It implements a new procedure of variable selection in the context of redundancy between explanatory variables, which holds true with high dimensional data (Grimonprez et al. (2018) <https://hal.inria.fr/hal-01857242>).
Version: | 0.6.1 |
Imports: | gglasso, MASS, Matrix, fastcluster, FactoMineR, parallelDist |
Published: | 2020-01-16 |
Author: | Quentin Grimonprez [aut, cre], Samuel Blanck [ctb], Alain Celisse [ths], Guillemette Marot [ths], Yi Yang [ctb], Hui Zou [ctb] |
Maintainer: | Quentin Grimonprez <quentin.grimonprez at inria.fr> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Copyright: | Inria |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | MLGL results |
Reference manual: | MLGL.pdf |
Package source: | MLGL_0.6.1.tar.gz |
Windows binaries: | r-devel: MLGL_0.6.1.zip, r-release: MLGL_0.6.1.zip, r-oldrel: MLGL_0.6.1.zip |
macOS binaries: | r-release: MLGL_0.6.1.tgz, r-oldrel: MLGL_0.6.1.tgz |
Old sources: | MLGL archive |
Please use the canonical form https://CRAN.R-project.org/package=MLGL to link to this page.