
Package ‘MLPA’
May 1, 2020

Type Package

Title Multiplex Ligation-Dependent Probe Amplification Data Analysis

Version 1.10.0

Date 2020-04-27

URL http://bioinformatics.ovsa.fr/MLPA

BugReports https://github.com/maressyl/R.MLPA/issues

Description
Functions to import Applied Biosystems data files of multiplex ligation-dependent probe amplifi-
cation (MLPA) analysis and process them. Gene-expression profiling methods are de-
scribed in Mareschal, Ruminy et al (2015) <doi:10.1016/j.jmoldx.2015.01.007>. Gene-
fusion detection methods are described in Mareschal, Palau et al (under review).

Depends graphics, grDevices, stats, utils, R (>= 2.10)

Imports methods

Suggests Biostrings, parallel, tcltk, tools

License GPL (>= 3)

NeedsCompilation no

Author Sylvain Mareschal [aut, cre],
Philippe Ruminy [dtc, ctb],
Jean R. Lobry [ctb],
Fabrice Jardin [ths]

Maintainer Sylvain Mareschal <maressyl@gmail.com>

Repository CRAN

Date/Publication 2020-05-01 18:20:03 UTC

R topics documented:
align.fsa . 2
classify . 4
designFile . 5
fusions.process . 7

1

http://bioinformatics.ovsa.fr/MLPA
https://github.com/maressyl/R.MLPA/issues

2 align.fsa

GEP.process . 9
model . 10
peaks.fsa . 12
plot.fsa . 13
plot.fsaModel . 15
print.fsa . 16
read.abif . 16
read.fsa . 18
read.sanger . 19
train . 19
wav2RGB . 21

Index 22

align.fsa Aligns peaks using size ladder

Description

This function adds to a fsa object a linear regression model allowing the raw time indexes to be
converted into base pair sizes, using a known size markers ladder.

Usage

align.fsa(x, channel = "ROX", fullLadder = c(50, 60, 90, 100, 120, 150, 160, 180, 190,
200, 220, 240, 260, 280, 290, 300, 320, 340, 360, 380, 400), useLadder = c(50, 60, 90,
100, 120), outThreshold = 0.15, noiseLevel = 10, surePeaks = 5,
trim = c("forward", "backward", "none"), maskOffScale = FALSE, rMin = 0.999,
rescue = FALSE, ylim = NULL, ...)

Arguments

x An object of class fsa, as returned by read.fsa

channel Single character value, the name of the channel used for size markers.

fullLadder Integer vector, the size markers used in the assay (in base pairs).

useLadder Integer vector, the size markers to use for the alignment (using only size markers
nearing the expected size for the experimental peaks may achieve a more precise
alignment). They must be present in fullLadder. If NULL, fullLadder will be
used entirely.

outThreshold Single numeric value, maximal distance from the computed size-marker inten-
sity for a peak to be considered as a size-marker. If lower than 1, it is considered
as a proportion of the size-marker intensity computed from sure peaks.

noiseLevel Single numeric value, minimal intensity for a local maximum to be considered
as a peak.

maskOffScale Single logical value, whether to mask indexes with off-scale values in any chan-
nel to limit side-effects or not.

align.fsa 3

surePeaks Single integer value, amount of peaks to use to compute size-marker intensity.
They are selected at the end of the profile, as most artefacts are observed ate the
beginning. Consider to reduce this value if your assay was prematurely ended.

trim Single character value, defining how to behave when more/less peaks than ex-
pected are read. "forward" will keep first peaks and adjust discarding the last
ones, "backward" will keep last peaks and adjust discarding the first ones, and
"none" will generate an error.

rMin Single numeric value, minimum adjusted r squared value (see summary.lm) to
consider an alignment as "good". Poor alignments raise a warning, and may be
due to artefactual peaks in the size-marker channel or errors in fullLadder def-
inition. Consider lowering outThreshold and raising noiseLevel to minimize
artefact selection.

rescue Single logical value, whether to plot a "rescue" profile or not. Rescue profiles are
calls to plot.fsa on which diverse additionnal data is drawn to help diagnose
alignment problems.

ylim To be passed to plot.fsa for the alignment rescue plot, if enabled (see rescue).

... Further arguments to be passed to plot.fsa for the alignment rescue plot, if
enabled (see rescue).

Value

Returns the object of class fsa provided with updated attributes :

ladderModel A numeric vector of linear regression coefficients to use to convert raw indexes
into base pairs.

ladderExact A named numeric vector of raw indexes at which size markers were detected.

Author(s)

Sylvain Mareschal, Philippe Ruminy

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))

Plot subset of the profile (time index)
plot(fsa, units="index", xlim=c(4000,5000))

Align using full ladder
fullLadder <- c(

50, 60, 90, 100, 120, 150, 160, 180, 190, 200, 220,
240, 260, 280, 290, 300, 320, 340, 360, 380, 400

)
fsa <- align.fsa(fsa, fullLadder=fullLadder)

Plot subset of the profile (base pairs)
plot(fsa, units="bp", xlim=c(80,130))

4 classify

classify Apply the binary predictor to FSA peaks

Description

Predict to which class the sample is most likely to belong, using a modified LPS model.

Usage

classify(peaks, model, plot = TRUE)

Arguments

peaks A data.frame, as returned by peaks.fsa.

model A fsaModel object, as returned by model.

plot Single logical value, whether to plot a visual representation of the prediction or
not.

Value

Returns a list :

score The raw score used to make the prediction.

p The probability to belong to each of the two groups.

class The final prediction, as a group name. May be NA if no probability passes the
model threshold.

Author(s)

Sylvain Mareschal

References

Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression
profiles. J Comput Biol. 2002;9(3):505-11.

Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method
to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S
A. 2003 Aug 19;100(17):9991-6.

Bohers E, Mareschal S, Bouzelfen A, Marchand V, Ruminy P, Maingonnat C, Menard AL, Etancelin
P, Bertrand P, Dubois S, Alcantara M, Bastard C, Tilly H, Jardin F. Targetable activating mutations
are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer.
2014 Feb;53(2):144-53.

See Also

read.fsa, peaks.fsa, model, GEP.process

designFile 5

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))
fsa <- align.fsa(fsa)

Build model from design file
design <- designFile(system.file("extdata/design.conf", package="MLPA"))
design$model$disable <- NULL
model <- do.call("model", design$model)

Get peak heights
peaks <- peaks.fsa(fsa, ranges=design$PEAKS$ranges)

Classify sample
p <- classify(peaks, model, plot=TRUE)
print(p)

Observe sample in model
plot(model)
abline(v=p$score)

designFile Process interface’s design file

Description

This function is a slave for GEP.interface. It process a design file and returns its processed
elements as a list.

Usage

designFile(fileName, overwrite = list())

Arguments

fileName Single character value, the path and name of a design file to process.
overwrite Two-level named list as returned by designFile, values from this list will re-

place parameters parsed from the design file.

Details

Design files are tab-separated files, with a header line and dots as decimal separators. It can be
quoted, with double or simple quotes. "#" are considered as comment markup.

Design files are plain text files, separated in multiple sections. Sections begin with a "[NAME]"
line and end when the next section begin. Comments (line beggining with the "#" character) and
blank lines can be added everywhere, except into the PEAKS table. Quotes should be avoided, and
multiple values for a single parameter (vectors) can be obtained by concatenating multiple values
separated by commas (no spacing).

The "[DESIGN]" section contain name/value pairs, separated by tabulations :

6 designFile

author The name of the design author (for human readers only).

purpose The description of the design (for human readers only).

MLPA Version of the MLPA package for which the design was created (separated with dots).

updated Date of the last design update (YYYY-MM-DD).

The "[PEAKS]" section contain a tab-separated table, with a header line and dots as decimal sepa-
rators. It should contain one row for each peak that is to be measured in the assay.

name Character, the name of the gene described (mist be unique in the table).

channel Character, the name of the channel in which a measure has to be done.

size.min Numeric, the start of the range in which a measure has to be done. For size markers, the
range is defined in time index units, for genes in base pairs (after an align.fsa call).

size.max Numeric, the end of the range in which a measure has to be done. For size markers, the
range is defined in time index units, for genes in base pairs (after an align.fsa call).

color Character, the color tu use for the range on the plot. This can be an english color name, or an
hexadecimal color specification as "#000000". Notice transparency will be added.

Function-specific sections may also be present, to define R function arguments. Currently read.fsa,
align.fsa, plot.fsa, model and classify functions are handled. Section names are supposed
to respect function name case, surrounded by square brackets. These sections should contain
name/value pairs, separated by tabulations, using only valid function arguments as names (please
refer to the corresponding help page). Arguments not defined in the design file will be set to the
function’s default (raising a warning), and arguments not used by the function will be ignored (rais-
ing a warning too). An additionnal disable argument is handled (single logical value), to disable
the call to the corresponding function.

Value

Returns a multi-level list, with a direct children per section.

"DESIGN" directly transcribes as a named and typed list the elements described above.

"PEAKS" contains a list with the following elements :

ranges The concatenated size.min and size.max columns, for genes.

channels The channel column, for genes.

weights The weigh column, for genes.

colors The plain color from color column, for genes.

backgrounds The transparent version of the color column, for genes.

Function-specific sections directly transcribe arguments as a named and typed list.

Note

It is highly recommended to new users to build their design modifying "extdata/design.conf", up-
dating the "[model]" and "[PEAKS]" sections.

Replacing the content of the "[model]" and "[classify]" sections by "disable TRUE" is also a good
way to start with designs, as the classification model is optionnal and can be added later once the
technique is developped.

fusions.process 7

The "extdata/recue.conf" design can prove particularly useful when processing fails with a non-
obvious message (generally because the alignment failed). Processing files with this design disables
almost everything and provides a raw profile that can help disgnose the problem.

Author(s)

Sylvain Mareschal

See Also

GEP.interface

Examples

Example file provided
file <- system.file("extdata/design.conf", package="MLPA")
design <- designFile(file)

Alignment rescue design provided
file <- system.file("extdata/rescue.conf", package="MLPA")
design <- designFile(file)

fusions.process LD-RTPCR fusion identification by Sanger

Description

Automatically interpret gene fusions found by Sanger sequencing using the Ligation-Dependent
PCR protocol.

Usage

fusions.process(input, design, sheet = NA, output = ".", cores = NA, ...)

Arguments

input Single character value, the path to the directory containing the AB1 files to pro-
cess.

design Data.frame describing all possible fusions (see Details).
sheet Single character value, the name and path of a CSV file describing the files to

process. 3 columns are expected: ID which gives a simpler sample name to use
in outputs, way which defines if sequencing was ’forward’ or ’reverse’, and file
which gives the file name and path relative to the input argument.

output Single character value, the path to a directory in which to produce output files
(will be created if doesn’t yet exists).

cores Single integer value, the amount of CPUs to use on the local machine to paral-
lelize the computation. If NA, a guess will be made. If 1, computation will not
use the parallel package at all but only loop over samples.

... Further arguments are passed to fusions.process.core.

8 fusions.process

Details

design must contain one row for each possible combination of a left primer with a right primer,
whether this fusion is expected and relevant or not.

Expected columns in design are (excluding extra columns required with extra) :

left.name Character, the name of the left primer.

left.seq Character (uppercase), the sequence of the left primer (gene-specific part only).

left.unileft Character (uppercase), the sequence of the left universal primer used for amplification.

left.symbol Character, the symbol of the gene targeted by the left primer.

left.GRCh38 Character, the genomic coordinates of the last base of the left primer (chromo-
some:position:strand).

left.GRCh38_band Character, the cytogenetic location of the gene targeted by the left primer.

right.name Character, the name of the right primer.

right.seq Character (uppercase), the sequence of the right primer (gene-specific part only).

right.uniright Character (uppercase), the sequence of the right universal primer used for amplifi-
cation.

right.symbol Character, the symbol of the gene targeted by the right primer.

right.GRCh38 Character, the genomic coordinates of the last base of the right primer (chromo-
some:position:strand).

right.GRCh38_band Character, the cytogenetic location of the gene targeted by the right primer.

seq_forward Character (uppercase), the complete sequence expected in forward sequencing (con-
catenation of left.unileft, left.seq, right.seq, right.uniright and the right tail, if
any).

seq_reverse Character (uppercase), the complete sequence expected in reverse sequencing (reverse
complement of a concatenation of the left tail, if any, left.unileft, left.seq, right.seq,
right.uniright).

Please contact the authors to obtain a relevant design object.

Value

Invisibly returns the aggregated table of top results for all samples.

Various files are produced, in location set by the output argument :

Top.csv The aggregated table of top results for all samples.

*.pdf One plot for each sample, showing the sequencing profile and the best alignments found.

Author(s)

Sylvain Mareschal

See Also

GEP.process

GEP.process 9

GEP.process MLPA peak detection

Description

GEP.process handles the whole analysis from .fsa files, generating tables of expression values and
graphical profiles.

GEP.interface summons a Tcl-Tk interface to call GEP.process interactively.

Usage

GEP.process(input, design, output, overwrite = list(), gene.cex = 1.3,
file.line = 3, mar = c(5,4,5,1), progressBar = NULL)

GEP.interface()

Arguments

input Single character value, the path to a directory containing .fsa files to analyse.
Notice it will be explored recursively, so sub-directories are allowed.

design Single character value, the path to a design file, as handled by designFile.

output Single character value, the path to a ".pdf" or ".log" file that will be created
during the analysis.

overwrite Named list, to be passed to designFile().

gene.cex Single numeric value, the character expanding factor for gene names.

file.line Single numeric value, the line on which print the file name on plots.

mar Numeric vector with 4 values, the margin sizes on bottom, left, top and right
sides respectively.

progressBar A ttkprogressbar to increment during the processing, or NULL. This argument
is only provided to connect GEP.interface and GEP.process, thus it should
be ignored.

Value

Return nothing. GEP.process raise errors, warnings and messages which are intercepted by GEP.interface
and redirected to the log file.

Various files are produced, in location set by the output argument :

~.expr.tsv Numeric matrix of normalized expressions (each sample is divided by its means).

~.peaks.tsv Table collecting all the peaks called during the analysis, with their size, intensity, sam-
ple, annotation and off-scale status.

~.pdf Profiles of the samples analysed. See designFile for customisation.

~.log Log file of errors, warnings and message (only GEP.interface produces it).

10 model

Author(s)

Sylvain Mareschal

References

Mareschal, Ruminy et al (2015) <doi:10.1016/j.jmoldx.2015.01.007> "Accurate Classification of
Germinal Center B-Cell-Like/Activated B-Cell-Like Diffuse Large B-Cell Lymphoma Using a Sim-
ple and Rapid Reverse Transcriptase-Multiplex Ligation-Dependent Probe Amplification Assay: A
CALYM Study"

See Also

designFile

Examples

Working in temporary directory
output <- sprintf("%s/test.log", tempdir())

See files before analysis
dir(system.file("extdata", package="MLPA"))

Launch analysis in package directory
GEP.process(

input = system.file("extdata/fsa", package="MLPA"),
design = system.file("extdata/design.conf", package="MLPA"),
output = output

)

List resulting files
dir(dirname(output), full.names=TRUE)

model Object constructor for binary predictors

Description

This function aggregates the data required to predict class in classify.

Usage

model(groupMeans, groupSDs, groupNames, groupColors = c("blue", "red"),
threshold = 0.9, geneNames, geneTs, geneMs)

model 11

Arguments

groupMeans Numeric vector of length 2, the means of the scores in each group as computed
on a training series.

groupSDs Numeric vector of length 2, the standard deviations of the scores in each group
as computed on a training series.

groupNames Character vector of length 2, the names of the group described in groupMeans,
groupSDs and groupColors.

groupColors Character vector of length 2, the colors to use to plot each group (see par for
allowed values).

threshold Single numeric vector, the confidence threshold to use for prediction (a call will
be made only if it is at least at this level of certainty).

geneNames Character vector, the names of the genes whose expression is to be used.

geneTs Numeric vector, for each gene in geneNames, the statistic of a t.test comparing
its expression between the two groups in a training series.

geneMs Numeric vector, for each gene in geneNames, the mean expression in the whole
training series.

Value

Returns an S3 object of class fsaModel.

Author(s)

Sylvain Mareschal

See Also

classify

Examples

Build from design file
design <- designFile(system.file("extdata/design.conf", package="MLPA"))
design$model$disable <- NULL
model <- do.call("model", design$model)

Observe model
print(model)
plot(model)

12 peaks.fsa

peaks.fsa Get maximal value in ranges

Description

Look for the maximal value in one or many ranges, typically for peak detection.

Usage

peaks.fsa(x, ranges, logTransform = FALSE, lowThreshold = 1000, channels = "6-FAM",
noiseRange = c(-10, 0), primerRange = c(35, 45))

Arguments

x An aligned object of class fsa, as returned by align.fsa.

ranges A named list of ranges, numeric vectors of length two (minimal and maximal
values). They defines the sizes (in base pairs) for which a maximum is required.

logTransform Single logical value, whether to apply log transformation (base 2) to normalized
values (previously floored to 0 and summed with 1) or not.

lowThreshold Single numeric value, threshold for which "low profile" warnings are called if
all peaks are lower.

channels Single character value, the name of the x channel to browse.

noiseRange Numeric vector of length 2, defining the range (relative to the starting range of
the first peak defined in ranges) in which measure the noise (in bp). If the noise
peak is 20 percent greater than the first peak, a warning is raised as the accuracy
of the measure may be compromised.

primerRange Numeric vector of length 2, defining the range in which measure primer signals
(in bp). This is implemented for QC experimentation and may not be useful in
current practice.

Value

Returns a data.frame with a row for each range :

gene The name of the range described, extracted from ranges.

size.min Minimal size of the range described.

size.max Maximal size of the range described.

peak.size Size at which the maximum was found, in base pairs.

peak.height Maximum found, in fluorescence units.

peak.offScale Is there any off-scale value in the range ?

normalized Current peak’s height divided by the mean of all peak heights.

Author(s)

Sylvain Mareschal

plot.fsa 13

See Also

GEP.process

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))
fsa <- align.fsa(fsa)

Single interval
print(peaks.fsa(fsa, ranges=list(IRF4=c(86.2, 87.5))))

Using a design file
design <- designFile(system.file("extdata/design.conf", package="MLPA"))
print(peaks.fsa(fsa, ranges=design$PEAKS$ranges))

plot.fsa Plot method for "fsa" objects

Description

Plots a fsa object. For each selected channel, a line is drawn bewteen measured fluorescence
intensities (y axis) along the electrophoresis time (x axis).

Usage

S3 method for class 'fsa'
plot(x, units = NA, channels = NA, chanColors = NA, ladder = TRUE,

offScaleCol = "#FF0000", offScalePch = "+", offScaleCex = 0.4, bg = "white",
fg = "black", title = "", xlab = NA, ylab = "Intensity", xlim = NA, ylim = NA,
xaxt = "s", yaxt = "s", bty = "o", xaxp = NA, nticks = 5, all.bp = TRUE, ...)

Arguments

x The fsa object to plot.

units Single character value, the unit to use on x axis. "index" uses the raw index con-
tained in files, "bp" usess base pair estimations but needs the object to be aligned
first using align.fsa. NA will select "bp" if x is aligned, "index" elsewhere.

channels Character or integer vector, the channels to plot. If NA, all channels are selected.

chanColors Character vector defining colors to use to plot channels. Can be named accord-
ing to channel names stored in x, or parallel with channels (first color for first
channel, etc, no recycling). If NA, colors stored in x are used. See the col argu-
ment in par for further details on allowed values.

ladder Single logical value, whether to add an x axis with size ladder peaks or not.
Raises a warning if x was not aligned before plotting.

offScaleCol To be passed to points for off-scale value plot (see par for allowed values).

14 plot.fsa

offScalePch To be passed to points for off-scale value plot (see par for allowed values).

offScaleCex To be passed to points for off-scale value plot (see par for allowed values).

bg See par for further details.

fg See par for further details. This value is also used for col.axis, col.lab, col.main
and col.sub graphical parameters.

title Single character value, the main title to print on the plot.

xlab See plot for further details. If NA, units is used.

ylab See plot for further details.

xlim See plot for further details. If NA, x range is used.

ylim See plot for further details. If NA, x range is used.

xaxt See par for further details.

yaxt See par for further details.

bty See par for further details.

xaxp See par for further details. If NA, a suitable value is computed.

nticks Single integer value. When xaxp is NA and units is "bp", this values fixes the
interval between X axis labels.

all.bp Single logical value, whether to force an unlabeled axis tick at each bp when
units is "bp" or not.

... Further arguments to be passed to plot.

Author(s)

Sylvain Mareschal

See Also

read.fsa

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))

Plot whole profile
plot(fsa)

Plot subset of the profile (time index)
plot(fsa, units="index", xlim=c(4000,5000))

Plot subset of the profile (base pairs)
fsa <- align.fsa(fsa)
plot(fsa, units="bp", xlim=c(80,130))

plot.fsaModel 15

plot.fsaModel Plot method for "fsaModel" objects

Description

Plots a fsaModel object.

Usage

S3 method for class 'fsaModel'
plot(x, xlab = "Score", lwd = 3, ...)

Arguments

x The fsaModel object to plot.

xlab To be passed to plot.

lwd To be passed to plot.

... Further arguments to be passed to plot.

Author(s)

Sylvain Mareschal

See Also

train

Examples

Build model from design file
design <- designFile(system.file("extdata/design.conf", package="MLPA"))
design$model$disable <- NULL
model <- do.call("model", design$model)

Plot model
plot(model)

16 read.abif

print.fsa Print method for "fsa" objects

Description

Prints a short summary of an fsa object.

Usage

S3 method for class 'fsa'
print(x, ...)

Arguments

x The fsa object to print.

... Currently ignored.

Author(s)

Sylvain Mareschal

See Also

read.fsa

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))
print(fsa)

Aligned version
fsa <- align.fsa(fsa)
print(fsa)

read.abif Read ABIF formatted files

Description

ABIF stands for Applied Biosystem Inc. Format, a binary format modeled after TIFF format.
Corresponding files usually have an *.ab1 or *.fsa extension.

Usage

read.abif(filename, max.bytes.in.file = file.info(filename)$size,
pied.de.pilote = 1.2, verbose = FALSE)

read.abif 17

Arguments

filename The name of the file.
max.bytes.in.file

The size in bytes of the file, defaulting to what is returned by file.info

pied.de.pilote Safety factor: the argument n to readBin is set as pied.de.pilote*max.bytes.in.file.

verbose logical [FALSE]. If TRUE verbose mode is on.

Details

All data are imported into memory, there is no attempt to read items on the fly.

Value

A list with three components: Header which is a list that contains various low-level information,
among which numelements is the number of elements in the directory and dataoffset the offset
to find the location of the directory. Directory is a data.frame for the directory of the file with the
number of row being the number of elements in the directory and the 7 columns describing various
low-level information about the elements. Data is a list with the number of components equal to
the number of elements in the directory.

Note

This function and the current help page were duplicated from the seqinr package in its 3.0-7 version
(available on the CRAN under GPL 2 licensing).

Author(s)

J.R. Lobry, ’bool’ type implemented by Sylvain Mareschal

References

Charif, D. and Lobry, J.R. (2007) Structural approaches to sequence evolution: Molecules, net-
works, populations ISBN 978-3-540-35305-8, pp 207-232.

Anonymous (2006) Applied Biosystem Genetic Analysis Data File Format. Available at http://
www6.appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf. Last
visited on 2018-03-27.

See Also

readBin which is used here to import the binary file and file.info to get the size of the file.

Examples

Example FSA file provided
rawFsa <- read.abif(system.file("extdata/fsa/A5918.fsa", package="MLPA"))

http://www6.appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf
http://www6.appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf

18 read.fsa

read.fsa Imports a .fsa file from Applied Biosystems

Description

This function parses a FSA file holding fragment analysis data, using seqinr package’s read.abif.

Usage

read.fsa(file, applyLowess = TRUE, processed = FALSE, meta.extra = NULL, ...)

Arguments

file Single character value, the name and path of the file to parse.

applyLowess Single logical value, whether to apply lowess on intensities to smooth time-
related biases or not.

processed Single logical value, whether to use processed DATA values (as stored in sets 9
to 12, not always available) rather than raw values (sets 1 to 4). If NA, processed
ones will be used as long as they are available, else raw ones will be used instead.

meta.extra Named character vector, defining which extra fields to extract to populate the
runMetaData attribute. The vector names define the human-readable names to
use in output, the vector values provide the 4 uppercase letter code to extract (all
values will be gathered in a vector if the code is used several times). See the
reference provided in read.abif for existing codes in the ABIF file format.

... Further arguments to be passed to read.abif.

Value

A S3 object of class fsa

Author(s)

Sylvain Mareschal

See Also

read.abif, GEP.process, plot.fsa, read.sanger

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa/A5918.fsa", package="MLPA"))
print(fsa)

read.sanger 19

read.sanger Imports a .ab1 file from Applied Biosystems corresponding to Sanger
sequencing

Description

This function parses a FSA/AB1 file using read.fsa, with few adjustments for Sanger sequencing
experiments.

Usage

read.sanger(file, channelOrder = NULL, guess.threshold = 0.3)

Arguments

file Single character value, the name and path of the file to parse.

channelOrder Character vector, providing ’A’, ’C’, ’G’ and ’T’ in the order of the used chan-
nels. If NULL, a guess will be attempted based on the called sequence.

guess.threshold

Single numeric value, setting the tolerance to use for channel guessing valida-
tion. Lower values mean higher chances to get an error for channel guessing
failure.

Value

A S3 object of class fsa

Author(s)

Sylvain Mareschal

See Also

read.fsa, read.abif

train Training function for binary predictors

Description

This function build a model from data to predict class in classify.

Usage

train(peakMatrix, group, filter.p = 0.05, ...)

20 train

Arguments

peakMatrix Numeric matrix of normalized peak heights with samples in rows and peaks in
columns.

group Two-level factor defining the group of every samples in peaks.

filter.p Single numeric value, if not NA only genes for which the t-test p is lower than
this will be used in the model.

... Further arguments to be passed to model.

Value

Returns an S3 object of class fsaModel.

Author(s)

Sylvain Mareschal

See Also

model, classify

Examples

Underlying truth for pseudo-data (10 genes)
geneNames <- paste("gene", LETTERS[1:10], sep=".")
geneMean <- abs(rnorm(10))
groupShift <- rnorm(10, sd=0.1)

Generate pseudo-data for 50 samples
mtx <- NULL
for(g in 1:10) {

x <- rnorm(n=50, mean=geneMean[g], sd=0.1)
x[1:25] <- x[1:25] + groupShift[g]
x[26:50] <- x[26:50] - groupShift[g]
mtx <- cbind(mtx, x)

}
colnames(mtx) <- geneNames
rownames(mtx) <- c(

paste("group1", 1:25, sep="."),
paste("group2", 26:50, sep=".")

)

Train model
group <- c(

rep("group1", 25),
rep("group2", 25)

)
model <- train(mtx, group)
plot(model)

Compare model to truth

wav2RGB 21

i <- match(geneNames, model$geneNames)
out <- data.frame(

gene = geneNames,
true.M = geneMean,
model.M = model$geneMs[i],
true.shift = groupShift,
model.T = model$geneTs[i]

)
print(out)

wav2RGB Converts light wavelengths to RGB colors

Description

Converts wavelengths in nanometers into corresponding visible colors.

Usage

wav2RGB(wav)

Arguments

wav Numeric vector of wavelengths (in nanometers) to convert into colors.

Value

Returns a character vector of the same length as wav, with an RGB color for each wavelength.
Wavelengths out of visible ranges return black.

Author(s)

Sylvain Mareschal

References

http://codingmess.blogspot.fr/2009/05/conversion-of-wavelength-in-nanometers.html

Examples

wv <- seq(from=300, to=800, by=10)
plot(x=wv, y=rep(1, length(wv)), col=wav2RGB(wv), pch=19)

http://codingmess.blogspot.fr/2009/05/conversion-of-wavelength-in-nanometers.html

Index

align.fsa, 2, 6, 12
attributes, 3

classify, 4, 6, 10, 11, 19, 20

designFile, 5, 9, 10

file.info, 17
fusions.process, 7

GEP.interface, 5, 7
GEP.interface (GEP.process), 9
GEP.process, 4, 8, 9, 13, 18

lowess, 18

model, 4, 6, 10, 20

par, 11, 13, 14
peaks.fsa, 4, 12
plot, 14, 15
plot.fsa, 3, 6, 13, 18
plot.fsaModel, 15
points, 13, 14
print.fsa, 16

read.abif, 16, 18, 19
read.fsa, 2, 4, 6, 14, 16, 18, 19
read.sanger, 18, 19
readBin, 17

summary.lm, 3

t.test, 11
train, 15, 19

wav2RGB, 21

22

	align.fsa
	classify
	designFile
	fusions.process
	GEP.process
	model
	peaks.fsa
	plot.fsa
	plot.fsaModel
	print.fsa
	read.abif
	read.fsa
	read.sanger
	train
	wav2RGB
	Index

