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Abstract

MXM is a flexible R package offering many feature selection algorithms for predictive or diagnostic

models. MXM has a unique advantage over other packages; it allows for a long and comprehensive

list of types of target variable to be modeled; continuous, percentages, time to event (survival),

binary, nominal, ordinal, clustered, counts and left censored to name a few. In this paper we

briefly discuss some of these algorithms, the different types of data they can handle, and the

relevant functions along with their input and output arguments.

1 Introduction

Given a target (response or dependent) variable Y of n measurements and a set X of p features

(predictor or independent variables) the problem of feature (or variable) selection is to identify

the minimal set of features with the highest predictive performance. In cases where p >> n, the

selection process becomes even harder, and in cases where n is at the order of tens or hundreds of

thousands, big data is such an example, the task becomes even more computationally demanding.

On the other hand, when n is is small, a quite common phenomenon in datasets occurring in

biomedical or clinical research, special treatment, such as re-sampling based testing approaches for

example, is required.

There are many reasons why researchers and practitioners should perform feature selection

[17]. Many features may be expensive (and unnecessary) to measure, especially in the clinical and

medical domains. Parsimonious models are computationally cheaper and easier to understand and

interpret. Future experiments will benefit from prior feature selection tasks and give more insight

about the problem of interest, its characteristics and structure.

Feature selection can also be used as a means of knowledge discovery and for gaining intuition

on the data generation mechanisms. There is theoretical connection between feature selection and

the Bayesian (causal) network that describes best the data at hand [17]. Following the Bayesian

networks terminology, the Markov Blanket of a variable Y is defined as the minimal set of variables

that renders all other variables conditionally independent of Y . That is, the Markov Blanket of Y

carries all the necessary information about Y , and no other variable offers additional information

about Y . Under certain broad conditions the Markov Blanket has been shown to be the solution

to the FS problem [19]. Identification of the Markov Blanket of the target variable is often the

primary goal of FS and not the predictive model per se [3]. This is particularly true in medicine,
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where the features selected may direct future experiments and offer useful insight on the problem

of interest, its characteristics and structure.

MXM [8] is an R package1 that can be downloaded from CRAN. It contains many feature

selection algorithms designed for small and large sample sized datasets. MXM offers (Bayesian)

network construction as well, but in this paper we focus on its feature selection algorithms. For ev-

ery algorithm, we discuss their criteria for selecting features (statistical, information based, ad-hoc),

computational tricks that can decrease execution time substantially, and share a comprehensive list

that summarizes the different types of data these algorithms can be used with. We show how to use

some of these algorithms, and some extra useful functions, using real high dimensional biological

data.

The rest of the paper is organized as follows. The next Section presents the feature selection

algorithms available in MXM along with some brief discussion of their properties and the types

of data they can handle. Section 3 provides an overview of these algorithms in R, while Section

4 demonstrates some of these algorithms in R. We perform a comparative analysis using gen

expression data in Section 4 and Section 5 concludes the paper.

2 Overview of the feature selection algorithms and types of data

MXM can handle

MMPC [18] and SES [16] are two examples of algorithms designed mainly for small sample sizes,

whereas gOMP [12] and FBED [3] should be preferred for datasets with large sample sizes. Below

we give an overview of all the available feature selection algorithms in MXM.

2.1 Forward and backward search

The first, historically, feature selection algorithms are the forward search (FS) and backward search

(BS) or backward elimination. FS’s first step consists of finding the single predictor variable, mostly

associated with the target variable. The association is measured via fitting a regression model for

each feature. The procedure continues with the addition of the predictor variables (one at the

time) whose contribution, given the selected variables, is significant (again by fitting a regression

model for each non selected predictor variable given the selected variables). BS on the other hand

works the opposite way. It fits a regression model with all variables and then eliminates, one at the

time, the least important variables. Again, many regression models must be fitted at each step.

2.2 IAMB

Incremental Association Markov Blanket (IAMB) [19] is a BN aspired algorithm which consists of

two phases; The FS followed by a modified backward elimination. Instead of removing the least

significant variable, among the non significant ones, at the time, IAMB removes all of the non

significant ones at every step.

1MXM was first launched in 12/5/2014 and its current version is 1.3.3 (30/3/2018).
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2.3 FBED

The most recently suggested feature selection algorithm is Forward-Backward with Early Dropping

(FBED) [3] which is also BN inspired. The forward phase step is the same as in the FS with

the difference that non (statistically) significant variables are removed and not examined in the

subsequent steps (the Early Dropping heuristic). The process continues until no predictor variable

can be selected or all of them have been removed. FBED discovers a subset of the MB, parents

and children in specific.

Re-running the algorithm again, starting with the selected variables and examining all the

rest, results in identifying the MB of the target variable [3], spouses are now identified, while

with more re-runs FBED identifies supersets of MB2 thus providing a broader set of variables of

interests, which are also desirable in many research fields. A BS is applied afterwards to remove any

falsely selected variables. [3] based upon experimental evaluations showed that FBED produced

comparable results to LASSO [14].

2.4 MMPC and SES

Max-Min Parents and Children (MMPC) [18] is a BN inspired algorithm which tries to identify a

subset of the Markov Blanket, namely the parents and children only. In low sample size situations,

statistical tests have low power which, in conjunction with an increased number of a estimable

parameters increase the probability of obtaining wrong results. The basic principle of MMPC is

to perform, more, statistical tests conditioning on subsets of the the selected variables, and hence

estimate less parameters than the previous algorithms. It also consists of a forward and backward

search as well. The fact that it performs more tests does not make it computationally prohibitive,

due to several computational efficiency heuristics and tricks that have been employed, described

later.

A second advantage of MMPC is its rationale for choosing the next variable to include using

the minimum of the maximum p-values. This has been proved to control the False Discovery Rate

[20] and also one can estimate it.

Its generalization, called SES (Statistically Equivalent Signatures) [16, 8] builds upon the ideas

of MMPC in order to return multiple (statistically equivalent) sets of predictor variables. SES is

one of the few feature selection algorithms suggested in the literature which find multiple sets of

predictor variables. In essence, this can be found to be of high importance, in cases where some

variables are difficult or expensive to be tracked and measured, as for example some biomarkers of

interest in terms of clinical research.

MMPC has been successfully applied to survival data [11] and in the context of classification

tasks [10]. It has also been applied in integrative feature selection where multiple independent

datasets are available [9]. SES was used in high dimensional data with repeated measurements

[15] outperforming LASSO algorithm [6] both in predictive performance and computational cost.

Groll and Tutz’s LASSO implementation [6, 5] has a computational limit in R, but even for a

2Re-running the algorithm until no more variables can be included results in the MB of a Maximal Ancestral

Graph (MAG) [3], a broader class of BNs.
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few hundreds of variables it was shown to be computationally more expensive than SES (and of

MMPC essentially).

2.5 MMMB

Max-Min Markov Blanket (MMMB) [18] was proposed as an improvement of MMPC, since it tries

to identify the parents of the children discovered by MMPC. It repeatedly performs MMPC on the

each of the selected variables of MMPC, in order to identify the spouses of the target variable.

2.6 gOMP

Orthogonal Matching Pursuit [12] is an ad hoc, or geometry based, forward procedure which does

not rely on statistical tests. The search begins by selecting the predictor variable mostly correlated

with the target variable, i.e. the predictor variable whose angle with the target variable is minimum.

A regression model is fitted and the residuals are computed. The correlation between the residuals

and the other predictor variables is calculated. The variable with the highest correlation (or

smallest angle) is selected. A model is fitted, residuals are computed and this process is repeated.

The algorithm stops when the norm of the residuals is below a user-defined threshold, or when some

other user-defined criterion is satisfied. OMP is closely related to Forward Stepwise Regression

[23] which is based on statistical tests, and also to Forward Stagewise Regression [7].

2 described some differences between OMP and the classical forward selection method. The

main difference mentioned in their work, which is in fact the same difference between OMP and

FBED, is that OMP selects the new feature based on the inner product, i.e. the angle between the

features and the current residual. On the contrary, FBED (and similar model fitting algorithms)

will select the feature with the smallest angle, followed by the projection of this feature onto the

orthogonal subspace in such a way so as to maximize an objective function, e.g. log-likelihood. 2

made this difference clear using a graphical example.

Our modification of OMP, called generalised OMP (gOMP) uses a adifferent stopping criterion.

When a new feature is chosen for possible inclusion, the model with that feature is fitted and the

log-likelihood is calculated. If the increase in the log-likelihood values, between the current model

and the previous model is above a certain threshold 3, the feature is selected, otherwise the whole

process stops. Furthermore, we have implemented gOMP (available in the MXM R package) to

accept a numerous types of outcome variables, including multi-class, survival, left censored, counts

and proportions to name a few.

2.7 Time complexity of the algorithms

We measure the time complexity of the algorithm in terms of the number of performed tests. The

number of tests FS performs is p · (s+ 1) where p is the number of variables and s the number of

selected variables. BS on the other hand requires p + p − 1 + . . . . + p − s tests. IAMB requires

p · (s+ 1) tests for the forward phase while its upper limit for the backward phase is the tests

3An example of the threshold is the 95% quantile of the χ2 distribution, forming a hypothesis test at the 5%

significance level.
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required by BS. FBED’s time complexity is bounded (worst case scenario) by the complexity of

FS + BS.

MMPC (and SES) share the same upper bounds for the time complexity. Each variable must

be contrasted against each subset of the selected signature before being eliminated. This would

require a number of tests in the order of O (p · 2s). However, we only allow conditioning upon

subsets of the selected variables with maximum cardinality equal to k, at each time, decreasing

the complexity of the algorithm to O
(
p · sk

)
. This means that the algorithm can still require an

exponential number of tests with respect to the size of the selected signatures; however, in our

experience the actual computational requirements of the algorithm are much lower, also due to the

parsimonious signatures often retrieved.

Among all algorithms implemented in MXM, gOMP is the fastest and computationally cheap-

est, since unlike all other aforementioned methods, a regression model is fitted only when a variable

is selected for possible inclusion. All other methods fit regression models every time a test is per-

formed. In gOMP, only s + 1 regression models will be fitted. We must add though that at each

step, a vector of correlations is calculated, which however adds a small computational burden. This

means, that the number of times parameters are estimated is the same as in FS, yet correlations

are easier to compute, than regression models, as they require less computations.

2.8 Types of data MXM can handle

In this Section we describe a few types of target variables and their respective regression models

suitable for each case.

1. Continuous outcome variable (taking any value in the whole of R) are handled with

� linear regression

� MM estimators (linear regression robust to outliers) and

� quantile (median) regression (linear regression robust to outliers).

� When the predictor variables are also continuous Pearson correlation coefficient or

� Spearman correlation coefficient are faster alternatives.

2. Multivariate continuous outcomes are handled with

� multivariate linear regression.

� Compositional data [1] excluding 0 and 1 values are handled the same way since the

additive log-ratio transformation is applied.

3. Positive valued data are modeled with

� Gaussian regression with a log-link, allowing for zero values or

� Gamma regression, excluding zero values.

4. Percentages, are modeled by
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� Beta regression excluding 0s and 1s.

� Alternatively, one can apply the logit transformation and treat them as continuous and

hence use all models mentioned in (1).

� A more general (without making parametric assumptions and accepting 0s and 1s) is

the quasi binomial regression.

5. Count data are usually modeled by

� negative binomial regression.

� Other options include the more restrictive Poisson regression or

� the more flexible, quasi Poisson regression.

� If an excessive number of zeros has been observed, zero inflated Poisson regression

should be used instead.

6. Binary, nominal or of ordinal scale outcome variables,

� require logistic, multinomial and ordinal regression respectively.

� If the predictor variables are also categorical, the G2 test of independence can be used

as well, which has the advantage over regression models that ”captures” non linear

dependencies as well. Its disadvantage is that it requires large sample sizes.

7. Success out of a number of trials are modeled by binomial regression.

8. Time to event (usually right censored, survival) outcomes are handled with survival regres-

sion models,

� Weibull regression (parametric model),

� exponential regression (parametric model) or with

� Cox regression (semi-parametric regression model).

� Mixed effects Cox regression (Cox regression for clustered data).

9. Matched case-control studies require conditional logistic regression.

10. Left censored outcomes are handled by Tobit regression.

11. Repeated measurements, over time for example, require parametric models such as

� generalized linear mixed models (GLMM) including

– Gaussian regression,

– logistic regression,

– Poisson regression,

– Gamma regression,

– Gaussian regression with log-link and
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– ordinal regression but with limited options.

� Distribution free models, such as generalized estimating equations (GEE) is a compet-

ing to GLMM methodology. The GEE methodology available in MXM is richer than

GLMM; it includes the same regression models as GLMM and

– It offers more types of correlation structure (compound and autoregressive) and

many ways of estimating the standard error of the regression coefficients (standard

sandwich estimators, jackknife and approximate jackknife estimators).

12. Classification with longitudinal data. This is the case when one wants to discriminate

among two or more classes and the predictor variables consist of longitudinal data.

3 Overview of the algorithms in R

We will now show which are the relevant commands and discuss their input arguments and output.

The types of tests we will briefly mention here are statistical (likelihood ratio test, F test, Wald

test, permutations based test) or information criteria (eBIC and BIC).

At this point we should mention that before an algorithm is run, a check for missing data

is performed and if there are any they are replaced by the variable’s median value (in case of

continuous data) or by the variable’s mode (in case of categorical data). In addition, variables

with constant values (zero variance) are handled internally without damaging the sequence of the

variables.

With user-friendliness in mind, extra attention has been put in keeping the functions within

the MXM package as consistent as the nature of the algorithms allows for, in terms of syntax,

required input objects and parameter arguments.

3.1 MMPC

The function for MMPC is called as:

> MMPC(target, dataset, max_k, threshold, test,

ini, wei, user_test, hash, hashObject, ncores,

backward = FALSE)

Below we briefly explain some of these arguments. More information on all arguments is

available at the MXM ’s reference manual.

� test: The statistical test to use. Default value is NULL. In Section 2.8 we listed the differ-

ent types of target variables and the respective regression models. The names of the tests

here are connected with those regression models. Some example options are ”testIndFisher”

(Fisher test using the Pearson correlation) ”testIndReg” (for linear regression), ”testIndPois”

(Poisson regression). In general, the test for all algorithms, is termed ”testInd...” followed

by an acronym or the name of the regression model. The exception is with ”censIndCR”,
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”censIndWR” and ”censIndER” which are used for Cox, Weibull and exponential regression

respectively.

� ini: This is a list with the univariate associations, the test statistic and its p-value. This can

help avoid calculating the univariate associations, in case of a second run of MMPC or other

algorithms. For example, if you have ran FBED, you can take that list and plug it in here

or in MMPC, or the other way round. This will speed up the second run (and subsequent

runs), especially in case of demanding regression models, such as GLMM or GEE.

� user test: A user-defined conditional independence test (provide a closure type object). If

the user wants to use his own test, he can pass the name of the function here. The function

must accept the same input arguments and return the same output as the test functions of

MXM.

� hash: A boolean variable which indicates whether (TRUE) or not (FALSE) to store the

statistics calculated during SES execution in a hash-type object.

� hashObject: A List with the hash objects generated in a previous run of SES or MMPC.

Each time SES runs with ”hash=TRUE” it produces a list of hashObjects that can be

re-used in order to speed up next runs of SES or MMPC. An important note is that the

generated hashObjects should be used only when the same dataset is re-analyzed, possibly

with different values of max k and threshold. This computational trick can help save a

significant amount of time in subsequent runs of MMPC or SES.

The output of MMPC is long verbosed, as it contains the test statistic values and their cor-

responding p-values, both during execution of the algorithm and of the univariate associations.

The latter is stored in a list called univ and can be passed on to other algorithms such as FBED.

Other returned items include the selected variables, the statistically equivalent signatures (if any),

the hashObject and the number of tests performed (if hash was set to TRUE), the natural log-

arithm (maximum) p-value of each performed test, the relevant test statistic value, the execution

time and the test used.

MMPC (and SES) make use of statistical tests in order to include a variable. These tests are

either the F-test or the likelihood ratio test depending on the regression model. We have also

implemented MMPC and SES with the Wald test, currently designed for continuous predictor

variables only. The functions are called waldMMPC and waldSES and the names of the tests to

be passed in argument test are similar to all other functions, but begin with wald : waldMMReg,

waldPois, waldLogistic etc.

A third alternative, is to use permutation based statistical tests. In these tests, the p-value

is evaluated using permutations (default value is 999). In order to decrease the computational

cost, we stop the the permutations once the p-value exceeds the threshold value. For example, if

the threshold value is set to 0.05 and the number of permutations is equal to 999, if the p-value

after 51 permutations has exceeded 0.05 we do not perform the rest of the permutations. The

names of the tests in this case are permFisher, permReg, permLogistic, etc. and are passed

to permMMPC or permSES.
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Generalized linear mixed models (GLMM) and GEE (for time course, longitudinal or clustered

data) have their own functions, called SES.temporal and SES.gee respectively. The signature

is the same in all cases (GLMM, GEE, Wald based or permutation based MMPC and SES) with

the addition of some extra arguments. For the GEE here is an example of the extra arguments.

> MMPC.gee(target, ..., correl = "exchangeable",

se = "jack", ncores)

The user has the option to choose the correlation structure (correl) and the type of estimation of

the standard error of the regression coefficients (se). The names for GLMM and GEE are simi-

lar to MMPC. For example testIndGLMMReg, testIndGLMMPois and testIndGEEReg,

testIndGEEPois.

3.2 FBED

The input arguments for FBED are different because of the nature of the algorithm.

> fbed.reg(target, dataset, test, threshold, wei, K,

method, gam, backward)

Let us now briefly explain some of the input arguments.

� ini: If you already have the test statistics and the p-values of the univariate associations

(the first step of FBED) supply them as a list with the names stat and pvalue respectively.

This is the same as the ini in SES. As mentioned before, this can be extracted from a SES

or MMPC run, hence reducing the computational cost. In the case of FBED having been

called with eBIC as the criterion of inclusion (method=eBIC), then this is a list with one

element, called ebic and can only be used by FBED.

� K: How many times should the process be repeated? The default value is 0. The user has

the option to pass a range of values of K, such as 0:4 in which case the algorithm will return

the selected variables for each value of K.

� method: This argument give the user the choice of the inclusion test. In case of statistical

test (F-test or likelihood ratio test, whichever appropriate) the user should type ”LR”. For

information criteria, such as ”eBIC” (extended BIC, [4]) or the usual BIC, the user should

type ”eBIC”.

� gam: In case the method is chosen to be ”eBIC” one can also specify the γ parameter of

the eBIC. The default value is ”NULL”, so that the value is automatically calculated. If the

user sets this argument equal to 0, the usual BIC is used.

In the case of GEE the command is called as
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> fbed.gee.reg(target, dataset, id, ...,

correl = "exchangeable", se = "jack")

The output of FBED depends upon whether the user has run FBED with a single value of K

or not. In some, the univariate associations tests, the selected variables along with the value of

the selected criterion (statistical test or information criterion) and the running time are returned.

Information about the number of selected variables and number of tests performed for each value

of K and in the case of more than one value of K, a list with information on each value of K is also

returned.

3.3 gOMP

The command for gOMP is different than all the other commands, due to the nature of the

algorithm.

> gomp(target, dataset, tol, test)

All arguments are the same as before, except for tol. This is the criterion to include a variable

and is based upon the log-likelihood of the fitted regression model at each time. If twice the

difference between two successive log-likelihoods is less than the tolerance value the algorithm

stops. A tolerance value equal to 3.84 corresponds to0 the log-likelihood ratio test, whereas a value

of 3.84 + log(n), where n is the sample size, corresponds to using BIC as the test of inclusion.

There is no ini argument here due to the algorithm being very fast.

gOMP’s output is very small and it includes the running time of the algorithm, the selected

variables and the deviance or twice the log-likelihood of the model at each step.

4 Demonstration of the algorithms using real data

We will demonstrate MMPC, FBED and gOMP using 2 real datasets 4. The first dataset concerns

breast cancer [22] and contains 285 samples over 17, 187 features. The target variable is binary,

hence logistic regression (test = ”testIndLogistic”) will be employed. The second one regards

survival times (again breast cancer related) [21] and contains 78 observations, out of which 44

are censored, with 4, 571 features. Cox regression will be used (test = ”censIndCR”). All

computations took place in a desktop computer with Intel Core i5-4690K CPU @3.50GHz and 32

GB RAM.

4.1 Breast cancer dataset

4.1.1 MMPC

4The case of SES, was covered in [8].
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> mmpc1 <- MMPC(target, dataset, max_k = 3, hash = TRUE,

test = "testIndLogistic")

We then re-run MMPC with max k = 4, but taking into consideration the previous calculations.

> mmpc2 <- MMPC(target, dataset, max_k = 4, hash = TRUE,

ini = mmpc1@univ, hashObject = mmpc1@hashObject,

test = "testIndLogistic")

The output is very long verbosed and hence omitted. The running time required the first time

(mmpc1) is equal to 70 seconds, while performing 31, 385 likelihood ratio tests. In the second

run, mmpc2 required only 8 seconds. If the second run was performed independently from the

previous run, (performing all tests again) the running time would be equal to 75 seconds, while

performing 32, 021 statistical tests. It is then obvious that mmpc2 performed only 636 extra tests.

There is a non negligible time required to search and extract the information about a test from

a hash object, yet, this time is not comparable to the time the performance of a statistical test

requires.

Since hash was set to TRUE, by using the command certificate.of.exclusion the user can

detect the conditioning variables (if any) responsible for not including a specific predictor variable.

In this example, the user might be interested in seeing why a specific gene was not selected. The

first variable for example, even though has a statistically significant unconditional association with

the target variable, it was not selected by MMPC.

> certificate.of.exclusion(1, mmpcObject = mmpc1)

$‘1‘

<NA> statistic p-value

4509.00000000 0.09795647 -0.28197058

The association between the outcome variable and the first feature becomes non significant,

when conditioning on the 4509th variable and its p-value is exp(−0.28197058) = 0.7542959.

Throughout all the algorithms the logarithm of the p-values is calculated and stored. When

the p-value is less than 10−16 (machine epsilon), R rounds the p-value to 0. When there are more

than one p-value rounded to 0, the smallest p-value is decided at random. If this situation takes

place very often inside the algorithm the final output might no be what is expected. Since, all

p-value based algorithms are based on ordering the p-values, this is a crucial and key element of

the algorithms and caution, or the logarithm of the p-value, must be taken.

Suppose now one is interested in running MMPC for many combinations of max k and thresh-

old. This can be done by using mmpc.path which is essentially a hyper-parameter tuning, grid

search function, for choosing the optimal configuration of the the threshold and max k. The
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output for this dataset is

$bic

max_k=4 max_k=3 max_k=2

alpha=0.05 111.6808 125.5517 146.9647

alpha=0.01 116.4926 116.4926 126.2583

$size

max_k=4 max_k=3 max_k=2

alpha=0.05 8 13 25

alpha=0.01 6 6 10

The element bic contains the BIC for the regression model applied to the selected features using

each combination of max k and threshold. The element size shows the number of the selected

features. The extra element (not shown here) is another list with the selected features for each

combination of max k and threshold. As for the running time, that was only 160 seconds. This

function takes into account the computational benefits of the hash tables and for every subsequent

runs of MMPC performs fewer tests.

4.1.2 FBED

FBED using likelihood ratio tests and eBIC were run as well with K=0. This means that no

repetitions were performed.

> fbed1 <- fbed.reg(target, dataset,

method = "LR", test = "tesTIndLogistic")

fbed1$res

sel stat pval

1 4509 101.490982 -53.290889

2 17606 52.394553 -28.420720

3 3856 26.829649 -15.319679

4 16361 12.597669 -7.859082

5 11797 11.643982 -7.347647

6 16837 10.053095 -6.488439

7 3157 18.446479 -10.954777

8 3400 6.693620 -4.638122

9 1457 9.695889 -6.294297

10 4404 5.267671 -3.829289

> fbed2 <- fbed.reg(target, dataset,
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test = "tesTIndLogistic", method = "eBIC")

fbed2$res

Vars eBIC

[1,] 4509 247.0451

[2,] 17606 149.3605

[3,] 3856 127.9701

[4,] 16361 123.8473

[5,] 11797 128.0821

[6,] 4404 120.8556

One element of the returned output is displayed above. The p-value based selection (likelihood

ratio test) required 55 seconds, performed 28,688 tests and selected 10 variables. The eBIC based

selection required 45 seconds, performed 23,641 tests and selected 6 variables.

4.1.3 gOMP

gOMP required 1.5 seconds and selected 9 variables.

> gomp(target, dataset, test = "testIndLogistic")

The element res presented below is one of the elements of the returned output. The first column

shows the selected variables in order of inclusion and the second column is the deviance of each

regression model. The first line refers to the regression model with 0 predictor variables (constant

term only).

$res

Selected Vars Deviance

[1,] 0 332.55696

[2,] 4509 156.33519

[3,] 17606 131.04428

[4,] 3856 113.78382

[5,] 10101 95.76704

[6,] 16759 80.25748

[7,] 6466 67.78120

[8,] 11524 54.54652

[9,] 9794 44.17957

[10,] 4728 36.52319
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4.2 Survival dataset

The target variable must be transformed into a surv object using the command Surv in the

package survival [13].

4.2.1 MMPC

MMPC selected the following features

> mmpc <- MMPC(target, dataset, test = "censIndCR")

ses@selectedVars

[1,] 1458 3872 3945 4554

A useful command is mmpc.model which returns the regression model with the features selected

by MMPC. The output for this dataset is

> mmpc.model(target, dataset, mmpcObject = mmpc)

$mod

Call:

survival::coxph(formula = target ~ ., data = data.frame(dataset[,

signature]), weights = wei)

coef exp(coef) se(coef) z p

V1460 3.9013 49.4644 1.0176 3.83 0.00013

V3874 -4.5911 0.0101 1.6634 -2.76 0.00578

V3947 -3.5580 0.0285 0.8700 -4.09 4.3e-05

V4556 5.6801 292.9789 1.7448 3.26 0.00113

Likelihood ratio test=46.6 on 4 df, p=1.82e-09

n= 78, number of events= 44

$signature

V1460 V3874 V3947 V4556 bic

1458 3872 3945 4554 219

4.2.2 FBED

The selected variables discovered by FBED using likelihood ratio test and eBIC (they are the same

in this dataset)

fbed1$res

sel stat pval
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1 3872 12.027483 -6.013742

2 3945 22.729195 -11.364597

3 1458 13.540375 -6.770188

4 4554 12.912292 -6.456146

5 4325 8.072538 -4.036269

6 386 7.128295 -3.564147

and

fbed2$res

Vars eBIC

[1,] 3872 222.0323

[2,] 3945 232.7340

[3,] 1458 223.5452

[4,] 4554 222.9171

[5,] 4325 218.0773

[6,] 386 217.1331

respectively. We can see that both methods selected the same variables.

Similarly to the command mmpc.path applied to MMPC, FBED gives the user the option to

output all results for different values of K. As mentioned in the description of FBED, the argument

K determines the number of re-runs of FBED. The default value is 0. The user can either specify

a single value for K, or a range of values of K and gather the path of solutions for many values of

re-runs. For example, by calling fbed.reg with K=0:3 we get the following results

$res$info

Number of vars Number of tests

K=0 6 5073

K=1 10 4885

K=2 16 5198

K=3 21 4988

$mod$‘K=0‘

Vars stat log p-value

1 3872 12.027483 -6.013742

2 3945 22.729195 -11.364597

3 1458 13.540375 -6.770188

4 4554 12.912292 -6.456146

5 4325 8.072538 -4.036269
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6 386 7.128295 -3.564147

$mod$‘K=1‘

Vars stat log p-value

1 3872 37.157121 -18.578561

2 3945 16.746585 -8.373293

3 1458 38.083482 -19.041741

4 4554 11.794991 -5.897496

5 4325 11.519512 -5.759756

6 386 27.296062 -13.648031

7 3805 15.395575 -7.697788

8 4689 16.185231 -8.092616

9 1682 12.446433 -6.223216

10 2355 6.544932 -3.272466

$mod$‘K=2‘ (committed)

$mod$‘K=3‘ (ommitted)

We re-ran FBED using K=1 and called the command fbedreg.bic which takes as inputs

the target variable, the dataset, the object where the FBED results are saved, the test used

(”censIndCR” in our case). The function plots the BIC a function of the selected variables in

the order they were selected. The produced plot is presented in Figure 1. The results of the FBED

run along with the relevant BIC values and the final regression model are two arguments (not

presented here) returned as well.

4.2.3 gOMP

As for gOMP the results are

Selected Vars Deviance

[1,] 0 250.6345

[2,] 3945 240.3924

[3,] 2874 225.6243

[4,] 520 209.1400

[5,] 4402 200.6827

[6,] 1467 186.0771

[7,] 3212 173.5159

[8,] 4130 151.6564

[9,] 3095 146.3925
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Figure 1: Successive BIC values for the Cox regression using the selected variables in order of

inclusion.

A final command not mentioned earlier is the reg.fit which accepts any type of target variable

and fits any regression model currently available in MXM. This is more general than mmpc.model

and ses.model since it does not depend on the output of any algorithm. The command reg.fit

has a long list of arguments, covering many regression algorithms. Cross-validation procedures

currently exist for MMPC and SES only (and their Wald and perm versions). The relevant

commands are cv.mmpc and cv.ses respectively.
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