News
Version Updates
2.5.0
- Add optionsargument tostep_lincomp()andstep_sbf().
- CRAN release.
2.4.3
- Add recipe step_sbf()function for variable selection by filtering.
- Inherit step_kmedoidsobjects fromstep_sbf, and refactor methods.
- Support user-specified center and scale functions.
- Append prefix to selected variable names.
- Rename tidy()columnmedoidstoselected.
- Rename tidy()columnnamestoname.
- Set tidy()non-selected variable names toNA.
 
- Add recipe step_lincomp()function for linear components variable reduction.
- Inherit step_kmeansobjects fromstep_lincomp, and refactor methods.
- Support user-specified center and scale functions.
- Rename tidy()columnnamestoname.
 
- Inherit step_spcaobjects fromstep_lincomp, and refactor methods.
- Support user-specified center and scale functions.
- Rename tidy()columnvaluetoweight.
- Rename tidy()columncomponenttoname.
 
- Set GBMModeldistribution to bernoulli, instead of multinomial, for binary responses.
2.4.2
- Add global setting RHS.formulafor listing of operators and functions allowed on right-hand side of traditional formulas.
- Add clara clustering method to step_kmedoids().
- Support Cox and accelerated failure time regression for survival responses in XGBModel,XGBDARTModel,XGBLinearModel, andXGBTreeModel.
2.4.1
- Set NNetModellinoutargument automatically according to the response variable type (numeric:TRUE, other:FALSE). Previously,linouthad a default value ofFALSEas defined in thennetpackage.
2.4.0
2.3.2
- Display progress bars for sequential resampling iterations.
2.3.1
- R 4.0 data.frame compatibility updates for calibration curves.
- Fix recipe prediction with StackedModel and SuperModel
2.3.0
- Display progress messages for any foreach parallel backend.
2.2.5
- Show all error messages when resample selection stops.
- Preserve predictor names in NNetModelfit()method.
- Fix aggregation of performance curves with infinite values.
- Add progress bar and verbose output options for resample()methods.
- Get non-negative probabilities for survival confusion matrix.
- Update Using webpages and vignette.
2.2.4
- Fix BARTMachineModelto predict highest binary response level.
- Grid tune BARTMachineModelnuparameter for numeric responses only.
2.2.3
- Extend ModeledInput()toSelectedModelFrame,SelectedModelRecipe, andTunedModelRecipe.
2.2.2
- Fix updating of recipe parameters in TunedInput().
2.2.1
- Print StackedModelandSuperModeltraining information.
- Fix missing case names when resampling with recipes.
2.2.0
2.1.4
- Add cost-complexity pruning parameters to TreeModel.
- Perform stratified resampling automatically for ModeledInput()andSelectedInput()objects constructed with formulas and matrices.
2.1.3
- Revisions needed to some fit()methods to ensure that unprepped recipes are passed to models, likeTunedModed,StackedModel,SelectedModelandSuperModel, needing to replicate preprocessing steps in their resampling routines.
- Extend GLMModelto factor and matrix responses.
- Use funinstead of deprecatedfun.yin ggplot2 functions.
- Capture user-supplied parameters passed in to the ellipsis of model constructor functions that have them.
2.1.2
- Compatibility fix for tibble 3.0.0.
- Include missing values in model matrices created internally from formulas.
2.1.1
- Improve specificity of metricinfo()results for factor responses.
- Correct SplitControl()to train on the split sample instead of the full dataset.
- Perform stratified resampling automatically when fit()formula and matrix methods are called with meta-models.
2.1.0
2.0.4
- Extend print()argumentnto data frame and matrix columns for more concise display of large data structures.
- Add preprocessing recipe functions step_kmeans(),step_kmedoids(), andstep_spca().
2.0.3
- Internal changes:
- Remove MLModelsloty.
- Rename ModelFrameandModelRecipecolumns(casenames)to(names).
- Register ModelFrameinheritance fromdata.frame.
- Define TermsS4 classes forModelFrameslotterms.
 
2.0.2
- Implement ModeledInput,SelectedInputandTunedInputclasses and methods.
- Deprecate SelectedFormula(),SelectedMatrix(),SelectedModelFrame(),SelectedRecipe(), andTunedRecipe().
- Remove deprecated tune().
- Rename global setting stat.Curvestostat.Curve.
2.0.1
- Rename global setting stat.Traintostat.train.
- Add print methods for SelectedModel,StackedModel,SuperModel, andTunedModel.
- Revise training methods to ensure nested resampling of SelectedRecipeandTunedRecipe.
- Return list of all training steps in MLModeltrainbitsslot.
2.0.0
- Rename global setting stat.Tunetostat.Train.
- Enable selection of formulas, design matrices, and model frames with SelectedFormula(),SelectedMatrix(), andSelectedModelFrame().
- Rename discrete variable classes: BinomialMatrix→BinomialVariate,DiscreteVector→DiscreteVariate,NegBinomialVector→NegBinomialVariate, andPoissonVector→PoissonVariate.
- Add global setting requirefor user-specified packages to load during parallel execution of resampling algorithms.
- Rename recipe role case_stratatocase_stratum.
- Rename objectargument todatainConfusionMatrix(),SurvEvents(), andSurvProbs().
- Add cmethods forBinomialVariate,DiscreteVariate,ListOf, andSurvMatrix.
- Add role_binom(),role_case(),role_surv(), androle_term()to set recipe roles.
- Support baseargument tovarimp()for log-transformed p-values.
- Rename ParamSettoParameterGrid.
- Add option to resetglobal settings individually.
- Add as.data.framemethods forPerformance,Performancesummary,PerformanceDiff,PerformanceDiffTest, andResamples.
1.99.0
- Implement DiscreteVectorclass and subclassesBinomialVector,NegBinomialVector, andPoissonVectorfor discrete response variables.
- Extend model support to DiscreteVectorclasses as follows.
- DiscreteVector: all models applicable to numeric responses.
- BinomialVector/- NegBinomialVector/- PoissonVector:- BlackBoostModel,- GAMBoostModel,- GLMBoostModel,- GLMModel, and- GLMStepAICModel.
- BinomialVector/- PoissonVector:- GLMNetModel.
- PoissonVector:- GBMModeland- XGBModel
 
- Add support for offset terms in formulas, model matrices, and recipes.
- Add recipe tune information to fitted MLModel.
- Replace Calibration(),Confusion(),Curves(),Lift(), andResamples()withcmethods.
- Redefine ConfusionS3 class asConfusionListS4 class.
- Remove support for one-element list to metricinfo()andmodelinfo().
- Remove deprecated expand.model().
- Expire deprecated tune().
1.6.4
- Calculate regression variable importance as negative log p-values.
- Support empty vectors in metricinfo()andmodelinfo().
- Add support for dials package parameter sets with ParamSet().
1.6.3
- Add as.MLModel()for coercingMLModelFittoMLModel.
- Deprecate tune(); callfit()with aSelectedModelorTunedModelinstead.
1.6.2
- Implement optimism-corrected cross-validation (CVOptimismControl).
- Fix BootOptimismControlerror with 2D responses.
- Add global option max.printfor the number of models and data frame rows to show with print methods.
- Enable recipe selection with SelectedRecipe().
- Refactor tune()methods.
- Replace MLModelFitelementfitbits(MLFitBitsobject) withmlmodel(MLModelobject).
- Rename VarImpslotcentertoshift.
1.6.1
- Use tibbles for parameter grids.
- Add random sampling option to expand_model(),expand_params(), andexpand_steps().
- Display information for model functions and objects more compactly.
1.6.0
- Add global setting for default cutoff threshold value.
- Add option to reset all global settings.
- Enable recipe tuning with TunedRecipe().
- Add expand_model()for model expansion over tuning parameters.
- Add expand_params()for model parameters expansion.
- Add expand_steps()for recipe step parameters expansion.
- Implement MLModelFunctionandMLModelListclasses.
- Add fit methods for MLModel,MLModelFunction, andMLModelList.
- Fix NNetModelfit error with binary and factor responses.
- Fix modelinfo()function not found error.
1.5.2
- Implement exception handling of tune()resampling failures.
- Remove deprecated typesanddesignarguments fromMLModel().
1.5.1
- Implement global settings for default resampling control, performance metrics, summary statistics, and tuning grid.
- Support vector arguments in metricinfo()andmodelinfo().
- Update package documentation.
1.5.0
- Implement model: SelectedModel.
- Remove maximizeargument fromtune()andTunedModel.
- Support lists as arguments to StackedModel()andSuperModel.
1.4.2
- Revert renaming of expand.model().
- Exclude 0 distance from KNNModeltuning grid.
- Improve random tuning grid coverage.
1.4.1
- Implement model: TunedModel.
- Remove deprecated na.actionargument fromModelFramemethods.
- Rename MLModel()argumenttypestoresponse_types.
- Rename MLModel()argumentdesigntopredictor_encoding.
- Rename expand.model()toexpand_model().
1.4.0
1.3.3
- Implement optimism-corrected bootstrap resampling (BootOptimismControl).
- Store case names in ModelFrameandModelRecipeand save toResamples.
1.3.2
- Add BinaryConfusionMatrixandOrderedConfusionMatrixclasses.
- Export ConfusionMatrixconstructor.
- Extend metricinfo()to confusion matrices.
- Refactor performance metrics methods code.
1.3.1
- Check and convert ordered factors in response methods.
- Check consistency of extracted variables in response methods.
- Add metrics methods for Resamples.
1.3.0
- Improve compatibility with preprocessing recipes.
- Allow base math functions and operators in ModelFrameformulas.
1.2.5
- Save ModelFrameresponse in first column.
- Unexport responseformula method.
- Add ICHomesdataset.
- Add centerandscaleslot toVarImp.
1.2.4
- Prohibit in-line functions in ModelFrameformulas.
- Rename responsefunction argument fromdatatonewdata.
1.2.3
- Add fit,resample, andtunemethods for design matrices.
- Reduce computational overhead for design matrices and recipes.
- Rename ModelFrame()argumentna.actiontona.rm.
1.2.2
- Implement parametric ("exponential","rayleigh","weibull") estimation of baseline survival functions.
- Set "weibull"as the default distribution for survival mean estimation.
- Add extract method for Resamples.
- Add na.rmargument tocalibration(),confusion(),performance(), andperformance_curve().
- Add loess spanargument tocalibration().
- Change SurvMatrixfrom S4 to S3 class.
1.2.1
- Add methodoption topredict()for Breslow, Efron (default), or Fleming-Harrington estimation of survival curves for Cox proportional hazards-based models.
- Add distoption topredict()for exponential or Weibull approximation to estimated survival curves.
- Add distoption tocalibration()for distributional estimation of observed mean survival.
- Add distoption tor2()for distributional estimation of the total sum of squares mean.
- Handle unnamed arguments in metricinfo()andmodelinfo().
1.2.0
- Implement metrics: auc,fnr,fpr,rpp,tnr,tpr.
- Implement performance curves, including ROC and precision recall.
- Implement SurvMatrixclasses for predicted survival events and probabilities to eliminate need for separatetimesarguments in calibration, confusion, metrics, and performance functions.
- Add calibration curves for predicted survival means.
- Add lift curves for predicted survival probabilities.
- Add recipe support for survival and matrix outcomes.
- Rename MLControlargumentsurv_timestotimes.
- Fix identification of recipe case_weightandcase_stratavariables.
- Launch package website.
- Bring Introduction vignette up to date with package features.
1.1.0
- Implement model: BARTModel.
- Implement model tuning over automatically generated grids of parameter values and random sampling of grid points.
- Add metrics for predicted survival times: accuracy,f_score,kappa2,npv,ppv,pr_auc,precision,recall,roc_index,sensitivity,specificity
- Add metrics for predicted survival means: cindex,gini,mae,mse,msle,r2,rmse,rmsle.
- Add performanceand metric methods forConfusionMatrix.
- Add confusion matrices for predicted survival times.
- Standardize predict functions to return mean survival when times are not specified.
- Replace MLModelslot and constructor argumentnvarswithdesign.
1.0.0
- Implement models: BARTMachineModel,LARSModel.
- Implement performance metrics: gini, multi-classpr_aucandroc_auc, multivariatermse,msle,rmsle.
- Implement smooth calibration curves.
- Implement MLMetricclass for performance metrics.
- Add as.data.framemethod forModelFrame.
- Add expand.modelfunction.
- Add labelslot toMLModel.
- Expand metricinfo/modelinfosupport for mixed argument types.
- Rename calibrationargumentntobreaks.
- Rename modelmetricsfunction toperformance.
- Rename ModelMetrics/Diffclasses toPerformance/Diff.
- Change MLModelTuneslotresamplestoperformance.
0.4.0
- Implement models: AdaBagModel,AdaBoostModel,BlackBoostModel,EarthModel,FDAModel,GAMBoostModel,GLMBoostModel,MDAModel,NaiveBayesModel,PDAModel,RangerModel,RPartModel,TreeModel
- Implement user-specified performance metrics in modelmetricsfunction.
- Implement metrics: accuracy,brier,cindex,cross_entropy,f_score,kappa2,mae,mse,npv,ppv,pr_auc,precision,r2,recall,roc_auc,roc_index,sensitivity,specificity,weighted_kappa2.
- Add cutoffargument toconfusionfunction.
- Add modelinfoandmetricinfofunctions.
- Add modelmetricsmethod forResamples.
- Add ModelMetricsclass withprintandsummarymethods.
- Add responsemethod forrecipe.
- Export Calibrationconstructor.
- Export Confusionconstructor.
- Export Liftconstructor.
- Extend calibrationarguments to observed and predicted responses.
- Extend confusionarguments to observed and predicted responses.
- Extend liftarguments to observed and predicted responses.
- Extend metricsandstatsfunction arguments to accept function names.
- Extend Resamplesto arguments with multiple models.
- Change CoxModel,GLMModel, andSurvRegModelconstructor definitions so that model control parameters are specified directly instead of with a separatecontrolargument/structure.
- Change predict(..., times = numeric())function calls to survival model fits to return predicted values in the same direction as survival times.
- Change predict(..., times = numeric())function calls toCForestModelfits to return predicted means instead of medians.
- Change tunefunction argumentmetricsto be defined in terms of a user-specified metric or metrics.
- Deprecate MLControl arguments cutoff,cutoff_index,na.rm, andsummary.
0.3.0
- Implement linear models (LMModel), linear discriminant analysis (LDAModel), and quadratic discriminant analysis (QDAModel).
- Implement confusion matrices.
- Support matrix response variables.
- Support user-specified stratification variables for resampling via the strataargument ofModelFrameor the role of"case_strata"for recipe variables.
- Support user-specified case weights for model fitting via the role of "case_weight"for recipe variables.
- Provide fallback for models with undefined variable importance.
- Update the importing of prepperdue to its relocation fromrsampletorecipes.
0.2.0
- Implement partial dependence, calibration, and lift estimation and plotting.
- Implement k-nearest neighbors model (KNNModel), stacked regression models (StackedModel), super learner models (SuperModel), and extreme gradient boosting (XGBModel).
- Implement resampling constructors for training resubstitution (TrainControl) and split training and test sets (SplitControl).
- Implement ModelFrameclass for general model formula and dataset specification.
- Add multi-class Brier score to modelmetrics().
- Extend predict()to automatically preprocess recipes and to use training data as thenewdatadefault.
- Extend tune()to lists of models.
- Extent summary()argumentstatsto functions.
- Fix survival probability calculations in GBMModelandGLMNetModel.
- Change MLControlargumentna.rmdefault fromFALSEtoTRUE.
- Removed na.rmargument frommodelmetrics().
0.1