standardize=TRUE. The idea for this plot came from the
“twang” package by McCaffrey, Ridgeway, and Morral.

4.3.2.1 Syntax

> s.out <- summary(object, standardize=TRUE, ...)

> plot(s.out, ...)

4.3.2.2 Arguments

• interactive: If TRUE (default), users can identify individual variables by clicking on
the graph with the left mouse button.

4.3.2.3 Output Values

• Line plot of standardized differences in means before and after matching. Numbers
plotted are those output by the summary() command in the sum.all and sum.matched
objects.

4.4 match.data(): Extracting the Matched Data Set

4.4.1 Usage

To extract the matched data set for subsequent analyses from the output object (see Sec-
tion 3.3), we provide the function match.data(). This is used as follows:

> m.data <- match.data(object, group = "all", distance = "distance",

weights = "weights", subclass = "subclass")

The output of the function match.data() is the original data frame where additional in-
formation about matching (i.e., distance measure as well as resulting weights and subclasses)
is added, restricted to units that were matched.

4.4.2 Arguments

match.data() takes the following inputs:

1. object is the output object from matchit(). This is a required input.

32

2. group specifies for which matched group the user wants to extract the data. Available
options are "all" (all matched units), "treat" (matched units in the treatment group),
and "control" (matched units in the control group). The default is "all".

3. distance specifies the variable name used to store the distance measure. The default
is "distance".

4. weights specifies the variable name used to store the resulting weights from matching.
The default is "weights". See Section 5.3 for more details on the weights.

5. subclass specifies the variable name used to store the subclass indicator. The default
is "subclass".

4.4.3 Examples

Here, we present examples for using match.data(). Users can run these commands by
typing demo(match.data) at the R prompt. First, we load the Lalonde data,

> data(lalonde)

The next line performs nearest neighbor matching based on the estimated propensity
score from the logistic regression,

> m.out1 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "nearest", distance = "logit")

To obtain matched data, type the following command,

> m.data1 <- match.data(m.out1)

It is easy to summarize the resulting matched data,

> summary(m.data1)

To obtain matched data for the treatment or control group, specify the option group as
follows,

> m.data2 <- match.data(m.out1, group = "treat")

> summary(m.data2)

> m.data3 <- match.data(m.out1, group = "control")

> summary(m.data3)

We can also use the function to return unmatched data:

> unmatched.data <- lalonde[!row.names(lalonde)%in%row.names(match.data(m.out1)),]

33

We can also specify different names for the subclass indicator, the weight variable, and
the estimated distance measure. The following example first does a subclassification method,
obtains the matched data with specified names for those three variables, and then print out
the names of all variables in the resulting matched data.

> m.out2 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "subclass")

> m.data4 <- match.data(m.out2, subclass = "block", weights = "w",

+ distance = "pscore")

> names(m.data4)

34

Chapter 5

Frequently Asked Questions

5.1 How do I Cite this Work?

If you use MatchIt, please cite

Daniel Ho; Kosuke Imai; Gary King; and Elizabeth Stuart (2007), “Matching
as Nonparametric Preprocessing for Reducing Model Dependence in Para-
metric Causal Inference,” Political Analysis 15(3): 199-236, http://gking.
harvard.edu/files/abs/matchp-abs.shtml.

and

Daniel Ho; Kosuke Imai; Gary King; and Elizabeth Stuart (2007b) “Matchit:
Nonparametric Preprocessing for Parametric Causal Inference,” Journal of
Statistical Software, http://gking.harvard.edu/matchit/.

In addition, the convex.hull discard option is implemented via the WhatIf package
(King and Zeng 2006, 2007; Stoll et al. 2005). Generalized linear distance measures are
implemented via the stats package (Venables and Ripley 2002). Generalized additive dis-
tance measures are implemented via the mcgv package (Hastie and Tibshirani 1990). The
neural network distance measure is implemented via the nnet package (Ripley 1996). The
classification trees distance measure is implemented via the rpart package (Breiman et al.
1984). Full and optimal matching are implemented via the optmatch package (Hansen 2004).
Genetic matching is implemented via the Matching package (Diamond and Sekhon 2005).
Coarsened exact matching is implemented via the cem package (??).

5.2 What if My datasets Are Big and Are Taking Up

Too Much Memory?

matchit() does not save the data set in its output object, but it does save a matrix of the
covariates. match.data() will create a matched data set. One can eliminate the original

35

data set to save memory in R by rm(name), where name is the name of the data set, after
calling match.data().

5.3 How Exactly are the Weights Created?

Each type of matching method can be thought of as creating groups of units with at least one
treated unit and at least one control unit in each. In exact matching, subclassification, or full
matching, these groups are the subclasses formed, and the number of treated and control
units will vary quite a bit across subclasses. In nearest neighbor or optimal matching,
the groups are the pairs (or sets) of treated and control units matched. In 1:1 nearest
neighbor matching there will be one treated unit and one control unit in each group. In
2:1 nearest neighbor matching there will be one treated unit and two control units in each
group. Unmatched units receive a weight of 0. All matched treated units receive a weight
of 1. These weights are constructed to estimate the average treatment effect on the treated,
with the control group essentially weighted to look like the treated group.

The weights for matched control units are formed as follows:

1. Within each group, each control unit is given a preliminary weight of nti/nci, where
nti and nci are the number of treated and control units in group i, respectively.

2. If matching is done with replacement, each control unit’s weight is added up across
the groups in which it was matched.

3. The control group weights are scaled to sum to the number of uniquely matched control
units.

With subclassification, when the analysis is done separately within each subclass and
then aggregated up across the subclasses, these weights will generally not be used, but they
may be used for full matching or nearest neighbor matching if the number of control units
matched to each treated unit varies.

5.4 How Do I Create Observation Names?

Since the diagnostics often make use of the observation names of the data frame, you may
find it helpful to specify observation names for the data input. Use the row.names command
to achieve this. For example, to assign the names “Dan”, “Kosuke”, “Liz” and “Gary” to a
data frame with the first four observations in the Lalonde data, type:

> test <- lalonde[1:4,]

> row.names(test) <- c("Dan", "Kosuke", "Liz", "Gary")

> print(test)

age educ black hisp married nodegr re74 re75 re78 u74 u75 treat

Dan 37 11 1 0 1 1 0 0 9930 1 1 1

36

Kosuke 22 9 0 1 0 1 0 0 3596 1 1 1

Liz 30 12 1 0 0 0 0 0 24910 1 1 1

Gary 27 11 1 0 0 1 0 0 7506 1 1 1

5.5 How Can I See Outcomes of Matched Pairs?

To obtain outcomes of matched pairs, recall that the original dataset has unique row names
corresponding to each of the observations. The row names of match.matrix correspond to
the names of the treated, and each of the cells corresponds to a name of matched controls.
So to obtain matched outcomes, you can use:

cbind(lalonde[row.names(foo$match.matrix),"re78"], lalonde[foo$match.matrix,"re78"])

5.6 How Do I Ensure Replicability As MatchIt Ver-

sions Develop?

As the literature on matching techniques is rapidly evolving, MatchIt will strive to incorpo-
rate new developments. MatchIt is thereby an evolving program. Users may be concerned
that analysis written in a particular version may not be compatible with newer versions of
the program. The primary way to ensure that replication archives remain valid is to record
the version of MatchIt that was used in the analysis. Our website maintains binaries of all
public release versions, so that researchers can replicate results exactly with the appropriate
version (for Unix-based platforms, see http://gking.harvard.edu/src/contrib/; for windows,
see http://gking.harvard.edu/bin/windows/contrib/).

In addition, users may find it helpful to install packages with version control, using
the installWithVers command with install.packages. So for example, in the windows
R console, users may download the appropriate version from our website and install the
package with version control by:

install.packages(choose.files(’’,filters=Filters[c(’zip’,’All’),]),

.libPaths()[1],installWithVers=T,CRAN=NULL)

R CMD INSTALL similarly permits users to specify this version using the
--with-package-versions option. After having specified version control, different versions
of the program may be called as necessary. Similar advice may also be appropriate for version
control for R more generally.

5.7 How Do I Use My Own Distance Measure with

MatchIt ?

A vector of your own distance measure can be used by specifying it as the input for distance
option in matchit().

37

5.8 What Do I Do about Missing Data?

MatchIt requires complete data sets, with no missing values (other than potential out-
comes of course). If there are missing values in the data set, imputation techniques should
be used first to fill in (“impute”) the missing values (both covariates and outcomes), or the
analysis should be done using only complete cases (which we do not in general recommend).
For imputation software, see Amelia at (http://gking.harvard.edu/stats.shtml) or other pro-
grams at http://www.multiple-imputation.com. For more information on missing data and
imputation methods, see King et al. (2001).

5.9 Why Preprocessing?

The purpose of matching is to approximate an experimental template, where the matching
procedure approximates blocking prior to random treatment assignment in order to balance
covariates between treatment and control groups. Separation of the estimation procedure
into two steps simulates the research design of an experiment, where no information on
outcomes is known at the point of experimental design and randomization. The separation
of the balancing process in MatchIt from the analysis process afterward helps keep clear
the goal of balancing control and treatment groups and makes it less likely that the user will
inadvertently cook the books in his or her favor.

38

Chapter 6

What’s New?

• 2.4-18 (April 26, 2011): JSS version, no change in code.

• 2.4-17 (April 2, 2011): a minor documentation fix.

• 2.4-16 (January 8, 2011): a bug fix for user defined distance.

• 2.4-15 (December 11, 2010): a bug fix in the mahalanobis matching.

• 2.4-14 (August 12, 2010): a bug fix in match.data() so that it can be called within a
function (thanks to Ajay Shah, George Baah, and Ben Dominique); MatchItnow does
not specify digits for printing (thanks to Chris Hane); A summary table of matched
data is now stored in the output (thanks to George Baah)

• 2.4-11 (June 25, 2009): More flexible inputs in plotting.

• 2.4-10 (February 2, 2009): Minor documentation fixes

• 2.4-8,2.4-9 (January 29, 2009): Minor documentation fixes

• 2.4-7 (August 4, 2008): Fixed minor bug in subclassification (thanks to Ben Domingue)

• 2.4-6 (July 21, 2008): Improved summary object for exact matching (thanks to Andrew
Stokes)

• 2.4-5 (July 20, 2008): Fixed a minor bug.

• 2.4-4 (July 18, 2008): Fixed another bug with regard to the discard option (thanks to
Ben Dominique).

• 2.4-3 (July 18, 2008): Fixed a bug in full matching regarding the discard option
(thanks to Ben Dominique). Some updates of documentation regarding coarsened
exact matching (2.4-1 and 2.4-2).

• 2.4 (June 12, 2008): Included coarsened exact matching; documentation bug fixes
(thanks to Will Lowe)

39

• 2.3-1 (October 11, 2007): Stable release for R 2.6. Documentation improved. Some
minor bug fixes and improvements.

• 2.2-14 (September 2, 2007): Stable release for R 2.5. Documentation improved for
full matching. (Thanks to Langche Zeng)

• 2.2-13 (April 10, 2007): Stable release for R 2.4. Additional fix to package dependen-
cies. Bug fix for summary().

• 2.2-12 (April 6, 2007): Stable release for R 2.4. Fix to package dependencies.

• 2.2-11 (July 13, 2006): Stable release for R 2.3. Fix to ensure summary() command
works with character variables in dataframe (thanks to Daniel Gerlanc).

• 2.2-10 (May 9, 2006): Stable release for R 2.3. A bug fix in demo(analysis) (thanks
to Julia Gray).

• 2.2-9 (May 3, 2006): Stable release for R 2.3. A minor change to DESCRIPTION file.

• 2.2-8 (May 1, 2006): Stable release for R 2.3. Removed dependency on Zelig (thanks
to Dave Kane).

• 2.2-7 (April 11, 2006): Stable release for R 2.2. Error message for missing values in
the data frame added (thanks to Olivia Lau).

• 2.2-6 (April 4, 2006): Stable release for R 2.2. Bug fixes related to reestimate in
matchit() and match.data() (thanks to Ani Ruhil and Claire Aussems).

• 2.2-5 (December 7, 2005): Stable release for R 2.2. Changed URL of WhatIf to CRAN.

• 2.2-4 (December 3, 2005): Stable release for R 2.2. User’s own distance measure can
be used with MatchIt (thanks to Nelson Lim).

• 2.2-3 (November 18, 2005): Stable release for R 2.2. standardize option added to full
matching and subclass (thanks to Jeronimo Cortina).

• 2.2-2 (November 9, 2005): Stable release for R 2.2. optmatch package now on CRAN.
Changed URL for that package.

• 2.2-1 (November 1, 2005): Stable release for R 2.2. balance measures based on empir-
ical CDF are added as a new option standardize in summary().

• 2.1-4 (October 14, 2005): Stable release for R 2.2. strictly empirical (no interpolation)
quantile-quantile functions and plots are used.

• 2.1-3 (September 27, 2005): Stable release for R 2.1. automated the installation of
optional packages. fixed a coding error in summary(), the documentation edited.

40

• 2.1-2 (September 27, 2005): Stable release for R 2.1. minor changes to file names, the
option "whichxs" added to the plot(), major editing of the documentation.

• 2.1-1 (September 16, 2005): Stable release for R 2.1. Genetic matching added.

• 2.0-1 (August 29, 2005): Stable release for R 2.1. Major revisions including some
syntax changes. Statistical tests are no longer used for balance checking, which are
now based on the empirical covariate distributions (e.g., quantile-quantile plot).

• 1.0-2 (August 10, 2005): Stable release for R 2.1. Minor bug fixes (Thanks to Bart
Bonikowski).

• 1.0-1 (January 3, 2005): Stable release for R 2.0. The first official version of MatchIt

41

Bibliography

Abadie, A. and Imbens, G. W. (2007), “Bias-Corrected Matching Estimators for Average
Treatment Effects,” http://ksghome.harvard.edu/ aabadie/research.html.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification and
Regression Trees, New York, New York: Chapman & Hall.

Dehejia, R. H. and Wahba, S. (1999), “Causal Effects in Nonexperimental Studies: Re-
Evaluating the Evaluation of Training Programs,” Journal of the American Statistical
Association, 94, 1053–62.

Diamond, A. and Sekhon, J. (2005), “Genetic Matching for Estimating Causal
Effects: A New Method of Achieving Balance in Observational Studies,”
http://jsekhon.fas.harvard.edu/.

Gu, X. and Rosenbaum, P. R. (1993), “Comparison of multivariate matching methods: struc-
tures, distances, and algorithms,” Journal of Computational and Graphical Statistics, 2,
405–420.

Hansen, B. B. (2004), “Full Matching in an Observational Study of Coaching for the SAT,”
Journal of the American Statistical Association, 99, 609–618.

Hastie, T. J. and Tibshirani, R. (1990), Generalized Additive Models, London: Chapman
Hall.

Ho, D., Imai, K., King, G., and Stuart, E. (2007), “Matching as Nonparametric Preprocessing
for Reducing Model Dependence in Parametric Causal Inference,” Political Analysis, 15,
199–236, http://gking.harvard.edu/files/abs/matchp-abs.shtml.

Ho, D. E., Imai, K., King, G., and Stuart, E. A. (Forthcoming), “MatchIt: Nonpara-
metric Preprocessing for Parametric Causal Inference,” Journal of Statistical Software,
http://gking.harvard.edu/matchit.

Imai, K. (2005), “Do Get-Out-The-Vote Calls Reduce Turnout? The Importance of Statis-
tical Methods for Field Experiments,” American Political Science Review, 99, 283–300.

Imai, K., King, G., and Lau, O. (2006), “Zelig: Everyone’s Statistical Software,”
http://gking.harvard.edu/zelig.

42

Imai, K., King, G., and Stuart, E. (2008), “Misunderstandings Among Experimentalists and
Observationalists about Causal Inference,” Journal of the Royal Statistical Society, Series
A, 171, part 2, 481–502, http://gking.harvard.edu/files/abs/matchse-abs.shtml.

Imai, K. and van Dyk, D. A. (2004), “Causal Inference with General Treatment Treatment
Regimes: Generalizing the Propensity Score,” Journal of the American Statistical Associ-
ation, 99, 854–866.

King, G., Honaker, J., Joseph, A., and Scheve, K. (2001), “Analyzing Incomplete Political
Science Data: An Alternative Algorithm for Multiple Imputation,” American Political
Science Review, 95, 49–69, http://gking.harvard.edu/files/abs/evil-abs.shtml.

King, G. and Zeng, L. (2006), “The Dangers of Extreme Counterfactuals,” Political Analysis,
14, 131–159, http://gking.harvard.edu/files/abs/counterft-abs.shtml.

— (2007), “When Can History Be Our Guide? The Pitfalls of Counterfactual Inference,”
International Studies Quarterly, 183–210, http://gking.harvard.edu/files/abs/counterf-
abs.shtml.

Lalonde, R. (1986), “Evaluating the Econometric Evaluations of Training Programs,” Amer-
ican Economic Review, 76, 604–620.

Ripley, B. (1996), Pattern Recognition and Neural Networks, Cambridge Univeristy Press.

Rosenbaum, P. R. (2002), Observational Studies, 2nd Edition, New York, NY: Springer
Verlag.

Stoll, H., King, G., and Zeng, L. (2005), “WhatIf: Software for Evaluating Counterfactuals,”
Journal of Statistical Software, 15, http://www.jstatsoft.org/index.php?vol=15.

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S, Springer-Verlag,
4th ed.

43

