
Package ‘MRPC’
November 16, 2019

Type Package

Version 2.2.0

Date 2019-11-15

Title PC Algorithm with the Principle of Mendelian Randomization

Author Md Bahadur Badsha [aut,cre],Evan A Martin [ctb] and Audrey Qiuyan Fu [aut]

Maintainer Md Bahadur Badsha <mdbadsha@uidaho.edu>

Description A PC Algorithm with the Principle of Mendelian Randomization. This package imple-
ments the MRPC
(PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also
contains functions to simulate data under a certain topology, to visualize a graph in different
ways, and to compare graphs and quantify the differences.
See Badsha and Fu (2019) <doi.org/10.3389/fgene.2019.00460>,Badsha, Mar-
tin and Fu (2018) <arXiv:1806.01899>.

License GPL (>= 2)

Depends R (>= 3.0)

LazyData TRUE

Imports
bnlearn,compositions,dynamicTreeCut,GGally,fastcluster,gtools,graph,graphics,Hmisc,methods,mice,
network,pcalg,psych,Rgraphviz,stats,sna,utils,WGCNA

NeedsCompilation no

Repository CRAN

Date/Publication 2019-11-16 05:20:03 UTC

R topics documented:
aSHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
CompareMethodsNodeOrdering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CompareMethodsVStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
CutModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
data_examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
data_GEUVADIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



2 aSHD

data_GEUVADIS_combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
data_without_outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
data_with_outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
EdgeOrientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ModiSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
mpinv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MRPCclass-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
MRPCtruth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PlotDendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
PlotGraphWithModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
RecallPrecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
RobustCor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
seqDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SeqFDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SimulateData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SimulateData1P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
SimulateData2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
SimulateData3P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SimulateDataNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
simu_data_layered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
simu_data_M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
simu_data_M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
simu_data_M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
simu_data_M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
simu_data_M4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
simu_data_multiparent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
simu_data_starshaped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Index 64

aSHD Adjusted structural hamming distance (aSHD)

Description

The SHD as implemented in the R package pcalg (Kalisch et al., 2012) and bnlearn(Scutari, 2010),
counts how many differences exist between two directed graphs. This distance is 1 if an edge exists
in one graph but is missing in the other, or if the direction of an edge is different between the two
graphs. The larger this distance is the more different the two graphs are. We adjusted the SHD
to reduce the penalty of having the wrong direction of an edge to 0.5. For example, between two
graphs V –> T1 <– T2 and V –> T1 –> T2, the SHD is 1 and the aSHD is 0.5.

Usage

aSHD(g1, g2, GV,edge.presence = 1.0, edge.direction = 0.5)
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Arguments

g1 First graph object

g2 Second graph object

GV The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data ma-
trix. For example, if the data has one genetic variant, first column, then GV = 1,
if 2, 1st and 2nd column, then GV = 2, and so on.

edge.presence The weight for an edge being present.

edge.direction The weight for the edge direction.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Kalisch M, Machler M, Colombo D, Maathuis MH and Buhlmann P (2012). Causal Inference
Using Graphical Models with the R Package pcalg. Journal of Statistical Software, 47, 26.

2. Scutari M (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3), 1-22.

Examples

# True model (V1 --> T1 --> T2 --> T3)
tarmat_s1 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")

rownames(tarmat_s1) <- colnames(tarmat_s1)

# Create an adjacency matrix for the true graph
tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Graph object of the true graph
Truth <- as(tarmat_s1,

"graphNEL")

# Inferred graph (V1 --> T1 <-- T2 --> T3)
tarmat_s2 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s2) <-c ("V1", "T1", "T2", "T3")

rownames(tarmat_s2) <- colnames(tarmat_s2)
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# Create an adjacency matrix for the inferred graph
tarmat_s2[1, 2] <- 1
tarmat_s2[3, 2] <- 1
tarmat_s2[3, 4] <- 1

# Graph objects for the inferred graph
Inferred <- as(tarmat_s2,

"graphNEL")

Distance <- aSHD(Truth,
Inferred,
GV = 1,
edge.presence = 1.0,
edge.direction = 0.5)

CompareMethodsNodeOrdering

Comparison of inference accuracy using the same data but with differ-
ent node orderings.

Description

Investigate the performance of five methods on the same data but with different node orderings:
MRPC (Badsha and Fu, 2019; Badsha et al., 2018), pc, implemented in pcalg (Kalisch et al.,
2012), and pc.stable, mmpc, and mmhc, the last three all implemented in bnlearn (Scutari, 2010).
See details in Badsha et al., 2018.

Usage

CompareMethodsNodeOrdering(N, model, signal, n_data, n_nodeordering)

Arguments

N The number of observations.

model Either ’truth1’ or ’truth2’ to specify the model to generate data from.

signal The signal strength which is the coefficient of the parent nodes in the linear
model.

n_data The number of independent data sets to generate.

n_nodeordering The number of times to reorder the nodes.

Details

The code runs a method on a data set, derives a vector of the differences between the inferred and the
true adjacency matrix, and converts the difference vector into a decimal. A decimal of 0 indicates
perfect recovery of the truth. Decimals such as 446 and -2214 indicate two different inferred graphs,
both different from the truth.
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The output is a matrix where the columns indicate which method and which node ordering (e.g., the
columns may be ’MRPC_NO1’, ’MRPC_NO2’, ’PC_NO1’, ’mmhc_NO6’ and so on), and each
row contains the decimals from differents methods for one simulated data set under different node
orderings.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

3. Kalisch M, Machler M, Colombo D, Maathuis MH and Buhlmann P (2012). Causal Inference
Using Graphical Models with the R Package pcalg. Journal of Statistical Software, 47, 26.

4. Scutari M (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3), 1-22.

Examples

# We will generate 2 different data sets from truth1 (V1-->T1-->T2-->T3)
# with signal = 1, N = 100 and 6 different node orderings. Therefore, we will
# get 2 by 30 output matrix, where the first and second rows are for data sets 1 and 2 respectively.
# Columns 1:6, 7:12, 13:18, 19:24 and 25:30 are for MRPC, pc, pc.stable, mmpc and
# mmhc respectively with node order 1, 2, ..., 6.

library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # pc.stable, mmpc, and mmhc

# Run
Output <- CompareMethodsNodeOrdering(N = 100,

'truth1',
signal = 1,
n_data = 2,
n_nodeordering = 6)
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CompareMethodsVStructure

Comparison of inference accuracy of different methods on data with
and without a v-structure

Description

This function compares inference accuracy on graphs with and without a v-structure in terms of
recall and precision by five methods MRPC, pc, pc.stable, mmpc, and mmhc, across multiple data
sets. See details in Badsha et al., 2018. Also see Badsha and Fu, 2019.

Usage

CompareMethodsVStructure(N, signal, model, includeGV, ita)

Arguments

N Number of observations.

signal The coefficient of parent nodes in the linear model. For example, strong = 1.0,
moderate = 0.5, and weak = 0.2.

model The graph from which the data is generated. Specifically, two graphs are con-
sidered here: ’model 1’ (V1->T1->T2), which does not contain a v-structure,
and ’model 2’ (V1->T1<-T2), which is a v-structure.

includeGV If TRUE, include edges involving genetic variants (GVs) when comparing the
true and inferred graphs. If FALSE, exclude such edges.

ita Number of independent data sets to simulate.

Details

The output is a matrix, where the rows are the five methods: MRPC, pc, pc.stable, mmpc, and
mmhc, and the columns are the mean of recall, sd of recall, mean of precision, and sd of precision,
respectively. Mean and sd are calculated across all the simulated data sets. For methods from
the bnlearn package (pc.stable, mmpc and mmhc), we apply the blacklist argument to exclude
edges pointing at the genetic variant, and therefore evaluate recall and precision including the edges
involving these edges (i.e., includeGV = TRUE).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
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References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

3. Kalisch M, Machler M, Colombo D, Maathuis MH and Buhlmann P (2012). Causal Inference
Using Graphical Models with the R Package pcalg. Journal of Statistical Software, 47, 26.

4. Scutari M (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3), 1-22.

See Also

RecallPrecision: Performance evaluation in terms of recall and precision.

Examples

# For demonstration purposes, only 10 data sets
# with a sample size of 100 are simulated here.

# Comparison of inference accuracy on model 1 without a v-structure
Result1 <- CompareMethodsVStructure(N = 100,

signal = 1.0,
'model1',
includeGV = TRUE,
ita = 10)

# Comparison of inference accuracy with a v-structure
Result2 <- CompareMethodsVStructure(N = 100,

signal = 1.0,
'model2',
includeGV = TRUE,
ita = 10)

CutModules Cut a numeric variable into intervals

Description

Similar to cut2 function with some modification.

Usage

CutModules(x, cuts, m, g, levels.mean = FALSE, digits, minmax = TRUE,
oneval = TRUE, onlycuts = FALSE)
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Arguments

x Numeric vector to classify into intervals.

cuts Cut points

m Desired minimum number of observations in a group.

g Number of quantile groups.

levels.mean Set to TRUE to make the new categorical vector have levels attribute that is the
group means of x instead of interval endpoint labels.

digits Number of significant digits to use in constructing levels. The default is 3, and
5 if levels.mean = TRUE.

minmax If cuts is specified but min(x) < min(cuts) or max(x) > max(cuts) augments cuts
to include min and max x.

oneval If an interval contains only one unique value, the interval will be labeled with the
formatted version of that value instead of the interval endpoints unless oneval =
FALSE.

onlycuts Set to TRUE to only return the vector of computed cuts. This consists of the
interior values plus outer ranges.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

data_examples Example data under a simple and complex models

Description

Example data under the simple and complex graphs. Data may be continuous or discrete.

Usage

data(data_examples)

Details

For each model, the graph and a simulated data matrix are available for both continuous and discrete
data.

For continuous data with genetic information: 1000 samples in row and 6 variables in column.
First two columns are the genetic variants and remaning columns are gene expression.

Continuous data without genetic information: 1000 samples in row and 8 variables in column.
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Discrete data with genetic information: 1000 samples in row and 6 variables in column. First
column is the genetic variant and remaning columns are the gene expression.

Discrete data without genetic information: 1000 samples in row and 5 variables in column.

Continuous data with genetic information for complex model: 1000 samples in row and 22
variables in column. First 14 column is the genetic variants and remaning columns are the genes
expression.

Value

A list that containing the numeric data matrix and components of a graph.

• simple: Simple model.

• complex: Complex model.

• cont: Continuous.

• disc: Discrete.

• withGV: With genetic information.

• withoutGV: Without genetic information.

• data: Data matrix.

• graph: Components of a graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

# Continuous data with genetic varitant (GV)
# load the data
data("data_examples")

# Extract the sample size
n <- nrow(data_examples$simple$cont$withGV$data)

# Extract the node/column names
V <- colnames(data_examples$simple$cont$withGV$data)

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$cont$withGV$data),

n = n)

# Infer the graph by MRPC
data.mrpc.cont.withGV <- MRPC(data = data_examples$simple$cont$withGV$data,

suffStat = suffStat_C,
GV = 2,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
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FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$cont$withGV$graph,

main = "truth")
# plot the inferred graph
plot(data.mrpc.cont.withGV,

main = "inferred")

# Continuous data without genetic information
# load the data
data("data_examples")

# Extract the sample size
n <- nrow(data_examples$simple$cont$withoutGV$data)

# Extract the node/column names
V <- colnames(data_examples$simple$cont$withoutGV$data)

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$cont$withoutGV$data),

n = n)

# Infer the graph by MRPC
data.mrpc.cont.withoutGV <- MRPC(data = data_examples$simple$cont$withoutGV$data,

suffStat = suffStat_C,
GV = 0,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$cont$withoutGV$graph,

main = "truth")
# plot the inferred graph
plot(data.mrpc.cont.withoutGV,

main = "inferred")

# Discrete data with genetic information
# load the data
data("data_examples")

# Extract the sample size
n <- nrow(data_examples$simple$disc$withGV$data)

# Extract the node/column names
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V <- colnames(data_examples$simple$disc$withGV$data)

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$disc$withGV$data),

n = n)

# Infer the graph by MRPC
data.mrpc.disc.withGV <- MRPC(data = data_examples$simple$disc$withGV$data,

suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results
par (mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$disc$withGV$graph,

main = "truth")
# Plot the inferred causal graph
plot(data.mrpc.disc.withGV,

main = "inferred")

# Discrete data without genetic information
# load the data
data("data_examples")

# Extract the sample size
n <- nrow (data_examples$simple$disc$withoutGV$data)

# Extract the node/column names
V <- colnames(data_examples$simple$disc$withoutGV$data)

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$disc$withoutGV$data),

n = n)

# Infer the graph by MRPC
data.mrpc.disc.withoutGV <- MRPC(data = data_examples$simple$disc$withoutGV$data,

suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$disc$withoutGV$graph,
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main = "truth")
# plot the inferred graph
plot(data.mrpc.disc.withoutGV,

main = "inferred")

# Continuous data with genetic information for complex model
# load the data
data("data_examples")

# Graph without clustering
plot(data_examples$complex$cont$withGV$graph)

# Adjacency matrix from directed example graph
Adj_directed <- as(data_examples$complex$cont$withGV$graph,

"matrix")

# Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,

minModuleSize = 5)

# Visualization of inferred graph with modules colors
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,

PlotDendrogramObj,
GV=14,
node.size=8,
arrow.size = 5,
label.size = 3,
alpha = 1)

# plot
plot(PlotGraphWithModulesObj)

data_GEUVADIS GEUVADIS data with 62 eQTL-gene sets

Description

The GEUVADIS (Lappalainen et al., 2013) data (i.e., gene expression) measured in Lymphoblas-
toid Cell Lines (LCLs) on a subset of individuals from the 1,000 Genomes Project including 373
Europeans and 89 Africans.

Details

The GEUVADIS (Genetic European Variation in Disease) project identified eQTLs across the hu-
man genome. Among these eQTLs, ~70 have more than one target gene. Additionally, we found
62 unique eQTLs which exhibit pleiotropy. We extracted the genotypes of these 62 eQTLs and the
expression of the target genes for 373 Europeans and 89 Africans (see Badsha and Fu, 2019).

Value

A list that contains 62 eQTL-gene sets data for 373 Europeans and 89 Africans.
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Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Lappalainen T, et al. (2013). Transcriptome and genome sequencing uncovers functional varia-
tion in humans. Nature, 501, 506-511.

Examples

# Data for 373 Europeans of eQTL #1
data_GEUVADIS$Data_Q1$Data_EUR

# Data for 89 Africans of eQTL #1
data_GEUVADIS$Data_Q1$Data_AFR

data_GEUVADIS_combined

Combined genotype and gene expression data from 62 eQTL-gene sets
in 373 Europeans from GEUVADIS

Description

The genotype and gene expression data of 62 eQTL-gene sets in 373 Europeans from the GEU-
VADIS consortium (Lappalainen et al., 2013) are combined into one data matrix. Each of these
eQTLs has been identified to be associated with more than one gene (see details in Badsha and Fu,
2019).

Details

The data set contains 373 samples in rows and 194 variables (62 eQTLs and 132 genes) in columns.
Specifically, the columns are: eQTL1, gene1 for eQTL1, gene2 for eQTL1, eQTL2, gene1 for
eQTL2, gene2 for eQTL2 and so on.

For analysis, we account for potential confounding variables as additional nodes in the graph. To
do so, we first perform Principal Component Analysis (PCA) on the entire gene expression matrix
from the European samples in GEUVADIS, and extract the top 10 PCs as potential confounding
variables. We next examine the statistical association between each of the top PCs and the eQTL-
gene sets, and identify statistically significant associations (accounting for multiple testing with the
q vlaue method). We then apply MRPC to each eQTL-gene set with its associated PCs. See details
in the examples below. Also see Badsha and Fu (2019) and Badsha et al. (2018).

Value

Matrix
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Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Lappalainen T, et al. (2013). Transcriptome and genome sequencing uncovers functional varia-
tion in humans. Nature, 501, 506-511.

2. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

3. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

See Also

data_GEUVADIS

Examples

# Examining principal components (PCs) as potential confounders in analysis of the GEUVADIS data

library(MRPC) # MRPC

# Load genomewide gene expression data in GEUVADIS
# 373 individuals
# 23722 genes
data_githubURL <- "https://github.com/audreyqyfu/mrpc_data/raw/master/data_GEUVADIS_allgenes.RData"
load(url(data_githubURL))

# Run PCA
library(stats) # prcomp
PCs <- prcomp(data_GEUVADIS_allgenes,scale=TRUE)
# Extract the PCs
PCs_matrix <- PCs$x

# Load the 62 eQTL-gene sets
# 373 individuals
# 194 variables (eQTLs=62 and genes=132)
data("data_GEUVADIS_combined")

# Identify PCs that are significantly associated with eQTL-gene sets
# Compute the correlation and corresponding p values between the top PCs and the eQTLs and genes
library(psych) # to use corr.test
no_PCs <- 10
corr_PCs <- corr.test(PCs_matrix[,1:no_PCs],data_GEUVADIS_combined)
# The correlation matrix
corr_matrix <- corr_PCs$r
# The p values
Pvalues <- corr_PCs$p
# Apply the q value method at FDR of 0.05
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library(WGCNA) # qvalue
qobj <- qvalue(Pvalues, fdr.level=0.05,robust = TRUE)

# Significant associations
Significant_asso <- qobj$significant
List_significant_asso <- which(Significant_asso, arr.ind = TRUE, useNames = TRUE)
# 1st column contains the PCs
# 2nd column contains the associated eQTLs or genes
List_significant_asso[1:10,]

# Examples of eQTLs or genes that are significantly associated with selected PCs
# PC1
eqtl.genes_PC1 <- colnames(data_GEUVADIS_combined)[List_significant_asso

[which(List_significant_asso[,1]=="1"),2]]
print(eqtl.genes_PC1)
# PC2
eqtl.genes_PC2 <- colnames(data_GEUVADIS_combined)[List_significant_asso

[which(List_significant_asso[,1]=="2"),2]]
print(eqtl.genes_PC2)
# PC3
eqtl.genes_PC3 <- colnames(data_GEUVADIS_combined)[List_significant_asso

[which(List_significant_asso[,1]=="3"),2]]
print(eqtl.genes_PC3)

#-------------
# Example 1
# Gene SBF2-AS1 is significantly associated with PC2
print(eqtl.genes_PC2[24])

# Gene SBF2-AS1 is in the eQTL-gene set #50 with snp rs7124238 and gene SWAP70
data_GEU_Q50 <- data_GEUVADIS$Data_Q50$Data_EUR
colnames(data_GEU_Q50) <- c("rs7124238","SBF2-AS1","SWAP70")

# Analyze the eQTL-gene set without PC2
n <- nrow (data_GEU_Q50) # Number of rows
V <- colnames(data_GEU_Q50) # Column names

# Calculate Pearson correlation
suffStat_C_Q50 <- list(C = cor(data_GEU_Q50, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q50 <- MRPC(data_GEU_Q50,

suffStat = suffStat_C_Q50,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)
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# Analyze the eQTL-gene set with PC2
data_withPC_Q50 <- cbind(data_GEU_Q50,PCs_matrix[,2])
colnames(data_withPC_Q50)[4] <- "PC2"

n <- nrow (data_withPC_Q50) # Number of rows
V <- colnames(data_withPC_Q50) # Column names

# Calculate Pearson correlation
suffStat_C_withPC_Q50 <- list(C = cor(data_withPC_Q50, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q50 <- MRPC(data_withPC_Q50,

suffStat = suffStat_C_withPC_Q50,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q50,

main = "Without PC" )
plot(MRPC.fit_withPC_GEU_Q50,

main = "Without PC")

#-------------
# Example 2
# Gene LCMT2 is significantly associated with PC1
print(eqtl.genes_PC1[8])

# Gene LCMT2 is in the eQTL-gene set #29 with snp rs2278858 and gene ADAL
data_GEU_Q29 <- data_GEUVADIS$Data_Q29$Data_EUR
colnames(data_GEU_Q29) <- c("rs2278858", "LCMT2", "ADAL")

# Analyze the eQTL-gene set without PC1
n <- nrow (data_GEU_Q29) # Number of rows
V <- colnames(data_GEU_Q29) # Column names

# Calculate Pearson correlation
suffStat_C_Q29 <- list(C = cor(data_GEU_Q29, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q29 <- MRPC(data_GEU_Q29,

suffStat = suffStat_C_Q29,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
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labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Analyze the eQTL-gene set with PC1
data_withPC_Q29 <- cbind(data_GEU_Q29,PCs_matrix[,1])
colnames(data_withPC_Q29)[4] <- "PC1"

n <- nrow (data_withPC_Q29) # Number of rows
V <- colnames(data_withPC_Q29) # Column names

# Calculate Pearson correlation
suffStat_C_withPC_Q29 <- list(C = cor(data_withPC_Q29, use = 'pairwise.complete.obs'),

n = n)

# Infer graph by MRPC
MRPC.fit_withPC_GEU_Q29 <- MRPC(data_withPC_Q29,

suffStat = suffStat_C_withPC_Q29,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q29,

main = "Without PC" )
plot(MRPC.fit_withPC_GEU_Q29,

main = "With PC")

#-------------
# Example 3
# Genes SERPINB8 and HMSD are significantly associated with PC2
print(eqtl.genes_PC2[c(20,21)])

# Genes SERPINB8 and HMSD are in the eQTL-gene set #43 with snp rs55928920
data_GEU_Q43 <- data_GEUVADIS$Data_Q43$Data_EUR
colnames(data_GEU_Q43) <- c("rs55928920","SERPINB8","HMSD")

# Analyze the eQTL-gene set without PC2
n <- nrow (data_GEU_Q43) # Number of rows
V <- colnames(data_GEU_Q43) # Column names

# Calculate Pearson correlation
suffStat_C_Q43 <- list(C = cor(data_GEU_Q43, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q43 <- MRPC(data_GEU_Q43,

suffStat = suffStat_C_Q43,
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GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Analyze the eQTL-gene set with PC2
data_withPC_Q43 <- cbind(data_GEU_Q43,PCs_matrix[,2])
colnames(data_withPC_Q43)[4] <- "PC2"

n <- nrow (data_withPC_Q43) # Number of rows
V <- colnames(data_withPC_Q43) # Column names

# Calculate Pearson correlation
suffStat_C_withPC_Q43 <- list(C = cor(data_withPC_Q43, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q43 <- MRPC(data_withPC_Q43,

suffStat = suffStat_C_withPC_Q43,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q43,

main = "Without PC" )
plot(MRPC.fit_withPC_GEU_Q43,

main = "With PC")

#-------------
# Example 4
# Gene PLAC8 is significantly associated with PC2 and PC3
print(eqtl.genes_PC2[17])
print(eqtl.genes_PC3[12])

# Gene PLAC8 is in the eQTL-gene set #34 with snp rs28718968 and gene COQ2
data_GEU_Q34 <- data_GEUVADIS$Data_Q34$Data_EUR
colnames(data_GEU_Q34) <- c("rs28718968","COQ2", "PLAC8")

# Analyze the eQTL-gene set without PC2 and PC3
n <- nrow (data_GEU_Q34) # Number of rows
V <- colnames(data_GEU_Q34) # Column names

# Calculate Pearson correlation
suffStat_C_Q34 <- list(C = cor(data_GEU_Q34, use = 'pairwise.complete.obs'),
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n = n)

# Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q34 <- MRPC(data_GEU_Q34,

suffStat = suffStat_C_Q34,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Analyze the eQTL-gene set with PC2 and PC3
data_withPC_Q34 <- cbind(data_GEU_Q34,PCs_matrix[,c(2,3)])
colnames(data_withPC_Q34)[4:5] <- c("PC2", "PC3")

n <- nrow (data_withPC_Q34) # Number of rows
V <- colnames(data_withPC_Q34) # Column names

# Calculate Pearson correlation
suffStat_C_withPC_Q34 <- list(C = cor(data_withPC_Q34, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q34 <- MRPC(data_withPC_Q34,

suffStat = suffStat_C_withPC_Q34,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q34,

main = "Without PC" )
plot(MRPC.fit_withPC_GEU_Q34,

main = "With PC")

#-------------
# Example 5
# Genes PIP4P1 and PNP are significantly associated with PC1 and PC3, respectively.
print(eqtl.genes_PC1[1])
print(eqtl.genes_PC3[7])

# Genes PIP4P1 and PNP are in the eQTL-gene set #8 with snp rs11305802 and gene AL355075.3
data_GEU_Q8 <- data_GEUVADIS$Data_Q8$Data_EUR
colnames(data_GEU_Q8) <- c("rs11305802","PIP4P1", "AL355075.3", "PNP")

# Analyze the eQTL-gene set without PC1 and PC3
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n <- nrow (data_GEU_Q8) # Number of rows
V <- colnames(data_GEU_Q8) # Column names

# Calculate Pearson correlation
suffStat_C_Q8 <- list(C = cor(data_GEU_Q8, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q8 <- MRPC(data_GEU_Q8,

suffStat = suffStat_C_Q8,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Analyze the eQTL-gene set with PC1 and PC3
data_withPC_Q8 <- cbind(data_GEU_Q8,PCs_matrix[,c(1,3)])
colnames(data_withPC_Q8)[5:6] <- c("PC1","PC3")

n <- nrow (data_withPC_Q8) # Number of rows
V <- colnames(data_withPC_Q8) # Column names

# Calculate Pearson correlation
suffStat_C_withPC_Q8 <- list(C = cor(data_withPC_Q8, use = 'pairwise.complete.obs'),

n = n)

# Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q8 <- MRPC(data_withPC_Q8,

suffStat = suffStat_C_withPC_Q8,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q8,

main = "Without PC" )
plot(MRPC.fit_withPC_GEU_Q8,

main = "With PC")

data_without_outliers Example data without outliers (noises)
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Description

The data contain two genotype nodes, V1 and V2, and three phenotype nodes, T1, T2 and T3. The
code below compares the performance of MRPC, mmhc and pc on this data set.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

# Load packages

library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # mmhc

# Truth without outlier
tarmat <- matrix(0,

nrow = ncol(data_with_outliers),
ncol = ncol(data_with_outliers))

colnames(tarmat) <- colnames(data_with_outliers)

rownames(tarmat) <- colnames(data_with_outliers)

tarmat[1,2] <- 1
tarmat[2,1] <- 1
tarmat[1,3] <- 1
tarmat[4,3] <- 1
tarmat[4,5] <- 1

Truth <- as(tarmat,
"graphNEL")

# Data without outliers
n <- nrow(data_without_outliers) # Number of rows
V <- colnames(data_without_outliers) # Column names

# Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_without_outliers),

n = n)

# Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_without_outliers,

Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,

n = n)
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# Infer the graph by MRPC with robust correlation
MRPC.fit_withoutoutlier <- MRPC(data_without_outliers,

suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest ='gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Infer the by pc with Pearson correlation
pc.fit_withoutoutlier <- pc(suffStat = suffStat_C1,

indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

# Infer the graph by mmhc
data <- data.frame(data_without_outliers)
mmhc_withoutoutlier <- mmhc(data)

# Data with outliers
n <- nrow (data_with_outliers) # Number of rows
V <- colnames(data_with_outliers) # Column names

# Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_with_outliers),

n = n)

# Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_with_outliers,

Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,

n = n)

# Infer the graph by MRPC with robust correlation
MRPC.fit_withoutlier <- MRPC(data_with_outliers,

suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest ='gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Infer the graph by pc with Pearson correlation
pc.fit_withoutlier <- pc(suffStat = suffStat_C1,

indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

# Infer the graph by mmhc
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data <- data.frame(data_with_outliers)
mmhc_withoutlier <- mmhc(data)

# Plot the inferred graphs
par(mfrow = c(2, 4))
plot(Truth,

main = "Truth")
plot(MRPC.fit_withoutoutlier,

main = "MRPC")
plot(pc.fit_withoutoutlier,

main = "pc")
graphviz.plot(mmhc_withoutoutlier,

main = "mmhc")
plot(Truth,

main = " ")
plot(MRPC.fit_withoutlier,

main = " ")
plot(pc.fit_withoutlier,

main = " ")
graphviz.plot(mmhc_withoutlier,

main = " ")

data_with_outliers Example data with outliers (noises)

Description

The data contain two genotype nodes, V1 and V2, and three phenotype nodes, T1, T2 and T3.
The genotype nodes are discrete, whereas the phenotype nodes are continuous. The data matrix
includes 10 outliers (noises) generated from a uniform distribution. The code below compares the
performance of MRPC, mmhc and pc on this data set.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

# Load packages

library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # mmhc

# Truth without outlier
tarmat <- matrix(0,
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nrow = ncol(data_with_outliers),
ncol = ncol(data_with_outliers))

colnames(tarmat) <- colnames(data_with_outliers)

rownames(tarmat) <- colnames(data_with_outliers)

tarmat[1,2] <- 1
tarmat[2,1] <- 1
tarmat[1,3] <- 1
tarmat[4,3] <- 1
tarmat[4,5] <- 1

Truth <- as(tarmat,
"graphNEL")

# Data without outliers
n <- nrow(data_without_outliers) # Number of rows
V <- colnames(data_without_outliers) # Column names

# Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_without_outliers),

n = n)

# Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_without_outliers,

Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,

n = n)

# Infer the graph by MRPC robust correlation
MRPC.fit_withoutoutlier <- MRPC(data_without_outliers,

suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest ='gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Infer the graph by pc with Pearson correlation
pc.fit_withoutoutlier <- pc(suffStat = suffStat_C1,

indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

# Infer the graph by mmhc
data <- data.frame(data_without_outliers)
mmhc_withoutoutlier <- mmhc(data)

# Data with outliers
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n <- nrow (data_with_outliers) # Number of rows
V <- colnames(data_with_outliers) # Column names

# Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_with_outliers),

n = n)

# Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_with_outliers,

Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,

n = n)

# Infer the graph by MRPC with robust correlation
MRPC.fit_withoutlier <- MRPC(data_with_outliers,

suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest ='gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Infer the graph by pc with Pearson correlation
pc.fit_withoutlier <- pc( suffStat = suffStat_C1,

indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

# Infer the graph by mmhc
data <- data.frame(data_with_outliers)
mmhc_withoutlier <- mmhc(data)

# Plot the inferred graphs
par(mfrow = c(2, 4))
plot(Truth,

main = "Truth")
plot(MRPC.fit_withoutoutlier,

main = "MRPC")
plot(pc.fit_withoutoutlier,

main = "pc")
graphviz.plot(mmhc_withoutoutlier,

main = "mmhc")
plot(Truth,

main = " ")
plot(MRPC.fit_withoutlier,

main = " ")
plot(pc.fit_withoutlier,

main = " ")
graphviz.plot(mmhc_withoutlier,

main = " ")
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EdgeOrientation Perform edge orientation under the MRPC algorithm

Description

This function performs the second step of the MRPC algorithm where it determines the edge di-
rection in the graph skeleton inferred by the function ModiSkeleton. If the data contain genetic
variants, this function first determines the edges between genetic variants and phenotype nodes
based on the principle of Mendelian randomization. Next it identifies potential v-structures and
orients the edges in them. For the remaining edges, it examines triplets in turn to see whether a
triplet is compatible with one of the basic models. See the references for details.

Usage

EdgeOrientation(gInput, GV, suffStat, FDR, alpha,indepTest,
FDRcontrol, verbose = FALSE)

Arguments

gInput Object containing the skeleton and marginal and conditional independence in-
formation.

GV The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data ma-
trix. For example, if the data has one genetic variant, first column, then GV = 1,
if 2, 1st and 2nd Column, then GV = 2, and so on.

suffStat A list of sufficient statistics containing all necessary elements for the condi-
tional independence tests in the function indepTest for gaussCItest. The suffi-
cient statistics consist of the correlation matrix of the data and the sample size.

FDR False discovery rate (number between 0 and 1). If FDR = 0.05, this ensures that
the FDR and mFDR remains below 0.05.

alpha Significance level (number in (0,1) for the individual tests.

indepTest A function for testing conditional independence. It is used to test the conditional
independence of x and y given S, called as indepTest(x, y, S, suffStat). Where,
x and y are variables, and S is a vector, possibly empty, of variables. suffStat is
a list, see the argument above. The return value of indepTest is the p-value of
the test for conditional independence. There are three options for different data
types, for example, Gaussian data = gaussCItest, discrete data = disCItest and
Binary data = binCItest. See help(gaussCItest)

FDRcontrol (optional) The default is TRUE which implements a sequential FDR control
method, otherwise used fixed significance level for the individual tests.

verbose (optional) 1: detailed output is provided; 0: No output is provided
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Details

The orientation of the edge directions based on the principle of Mendelian randomization involves
four cases, which are four of the five basic models in Badsha and Fu, 2019 and Badsha et al., 2018.
For example, we consider x to be a genetic variant, y and z the phenotype nodes.

The four cases are as follows:

Case-1: Relation between x, genetic variant, and the other nodes. Then genetic variant will regulate
the other node, genes, and direction will be genetic variant –> other node. Note that if the data has
more than one genetic variant and there is an edge between two genetic variants, then direction will
be genetic variant <–> genetic variant, which indicates that there is evidence that the two genetic
variants are not independent, but we do not have enough information to determine which genetic
variant is the regulator and which is the target.

Case-2: If y and z are adjacent and, x and z are conditionally independent given y, then gene y will
regulate the expression of gene z and the edge direction will be y –> z.

Case-3: If y and z are adjacent and, x and z are conditionally dependent given y, then gene z will
regulate the expression of gene y and the edge direction will be z –> y.

Case-4: If y and z are adjacent and x and y are conditionally dependent given z and x and z are
conditionally dependent given y, then the edge direction will be y <–> z.

Value

An object that contains an estimate of the equivalence class of the underlying DAG.

call: A call object: the original function call.

n: The sample size used to estimate the graph.

max.ord: The maximum size of the conditioning set used in the conditional independence tests of
the first part of the algorithm.

n.edgetests: The number of conditional independence tests performed by the first part of the
algorithm.

sepset: Separation sets.

pMax: A square matrix , where the (i, j)th entry contains the maximal p-value of all conditional
independence tests for edge i–j.

graph: An object of class "graph": The undirected or partially directed graph that was estimated.

zMin: Deprecated.

test: The number of tests that have been performed.

alpha: The level of significance for the current test.

R: A vector of all the decisions made so far from the tests that have been performed.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
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References
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See Also

MRPC; ModiSkeleton; SimulateData.

Examples

# Load predefined data
# Data pre-processing

# The 1st column of the input matrix will be the
# genetic variant and the remaining columns are the gene expression data.

# Model 1
Truth <- MRPCtruth$M1 # Truth for model 1
data <- simu_data_M1 # data load for model 1
n <- nrow (data) # Number of row
V <- colnames(data) # Column names

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),

n = n)

# Infer a graph skeleton
Skel.fit <- ModiSkeleton(data,

suffStat = suffStat_C,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Edge Orientation
Edge_orientation <- EdgeOrientation(Skel.fit,

suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results
par(mfrow = c(1, 2))
plot(Truth,
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main = "(A) Truth")
plot(Edge_orientation,

main = "(B) MRPC ")

# Other models are available and may be called as follows:
# Model 0
# Truth <- MRPCtruth$M0
# data <- simu.data_M0

# Model 2
# Truth <- MRPCtruth$M2
# data <- simu_data_M2

# Model 3
# Truth <- MRPCtruth$M3
# data <- simu_data_M3

# Model 4
# Truth <- MRPCtruth$M4
# data <- simu_data_M4

# Model Multiparent
# Truth <- MRPCtruth$Multiparent
# data <- simu_data_multiparent

# Model Star
# Truth <- MRPCtruth$Star
# data <- simu_data_starshaped

# Model Layered
# Truth <- MRPCtruth$Layered
# data <- simu_data_layered

empty Check empty matrix

Description

Need for check empty matrix.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
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ModiSkeleton Infer a graph skeleton (undirected graph)

Description

This function infers a graph skeleton (i.e., an undirected graph). It is based on the function skeleton
from the pcalg package. Both functions perform marginal and conditional indpenendence tests.
However, ModiSkeleton implements an online false discovery rate (FDR) control method in order
to control the overall FDR, whereas skeleton controls only the type I error rate for each individual
test. See details below.

Usage

ModiSkeleton(data, suffStat, FDR, alpha, indepTest, labels, p,
method = c("stable", "original", "stable.fast"),
m.max = Inf, fixedGaps = NULL, fixedEdges = NULL,
NAdelete = TRUE, FDRcontrol = TRUE, verbose = FALSE)

Arguments

Many arguments are similar to those in skeleton and pc in the pcalg package.
Several arguments here are also arguments for the function MRPC.

Data matrix, where the rows are samples and the columns are features (e.g.,
genetic variants (GVs) and phenotypes). Columns are for GVs, if available, ap-
pear before other columns for phenotypes (e.g., gene expression). For example,
if there is one GV, then the first column of the data matrix is the GV and the
remaining columns are the gene expression data.

datasuffStat A list consisting of the correlation matrix of the data and the sample size.

FDR Desired overall FDR level.

alpha significance level (number in (0,1) for the individual tests.

indepTest Name of the statistical test. It is used to test the independence of x and y
given S, where x and y are variables and S is a vector, possibly empty, of vari-
ables. The return value of indepTest is the p-value of the test for conditional
independence. Different tests may used for different data types. For example,
indepTest='gaussCItest' for Gaussian data, indepTest='disCItest' for
discrete data, and indepTest='binCItest' for binary data. See additional de-
tails in help(gaussCItest).
ci.test in the bnlearn package (Marco Scutari, 2010) may also be used for
testing conditional independence and return a p-value. The default test statis-
tic is the mutual information for categorical variables, the Jonckheere-Terpstra
test for ordered factors and the linear correlation for continuous variables. See
help(ci.test).

labels A character vector of names of variables (nodes). These are typically the column
names of the data matrix.
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p (optional) The number of variables (nodes). Need to be specified if the labels
are not provided, in which case the labels are set to 1:p.

method (optional) Character string specifying method. The default, "stable" provides an
order-independent skeleton.

m.max (optional) Maximum size of the conditioning sets that are considered in the con-
ditional independence tests.

fixedGaps (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are
TRUE, the edge x—y is removed before starting the algorithm. Therefore, this
edge is guaranteed to be absent in the resulting graph.

fixedEdges (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are
TRUE, the edge x—y is never considered for removal. Therefore, this edge is
guaranteed to be present in the resulting graph.

NAdelete (optional) If indepTest returns NA and this option is TRUE, the corresponding
edge is deleted. If this option is FALSE, the edge is not deleted.

FDRcontrol (optional) The default is TRUE which is used sequential FDR control method,
otherwise used fixed significance level for the individual tests.

verbose (optional) If TRUE, detailed output is provided. Default is FALSE for no output
details

Details

The ModiSkeleton function incorporates sequential hypothesis testing to infer the graph skeleton.
This function starts with a complete graph (all nodes are connected with undirected edges) and
performs a series of marginal and conditional independence tests, removing the corresponding edge
if the test is not rejected.

First, all pairs of nodes are tested for marginal independence. If two nodes x and y are judged to be
marginally independent at a type I error rate alpha, the edge between them is deleted and the empty
set is saved as separation sets S[x, y] and S[y, x]. After all pairs have been tested for marginal
independence, some edges may be removed.

Second, nodes (x, y) with an edge are tested for conditional independence given all subsets of the
neighboring nodes. If there is any node z such that x and y are conditionally independent given
z, the edge between x and y is removed and node z is saved as separation set, sepset, S[x, y] and
S[y, x]. The algorithm continues in this way by increasing the size of the conditioning set step by
step. The algorithm stops if all adjacency sets in the current graph are smaller than the size of the
conditioning set. The result is the skeleton in which every edge is still undirected.

Unlike existing algorithms, which control only the type I error rate for each individual test, MRPC
implements the LOND (Level On the Number of Discoveries) method (Javanmard and Montanari,
2015), which is a sequential hypothesis testing procedure and sets value of alpha for each test based
on the number of discoveries (i.e., rejections), to control the overall false discovery rate.

Value

An object containing an estimate of the skeleton of the underlying DAG as follow:

call: A call object: the original function call.

n: The sample size used to estimate the graph.
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max.ord: The maximum size of the conditioning set used in the conditional independence tests of
the first part of the algorithm.

n.edgetests: The number of conditional independence tests performed by the first part of the
algorithm.

sepset: Separation sets.

pMax: A square matrix , where the (i, j)th entry contains the maximum p-value of all conditional
independence tests for edge i–j.

graph: Object of class "graph": The undirected or partially directed graph that was estimated.

zMin: Deprecated.

test: The number of tests that have been performed.

alpha: The level of significance for the current test.

R: All of the decisions made so far from tests that have been performed.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB, Mollah MN, Jahan N and Kurata H (2013). Robust complementary hierarchical
clustering for gene expression data analysis by beta-divergence. J Biosci Bioeng 116(3): 397-407.

2. Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. R. Statist. Soc. B, B, 57, 289-300.

3. Javanmard A and Montanari A (2015). On Online Control of False Discovery Rate. arXiv:150206197
[statME].

4. Kalisch M and Buhlmann P (2007). Estimating High-Dimensional Directed Acyclic Graphs with
the PC-Algorithm, Journal of Machine Learning Research, 8, 613-636.

5. Scutari M (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3), 1-22.

6. Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition.
The MIT Press.

7.Tsamardinos I, Brown LE and Aliferis CF (2006). The Max-Min Hill-Climbing Bayesian Net-
work Structure Learning Algorithm. Machine Learning, 65 (1), 31-78.

See Also

MRPC; EdgeOrientation; SimulateData.

Examples

# Load predefined simulated data
# Data pre-processing

# The 1st column of the input matrix will be the
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# genotype of the expression quantitative trait loci
# (eQTL)/Copy number variation (CNVs) and the remaining
# columns are the gene expression data.
# We used pre-assigned level alpha = 0.05 that ensures
# FDR and mFDR remains below 0.05.

# Model 1

data <- simu_data_M1 # load data for model 1
n <- nrow(data) # Number of row
V <- colnames(data) # Column names

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),

n = n)

# Infer a graph skeleton
Skel.fit <- ModiSkeleton(data,

suffStat = suffStat_C,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Plot the results

plot(Skel.fit@graph,
main ="Estimated Skeleton")

# Other models are available and may be called as follows:
# Model 0
# data <- simu_data_M0

# Model 2
# data <- simu_data_M2

# Model 3
# data <- simu_data_M3

# Model 4
# data <- simu_data_M4

# Model Multiparent
# data <- simu_data_multiparent

# Model Star
# data <- simu_data_starshaped

# Model Layered
# data <- simu_data_layered
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mpinv Calculate the inverse matrix

Description

This function calculates the inverse of the non-square matrix as part of the calculation of the robust
correlation matrix.

Usage

mpinv(X)

Arguments

X Data Matrix

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

Inversematrix <- mpinv(simu_data_M0)

MRPC Infer a causal network using the MRPC algorithm

Description

This function is used to infer a causal network (or a causal graph) with directed and undirected edges
from observational data. It implements the MRPC (PC with the principle of Mendelian randomiza-
tion) algorithm described in Badsha and Fu, 2019 and Badsha et al., 2018, and the implementation is
based on the pc algorithm in the pcalg package. The MRPC algorithm contains four major updates
over the pc algorithm: (i) incorporating a sequential testing method to control the False Discovery
Rate (FDR), (ii) improved v-structure identification; (iii) allowing for calculation of robust corre-
lation to reduce the impact of outliers, and (iv) a new procedure for edge orientation based on the
principle of Mendelian randomization (PMR) (Badsha and Fu, 2019 and Badsha et al., 2018). See
details below.
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Usage

MRPC(data, suffStat, GV, FDR = 0.05, alpha = 0.05, indepTest, labels, p,
fixedGaps = NULL, fixedEdges = NULL,
NAdelete = TRUE, m.max = Inf,
u2pd = c("relaxed", "rand", "retry"),
skel.method = c("stable", "original", "stable.fast"),
conservative = FALSE,
maj.rule = FALSE, solve.confl = FALSE, FDRcontrol = TRUE,
verbose = FALSE)

Arguments

This function is based on the pc function in the pcalg package. Therefore, many
arguments are similar to those in pc.

Data matrix, where the rows are observations and the columns are features (i.e.,
variables, or nodes). If genetic variants (GVs) are included, then the columns
start from GVs (e.g., single-nucleotide polymorphisms, or SNPs; insertions and
deletions, or indels; copy number variation, or CNVs; and expression quanti-
tative trait loci, or eQTLs to genes), and followed by phenotypes (e.g., gene
expression). For example, if the data contains one GV, then the first column of
the input matrix is the GV and the remaining columns are the gene expression
data.

datasuffStat A list of sufficient statistics, containing all necessary elements for the condi-
tional independence tests in the function indepTest for gaussCItest. The suffi-
cient statistics consist of the correlation matrix of the data and the sample size.

GV The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data ma-
trix. For example, if the data has one SNPs/indels/CNV/eQTL, first column,
then GV = 1, if 2 SNPs/indels/CNV/eQTL, 1st and 2nd Column, then GV = 2,
if no GV then GV = 0, and so on.

FDR Need to specify the desired level of the overall false discovery rate.

alpha significance level (number in (0,1) for the individual tests.

indepTest A function for testing conditional independence. It is used to test the conditional
independence of x and y given S, called as indepTest(x, y, S, suffStat). Where, x
and y are variables, and S is a vector, possibly empty, of variables. suffStat is a
list, see the argument above. The return value of indepTest is the p-value of the
test for conditional independence. The different indepTest is used for different
data types, for example, Gaussian data = gaussCItest, Discrete data = disCItest
and Binary data = binCItest. See help(gaussCItest)
The ci.test (Marco Scutari, 2010) is also used for testing conditional indepen-
dence and return value of indepTest is the p-value. If none is specified, the de-
fault test statistic is the mutual information for categorical variables, the Jonckheere-
Terpstra test for ordered factors and the linear correlation for continuous vari-
ables.See help(ci.test)
Remember that need to specify the which indepTest would like for indepen-
dence testing. For example, if you would like to use gaussCItest you would type
indepTest = ’gaussCItest’ into the function otherwise indepTest = ’citest’. Note
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that, we used gaussCItest to compare our MRPC with the existing pc, because
of ci.test is not robust. See details in example.

labels A character vector of variable, or node, names. All variables are denoted in
column in the input matrix.

p (optional) The number of variables, or nodes. May be specified if the labels are
not provided, in which case the labels are set to 1:p.

fixedGaps (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are
TRUE, the edge x—y is removed before starting the algorithm. Therefore, this
edge is guaranteed to be absent in the resulting graph.

fixedEdges (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are
TRUE, the edge x—y is never considered for removal. Therefore, this edge is
guaranteed to be present in the resulting graph.

NAdelete (optional) If indepTest returns NA and this option is TRUE, the corresponding
edge is deleted. If this option is FALSE, the edge is not deleted.

m.max (optional) Maximum size of the conditioning sets that are considered in the con-
ditional independence tests.

u2pd (optional) Character string specifying the method for dealing with conflicting
information.

skel.method (optional) Character string specifying method; the default, "stable" provides an
order-independent skeleton.

conservative (optional) Logical. Indicates if the conservative PC algorithm is used. In this
case, only option u2pd = "relaxed" is supported. Note that the resulting object
might not be extendable to a DAG. See details for more information.

maj.rule (optional) Logical. Indicates that the triplets will be checked for ambiguity using
a majority rule idea, which is less strict than the conservative PC algorithm. For
more information, see details.

solve.confl (optional) If TRUE, the orientation of the v-structures and the orientation rules
work with lists for candidate sets and allow bi-directed edges to resolve conflict-
ing edge orientations. In this case, only option u2pd = "relaxed" is supported.
Note that the resulting object might not be a CPDAG because bi-directed edges
might be present. See details for more information.

FDRcontrol (optional) The default is TRUE which is used sequential FDR control method,
otherwise used fixed significance level for the individual tests.

verbose (optional) If TRUE, detailed output is provided. The default is FALSE which
does not print output details.

Details

The PC algorithm is computationally efficient for learning a directed acyclic graph (Spirtes et al.,
2000). Several variants of the original PC algorithms are available (Kalisch and Buhlmann, 2007;
Kalisch et al., 2012). Similar to these PC-like algorithms, our MRPC algorithm also contains two
main steps:

Step-1: Inference of the graph skeleton. A graph skeleton is an undirected graph with edges that
are supported by the data. Similar to existing PC-like algorithms, we perform statistical tests for



MRPC 37

marginal and conditional independence tests. If the null hypothesis of independence is not rejected,
then the corresponding edge is removed and never tested again.

However, unlike existing algorithms, which control only the type I error rate for each individual
test, MRPC implements the LOND (Level On the Number of Discoveries) method (Javanmard
and Montanari, 2015), which is a sequential hypothesis testing procedure and sets the significance
level for each test based on the number of discoveries (i.e., rejections), to control the overall false
discovery rate (FDR). See ModiSkeleton.

Genome data may have outliers that drastically alter the topology of the inferred graph. MRPC
allows for the estimate of robust correlation, which may be the substitute of the Pearson correlation
as the input to graph inference (Badsha et al., 2013).

Step-2: Edge orientation. With the graph skeleton inferred from Step 1, we orient each edge that is
present in the graph. MRPC is fundamentally different from algorithms in the pcalg (Kalisch and
Buhlmann, 2007; Kalisch et al., 2012) and bnlearn (Scutari, 2010) packages in the following ways
(see EdgeOrientation):

(i) When analyzing genomic data, genetic variants provide additional information that helps distin-
guish the casual direction between two genes. Our MRPC algorithm incorporates the principle of
Mendelian randomization in graph inference, which greatly reduces the space of possible graphs
and increases the inference efficiency.

(ii) Next or if the input is not genomic data, we search for possible triplets that may form a v-
structure (e.g.,X–>Y<–Z). We check conditional test results from step I to see whether X and Z are
independent given Y. If they are, then this is not a v-structure; alternative models for the triplet may
be any of the following three Markov equivalent graphs: X–>Y–>Z, X<–Y<–Z, and X<–Y–>Z. If
this test is not performed in the first step, we conduct it in this step. This step improves the accuracy
of the v-structure identification over existing methods.

(iii) If there are undirected edges after steps (i) and (ii), we examine iteratively triplets of nodes
with at least one directed edge and no more than one undirected edge. We check the marginal and
conditional test results from Step I to determine which of the basic models is consistent with the
test results. It is plausible that some undirected edges cannot be oriented, and we leave them as
undirected.

Value

An object of class that contains an estimate of the equivalence class of the underlying DAG.

call: a call object: the original function call.

n: The sample size used to estimate the graph.

max.ord: The maximum size of the conditioning set used in the conditional independence tests in
the first part of the algorithm.

n.edgetests: The number of conditional independence tests performed by the first part of the
algorithm.

sepset: Separation sets.

pMax: A numeric square matrix , where the (i, j)th entry contains the maximal p-value of all condi-
tional independence tests for edge i–j.

graph: Object of class "graph": the undirected or partially directed graph that was estimated.

zMin: Deprecated.
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test: The number of tests that have been performed.

alpha: The level of significance for the current test.

R: All of the decisions made so far from tests that have been performed.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

3. Badsha MB, Mollah MN, Jahan N and Kurata H (2013). Robust complementary hierarchical
clustering for gene expression data analysis by beta-divergence. J Biosci Bioeng, 116(3): 397-407.

4. Javanmard A and Montanari A (2015). On Online Control of False Discovery Rate. arXiv:150206197
[statME].

5. Kalisch M and Buhlmann P (2007). Estimating High-Dimensional Directed Acyclic Graphs with
the PC-Algorithm, Journal of Machine Learning Research, 8, 613-636.

6. Kalisch M, Machler M, Colombo D, Maathuis MH and Buhlmann P (2012). Causal Inference
Using Graphical Models with the R Package pcalg. Journal of Statistical Software, 47, 26.

7. Scutari M (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical
Software, 35(3), 1-22.

8. Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition.
The MIT Press.

See Also

ModiSkeleton for inferring a graph skeleton (i.e., an undirected graph); EdgeOrientation for edge
orientation in the inferred graph skeleton; SimulateData for generating data under a topology.

Examples

# Load packages
# We compare different simulated data across five methods: MRPC,
# PC in pcalg (Kalisch et al., 2012), and pc.stable, mmpc and mmhc in
# bnlearn (Marco Scutari, 2010)

library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # pc.stable, mmpc and mmhc

# Data pre-processing
# The 1st column of the input matrix will be the genotype of the
# expression quantitative trait loci (eQTL)/Copy number variation (CNV)
# and the remaining columns are the gene expression data.
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# We used pre-assigned level alpha = 0.05 that ensures FDR and mFDR
# will remain below 0.05.

# Load predefined simulated data
# Model 1
Truth <- MRPCtruth$M1 # Truth for model 1
data <- simu_data_M1 # load data for model 1
n <- nrow (data) # Number of rows
V <- colnames(data) # Column names

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),

n = n)

# Infer the graph by MRPC
MRPC.fit <- MRPC(data,

suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Infer the graph by PC
pc.fit <- pc(suffStat = suffStat_C,

indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

# arcs not to be included from gene expression to genotype used in pc.stable, mmpc
bl <- data.frame (from=colnames (data)[-1], to='V1')

# Infer the graph by pc.stable
pc.stable.fit <- pc.stable(data.frame(data),blacklist=bl,undirected = FALSE)

# Infer the graph by mmpc
mmpc.fit <- mmpc(data.frame(data),blacklist=bl,undirected = FALSE)

# Infer the graph by mmhc
mmhc.fit <- mmhc(data.frame(data),blacklist=bl)

# Plot the inferred graphs
par(mfrow = c(2, 3))
plot(Truth,

main = "(A) Truth")
plot(MRPC.fit,

main = "(B) MRPC")
plot(pc.fit,

main ="(C) pc")
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graphviz.plot(pc.stable.fit,
main = "(D) pc.stable")

graphviz.plot(mmpc.fit,
main = "(E) mmpc")

graphviz.plot(mmhc.fit,
main = "(F) mmhc")

# Another option for plot of the results. First fig is the nodes
# dendrogram with colored modules. Second fig is the plot of the graph
# with color based on modules.
# To idendify modules and complex graph (Suitable if you have many nodes)
# Adjacency matrix from directed graph
Adj_directed <- as(MRPC.fit@graph,

"matrix")

# Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,

minModuleSize = 2)

# Visualization of inferred graph with modules colors
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,

PlotDendrogramObj,
GV=1,
node.size=8,
arrow.size = 5,
label.size = 3,
alpha = 1)

# Plot
plot(PlotGraphWithModulesObj)

# Other models are available and may be called as follows:
# Model 0
# Truth <- MRPCtruth$M0
# data <- simu_data_M0

# Model 2
# Truth <- MRPCtruth$M2
# data <- simu_data_M2

# Model 3
# Truth <- MRPCtruth$M3
# data <- simu_data_M3

# Model 4
# Truth <- MRPCtruth$M4
# data <- simu_data_M4

# Model Multiparent
# Truth <- MRPCtruth$Multiparent
# data <- simu_data_multiparent
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# Model Star
# Truth <- MRPCtruth$Star
# data <- simu_data_starshaped

# Model Layered
# Truth <- MRPCtruth$Layered
# data <- simu_data_layered

MRPCclass-class Class of MRPC algorithm results

Description

This class of objects is returned by the functions ModiSkeleton and MRPC to represent the (ModiSkele-
ton) of an estimated DAG similarly from pcAlgo-class. Objects of this class have methods for the
functions plot, show and summary.

Usage

## S4 method for signature 'MRPCclass,ANY'
plot(x, y, main = NULL,

zvalue.lwd = FALSE, lwd.max = 7, labels = NULL, ...)
## S3 method for class 'MRPCclass'
print(x, amat = FALSE, zero.print = ".", ...)

## S4 method for signature 'MRPCclass'
summary(object, amat = TRUE, zero.print = ".", ...)
## S4 method for signature 'MRPCclass'
show(object)

Arguments

x, object a "MRPCclass" object.

y (generic plot() argument; unused).

main main title for the plot (with an automatic default).

zvalue.lwd logical indicating if the line width (lwd) of the edges should be made propor-
tional to the entries of matrix zMin (originally) or derived from matrix pMax.

lwd.max maximal lwd to be used, if zvalue.lwd is true.

labels if non-NULL, these are used to define node attributes nodeAttrs and attrs,
passed to agopen() from package Rgraphviz.

amat logical indicating if the adjacency matrix should be printed as well.

zero.print String for printing 0 (‘zero’) entries in the adjacency matrix.

... (optional) Further arguments passed from and to methods.
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Creation of objects

Objects are typically created as result from skeleton() or pc(), but could be be created by calls
of the form new("MRPCclass",...).

Slots

The slots call, n, max.ord, n.edgetests, sepset, pMax, graph, zMin, test, alpha and R are
inherited class.

In addition, "MRPCclass" has slots

call: a call object: the original function call.

n: The sample size used to estimate the graph.

max.ord: The maximum size of the conditioning set used in the conditional independence tests of
the first part of the algorithm.

n.edgetests: The number of conditional independence tests performed by the first part of the
algorithm.

sepset: Separation sets.

pMax: A square matrix , where the (i, j)th entry contains the maximum p-value of all conditional
independence tests for edge i–j.

graph: Object of class "graph": The undirected or partially directed graph that was estimated.

zMin: Deprecated.

test: The number of tests that have been performed.

alpha: The level of significance for the current test.

R: All of the decisions made so far from tests that have been performed.

Methods

plot signature(x = "MRPCclass"): Plot the resulting graph. If argument "zvalue.lwd" is true,
the linewidth an edge reflects zMin, so that thicker lines indicate more reliable dependencies.
The argument "lwd.max" controls the maximum linewidth.

show signature(object = "MRPCclass"): Show basic properties of the fitted object

summary signature(object = "MRPCclass"): Show details of the fitted object

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

MRPC, ModiSkeleton
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Examples

showClass("MRPCclass")

# Generate a MRPCclass object
data <- simu_data_M1 # load data for model 1
n <- nrow(data) # Number of rows
V <- colnames(data) # Column names

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),

n = n)

# Infer the graph by MRPC
MRPC.fit <- MRPC(data,

suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest ='gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

# Use methods of class MRPCclass
show(MRPC.fit)

plot(MRPC.fit)
summary(MRPC.fit)

# Access slots of this object
(g <- MRPC.fit@graph)
str(ss <- MRPC.fit@sepset, max = 1)

MRPCtruth Graphs used as truth in simulation

Description

Topologies of the five basic models and three common graphs in biology: namely the multi-parent
graph, the star graph and the layered graph. See details in Badsha and Fu, 2019.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).



44 PlotDendrogram

Examples

data("MRPCtruth") # load data

# Plots
par(mfrow = c(2, 4))
plot(MRPCtruth$M0,

main = "Model0")
plot(MRPCtruth$M1,

main = "Model1")
plot(MRPCtruth$M2,

main = "Model2")
plot(MRPCtruth$M3,

main = "Model3")
plot(MRPCtruth$M4,

main = "Model4")
plot(MRPCtruth$Multiparent,

main = "Multiparent")
plot(MRPCtruth$Star,

main = "Star")
plot(MRPCtruth$Layered,

main = "Layered")

PlotDendrogram Plot a dendrogram and display node groups in colored modules

Description

Generate a dendrogram of nodes with dissimilarity based on topological overlap, and group nodes
into modules indicated by colors.

Usage

PlotDendrogram(Adj_directed, minModuleSize, groupLabels = " ",
dendroLabels = FALSE, hclustHang = 0.03,
dendroAddGuide = FALSE, dendroGuideHang = 0.05,
dendroMain = "Dendrogram with modules of nodes in colors", ...)

Arguments

Adj_directed Adjacency matrix from directed graph

minModuleSize Minimum module size.

groupLabels Argument for plotDendroAndColors. Labels for the colorings given in colors.
The labels will be printed to the left of the color rows in the plot.

dendroLabels Argument for plotDendroAndColors. Dendrogram labels.

hclustHang Argument hang for plot.hclust. The fraction of the plot height by which labels
should hang below the rest of the plot.
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dendroAddGuide Argument addGuide for plotDendroAndColors. Logical: should vertical "guide
lines" be added to the dendrogram plot? The lines make it easier to identify
color codes with individual samples.

dendroGuideHang

Argument guideHang for plotDendroAndColors. The fraction of the dendro-
gram height to leave between the top end of the guide line and the dendrogram
merge height.

dendroMain Argument main for plot.hclust. Title of the plot.

... Additional plotting arguments for plotDendroAndColors and plot.hclust.

Value

A list containing the graph objects as follows:

• PlotDendrogramObj: An object of class "graph" of the estimated graph.

• dynamicColors: A list of colors with corresponding nodes.

• GroupMods: Dynamic tree cut to identify modules whose phenotype profiles are very similar.

• GroupModsColors: A table for number of nodes with corresponding colors.

• Adj_symmetric_matrix: A symmetric matrix from ddjacency matrix of directed graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

MRPC.

Examples

# Adjacency matrix from directed example graph
Adj_directed <- as(data_examples$complex$cont$withGV$graph,

"matrix")

# Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,

minModuleSize = 5)

PlotGraphWithModules Plot a graph with nodes in modules indicated by colors

Description

Visualization of a graph with nodes in modules inferred from the clustering dendrogram by Plot-
Dendrogram.
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Usage

PlotGraphWithModules(Adj_directed, PlotDendrogramObj,
GV = GV, node.size = 8, arrow.size = 5,
label.size = 3,alpha = 1,...)

Arguments

Adj_directed Adjacency matrix of a graph.
PlotDendrogramObj

The graphical objects from PlotDendrogram.

GV The number of genetic variants (SNPs/indels/CNVs/eQTL) in the input data
matrix. For example, if the data has one SNPs/indels/CNV/eQTL in the first
column, then GV = 1, if 2 SNPs/indels/CNVs/eQTL in the 1st and 2nd Column,
then GV = 2, and so on. If no GV then GV = 0.

node.size The size of the nodes in the graph. Defaults to 8.

arrow.size The size of the arrows for directed network edges, in points. Defaults to 5.

label.size The size of the node labels in points, as a numeric value, a vector of numeric
values, or as a vertex attribute containing numeric values. Defaults to 3.

alpha The level of transparency of the edges and nodes. Defaults to 1 (no trans-
parency).

... Other arguments passed to ggnet2.

Value

• PlotGraphWithModulesObj: An object of class "graph" of the graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

PlotDendrogram

Examples

# Adjacency matrix from a graph in the example
Adj_directed <- as(data_examples$complex$cont$withGV$graph,

"matrix")

# A clustering dendrogram with nodes grouped in colored modules
PlotDendrogramObj <- PlotDendrogram(Adj_directed,

minModuleSize = 5)

# A graph object with nodes in modules
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,

PlotDendrogramObj,
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GV=14,
node.size=8,
arrow.size = 5,
label.size = 3,
alpha = 1)

# Plot the graph with nodes in different colors
plot(PlotGraphWithModulesObj)

RecallPrecision Calculate recall and precision for two graphs

Description

This function counts the number of true and false positives, and calculates recall and precision,
which are defined as follows:

Recall = (# edges correctly identified in inferred graph) / (# edges in true graph).

Precision = (# edges correctly identified in inferred graph) / (# edges in inferred graph).

Usage

RecallPrecision(g1, g2, GV, includeGV, edge.presence = 1.0, edge.direction = 0.5)

Arguments

g1 First graph object, from the true graph

g2 Second graph object, from the inferred graph

GV The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data. For
example, if the data has one genetic variant, first column, then GV = 1, if 2, 1st
and 2nd Column, then GV = 2, and so on.

includeGV If TRUE, include edges involving genetic variants (GV) when calculating recall
and precision. If FALSE, excluded edges involving genetic variants (GV) when
calculating recall and precision.

edge.presence The weight for an edge being present.

edge.direction The weight for the edge direction.

Details

We consider it more important to be able to identify the presence of an edge than to also get the
direct correct. Therefore, we assign 1 as the default to an edge with the correct direction and 0.5 to
an edge with the wrong direction or no direction (Badsha and Fu, 2019; Badsha et al., 2018).
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Value

A list of object that containing the following:

• Matrix: Results store for TP and FP

• TP: Total found edges in the inferred graph and edge exists in the true graph.

• FP: Total found edges in the inferred graph but no edge exists in the true graph.

• NTE: Total number of edges in the true graph.

• NIE: Total number of edges in the inferred graph.

• Recall: Power, or sensitivity measures how many edges from the true graph a method can
recover.

• Precision: Measures how many correct edges are recovered in the inferred graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

See Also

aSHD: adjusted Structural Hamming Distance (aSHD)

Examples

# True model
# True graph (V1 --> T1 --> T2 --> T3)
# Where V1 is a genetic variant (GV) and T1, T2, and T3 are phenotypes
tarmat_s1 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")

rownames(tarmat_s1) <- colnames(tarmat_s1)

# Create an adjacency matrix for the true graph
tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Graph object of the true graph
Truth <- as(tarmat_s1,

"graphNEL")
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# Inferred graph (V1 --> T1 <-- T2 --> T3)
# Where V1 is a genetic variant (GV) and T1, T2, and T3 are phenotypes
tarmat_s2 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s2) <- c("V1", "T1", "T2", "T3")

rownames(tarmat_s2) <- colnames(tarmat_s2)

# Create an adjacency matrix for the inferred graph
tarmat_s2[1, 2] <- 1
tarmat_s2[3, 2] <- 1
tarmat_s2[3, 4] <- 1

# Graph objects for the inferred graph
Inferred <- as(tarmat_s2,

"graphNEL")

# Recall and Precision
Recall_Precision <- RecallPrecision(Truth,

Inferred,
GV = 1,
includeGV = TRUE,
edge.presence = 1.0,
edge.direction = 0.5)

RobustCor Calculate robust correlation matrix

Description

Calculate robust correlation matrix based on beta value. The value of beta plays a key role in the
performance of the robust method, which controls the tradeoff between the robustness and efficiency
of the estimators.

Usage

RobustCor(xx, Beta, plot = FALSE)

Arguments

xx Data matrix
Beta Tuning parameter, between 0 and 1, if 0 then equal to nonrobust, classical

method. We suggest using, Beta = 0.005 in both without and with outliers in
simulation study. This value should reflect the amount of outliers in the data.
Whereas a large value increases robustness, it reduces sensitivity of identifying
an edge. We need a more principled way to determine this value.

plot To set no plotting as the default for weight vs gene index.
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Details

We take a robust approach and calculate the robust correlation matrix (Badsha et al., 2013) on which
the series of hypothesis testing is performed. The performance of the robust correlation method
depends on the values of the tuning parameter beta. It controls the tradeoff between robustness
and efficiency of estimators. This method shows high performance for a wide range of beta. The
values of beta lies between 0 and 1, such that a large value of beta decreases the efficiency, while
it increases the robustness of an estimator, and vice-versa for a small value of beta. Thus, we need
to select an optimal beta to obtain both high robustness and efficiency, while it depends on the
initialization of model parameters, data contamination rates, types of data contamination, types of
datasets, and so on. We used the beta value from Badsha et al., 2013. The robust method reduces to
the classical method (Biased estimator) with the tuning parameter beta –>0. When the data matrix
contains missing values, we perform imputation using the R package mice (Buuren and Groothuis-
Oudshoorn, 2011).

Value

list of objects as follows:

• RR: Robust correlation matrix.

• M: Robust mean vector.

• V: Robust covariance matrix.

• Wt: Weight for each observation.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB, Mollah MN, Jahan N and Kurata H (2013). Robust complementary hierarchical
clustering for gene expression data analysis by beta-divergence. J Biosci Bioeng, 116(3): 397-407.

2. Van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. http://www.jstatsoft.org/v45/i03/

Examples

RobustCor_objects <- RobustCor(simu_data_M0,
Beta = 0.005,
plot = FALSE)

Rcorr <- RobustCor_objects $RR # Correlation matrix
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seqDiff Deviation between two graphs represented by two sequences

Description

This function evaluates whether two graphs are identical. Each graph is represented first by a
binary vector, which is the vectorized adjacency matrix, and then converted to a decimal number.
The difference in the decimal numberes is the deviation between the two graphs.

Usage

seqDiff(g1, g2)

Arguments

g1 Adjacency matrix from the first graph object.

g2 Adjacency matrix from the second graph object.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

# True model
# True graph (V1 --> T1 --> T2 --> T3)
tarmat_s1 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")

rownames(tarmat_s1) <- colnames(tarmat_s1)

# Create an adjacency matrix for the true graph
tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Inferred graph (V1 --> T1 <-- T2 --> T3)
tarmat_s2 <- matrix(0,

nrow = 4,
ncol = 4)

colnames(tarmat_s2) <-c ("V1", "T1", "T2", "T3")

rownames(tarmat_s2) <- colnames(tarmat_s2)
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# Create an adjacency matrix for the inferred graph
tarmat_s2[1, 2] <- 1
tarmat_s2[3, 2] <- 1
tarmat_s2[3, 4] <- 1

# Deviation of the inferred graph from the true graph.
Results <- seqDiff(tarmat_s2,

tarmat_s1)

SeqFDR Sequential FDR

Description

Sequential FDR method that controls the FDR and mFDR in an online manner.

Usage

SeqFDR(m, FDR, a=2, R)

Arguments

m The number of current the test.

FDR FDR level.

a A constant.

R All of the decisions from the tests that have already been performed.

Details

We used the LOND (significance Levels based On Number of Discoveries) algorithm that controls
FDR and mFDR in an online manner (Javanmard and Montanari, 2015). Where the significance
level, alpha, is based on the total number of discoveries made so far. Which is similar to the algo-
rithm called alpha-investing rules introduced by (Foster and Staine, 2007) to control only mFDR in
an online manner.

Value

The value of alpha.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
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References

1. Javanmard A and Montanari A (2015). On Online Control of False Discovery Rate. arXiv:150206197
[statME].

2. Foster DP and Stine RA (2007). Alpha-investing: A procedure for sequential control of expected
false discoveries. http://gosset.wharton.upenn.edu/research/edc.pdf,.

See Also

MRPC for estimating a DAG using the Mendelian Randomization (MR) based (MRPC) algorithm;
ModiSkeleton for estimating a skeleton using modified skeleton function.

SimulateData Simulate data under certain graphs

Description

This function simulates data using linear models for several graphs: the five basic topologies and
three topologies that are common in biology, namely the multi-parent graph, the star graph and the
layered graph. See references for details.

Usage

SimulateData(N, p, model, b0.1, b1.1, b1.2, b1.3, sd.1)

Arguments

N The number of observations.

p Population frequency of the reference allele. Real number between 0 to 1, which
is the number of a particular allele is present.

model The model for which data will be simulated. For example, if you want to gener-
ate data for model 0 you would type ’model0’ into the function.

b0.1 Intercept of b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the
parents of the corresponding node.

b1.1 Slope of P1 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

b1.2 Slope of P2 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

b1.3 Slope of P3 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

sd.1 Standard deviation for corresponding data generated nodes.

Details

The first column of the input matrix is the genotype of the expression quantitative trait loci (eQTL)/Copy
number variation (CNVs) and the remaining columns are the node expression data.
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Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

1. Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of
Mendelian randomization. Frontiers in Genetics, 10(460).

2. Badsha MB, Martin EA and Fu AQ (2018). MRPC: An R package for accurate inference of
causal graphs. arXiv:1806.01899.

See Also

MRPC; SimulateDataNP, which simulates data for a node with no parent; SimulateData1P for a
node with one parent; SimulateData2P for a node with two parents.

Examples

# Data pre-processing

# If you use only one genotype of the expression quantitative trait loci
# (eQTL)/Copy number variation (CNV), the 1st column of
# the input matrix will be #eQTL/CNV and the remaining
# columns are the gene expression data.

## Model 0
simu_data_M0 <- SimulateData(N = 10^3,

p = 0.45,
'model0',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Model 1
simu_data_M1 <- SimulateData(N = 10^3,

p = 0.45,
'model1',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Model 2
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simu_data_M2 <- SimulateData(N = 10^3,
p = 0.45,
'model2',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Model 3
simu_data_M3 <- SimulateData(N = 10^3,

p = 0.45,
'model3',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Model 4
simu_data_M4 <- SimulateData(N = 10^3,

p = 0.45,
'model4',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Multiple Parent Model
simu_data_multiparent <- SimulateData(N = 10^3,

p = 0.45,
'multiparent',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Star Model
simu_data_starshaped <- SimulateData(N = 10^3,

p = 0.45,
'starshaped',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

## Layered Model
simu_data_layered <- SimulateData(N = 10^3,

p = 0.45,
'layered',
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b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

SimulateData1P Simulate data for a node with one parent

Description

Simulate data for a node with one parent

Usage

SimulateData1P(N, P1, b0.1, b1.1, sd.1)

Arguments

N Number of observations

P1 Data vector of the parent node P1.

b0.1 Intercept of b0.1 + b1.1*P1, where P1 is the parent of the corresponding node.

b1.1 Slope of P1 for b0.1 + b1.1*P1, where P1 is the parent of the corresponding
node.

sd.1 Standard deviation for corresponding data generated nodes.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.

Examples

Data1P <- SimulateData1P(N = 10^3,
P1 = 1,
b0.1 = 0,
b1.1 = 1,
sd.1 = 1)
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SimulateData2P Simulate data for a node with two parents

Description

Simulate data for a node with two parents

Usage

SimulateData2P(N, P1, P2, b0.1, b1.1, b1.2, sd.1)

Arguments

N Number of observations

P1 Data vector of the parent node, P1.

P2 Data vector of the parent node, P2.

b0.1 Intercept of b0.1 + b1.1*P1 + b1.2*P2, where P1 and P2 are the parents of the
corresponding node.

b1.1 Slope of P1 for b0.1 + b1.1*P1+ b1.2*P2, where P1 and P2 are the parents of
the corresponding node.

b1.2 Slope of P2 for b0.1 + b1.1*P1 + b1.2*P2, where P1 and P2 are the parents of
the corresponding node.

sd.1 Standard deviation for corresponding data generated nodes.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.

Examples

Data2P <- SimulateData2P(N = 10^3,
P1 = 1,
P2 = 1,
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
sd.1 = 1)
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SimulateData3P Simulate data for a node with three parents

Description

Simulate data for a node with three parents

Usage

SimulateData3P(N, P1, P2, P3, b0.1, b1.1, b1.2, b1.3, sd.1)

Arguments

N Number of observations.

P1 Data vector of the parent node, P1.

P2 Data vector of the parent node, P2.

P3 Data vector of the parent node, P3.

b0.1 Intercept of b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the
parents of the corresponding node.

b1.1 Slope of P1 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

b1.2 Slope of P2 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

b1.3 Slope of P3 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are
the parents of the corresponding node.

sd.1 Standard deviation for corresponding data generated node.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.
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Examples

Data3P <- SimulateData3P(N = 10^3,
P1 = 1,
P2 = 1,
P3 = 1,
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)

SimulateDataNP Simulate data for a node with no parent

Description

Simulate data for a node with no parent

Usage

SimulateDataNP(N, b0.1, sd.1)

Arguments

N Number of observations

b0.1 Intercept of the corresponding simulated node.

sd.1 Standard deviation for corresponding data generated node.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.

Examples

DataNP <- SimulateDataNP(N = 10^3,
b0.1 = 0,
sd.1 = 1)
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simu_data_layered Data for the layered model

Description

Data simulated under the layered Model.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.

simu_data_M0 Data for Model 0

Description

Data simulated under Model 0.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.
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simu_data_M1 Data for Model 1

Description

Data simulated under Model 1.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.

simu_data_M2 Data for Model 2

Description

Data simulated under Model 2.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.
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simu_data_M3 Data for Model 3

Description

Data simulated under Model 3.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.

simu_data_M4 Data for Model 4

Description

Data simulated under Model 4.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.
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simu_data_multiparent Data for the multiple-parent model

Description

Data simulated under the multiple-parent model, where a phenotype node has multiple parent nodes.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.

simu_data_starshaped Data for the star model

Description

Data simulated under the star model, where one gene has more than two children.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.
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