Package ‘MConjoint’

February 19, 2015

Type Package

Title Conjoint Analysis through Averaging of Multiple Analyses

Version 0.1

Date 2013-05-14

Author William Hughes

Maintainer William Hughes <William.Hughes@rogers.com>

Description The package aids in creating a Conjoint Analysis design

with extra cards. Unlike traditional ““holdout" cards these
cards are used to create a set of ““good" (balanced and low
correlation) designs. Each of these designs is analyzed and the
average calculated.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2013-06-19 09:01:22

R topics documented:

Index

MConjoint-package 2
hire.candidates 3
hiredata L 4
hire.despack L e 5
hire.questionaire L e 5
M.Conjoint e e e 6
mec.add.todesign e 7
mc.despack.linear.conjoint oL 8
mc.despack.linear.utils L. 9
mc.get.initial.design L. L L 10
me.getone.design L. L L e e e e 11
mec.good.designs 12
MCAMPOITANCES v v o o v v vt e e e e e e e e e e e e e 13
mc.mean.overdesign.utils Lo L 14

16

2 MConjoint-package

MConjoint-package Perform Conjoint Analysis using multiple designs

Description

The Multiple Conjoint Analysis package changes the meaning and use of traditional holdout cases.
Rather than using the holdout cases to check a single design, the "holdouts" are used to create a
large set of designs, each of which is analyzed. The average result is used

Details

Package: MConjoint
Type: Package
Version: 0.1
Date: 2013-05-14
License: GPL-3

The use of the routines centers around something I call a "despack” a design package. A despack
contains despack$cards: a list of the m cards for which ranks are obtained; despack$designs: a list
of designs each with n cards drawn from the list of m cards; despack$samples, a list of samples
of length n, drawn from 1:m, corresponding to the cards used in the design; despack$coeffs: a
list of matrices of linear coefficients; despack$all.utils: a list of lists of utility values, on for each
column of the coeffs matrices; despack$all.imps, a list of matrices of importances, one column
for each utility; despack$utils: a list of utilities (average taken over first index of the list of lists;
despack$imps: the average of the list of importance matices

Start with a data set, full.design, with all possible cards. (This may be the full factorial design (all
combinations of levels)) or some combinations may be removed.

Obtain a "good" design of n cards (for information on what makes a design good see the documen-
tation for mc.good.desgins). To this you add extra.cards cards in such a way that you maximize the
number of subsets of the m=n + extra.cards of length n that lead to "good" designs.

Both operations can be done by calling
orig.design = mc.get.initial.design(full.design)
orig.design$design will be the m cards for which you will collect data

You then obtain your data, data, a matrix with each column corresponding the the ranks given to
the cards by one subject. Then run

despack = good.designs(orig.design$design)

This will give an initial despack, with $cards, $samples, and $designs
Fill the other elements of despack by calling
despack=M.Conjoint(despack,data)

This will print a summary with the utilites and the importances averaged over the subjects (an
operation that may or may not be useful)

hire.candidates

Author(s)
William Hughes

Maintainer: William Hughes <William.Hughes @rogers.com>

Examples

A simple conjoint problem. Managers can make hiring descisions
based on the factors

University: Prestige, Excellent, Good; Sex: Male, Female;
Dress: smart, messy; Hair: long, short.

We want to determine the importance of these factors.

We interview two managers. The first picks first by
University, then by sex, male over female, then

by dress, smart over messy, and does not care about hair
length. The second is like the first except that

this manager picks female over male.

#
#
#
#
#
#
#
#
#
#
start with the full factorial design

data(hire.candidates)

#get a questionaire

hire.questionaire = mc.get.initial.design(hire.candidates,max.trials=10)
#collect the data

data(hire.data)

#get a design pack for the analyis
hire.despack=mc.good.designs(hire.questionaire$design, size=20)

#do the conjoint analysis
hire.despack=M.Conjoint(hire.despack,hire.data)

(note this illustrates the danger of averaging utilities.

The average utility for both Male and Female is small, but
Sex is important to both managers)

hire.candidates All combinations of factors used for hiring

Description

This is a full factorial (all combinations of factors) design.

4 hire.data

Usage

data(hire.candidates)

Format

A data frame with 24 observations on the following 4 variables.
University a factor with levels Prestige Excellent Good
Sex a factor with levels Male Female

Dress a factor with levels smart messy

Hair a factor with levels long short

Details

We have a toy Conjoint Analysis problem for examples. We assume all hiring decisions are made
on four factors. This is a data set with all 24 possible combinations.

Examples

data(hire.candidates)

hire.data The Data for the Hiring Problem

Description

A matrix with two columns each giving the ranks assigned by two mangers to the hire.questionaire$design
cases. The managers choose first by university, then by Sex (the first chooses Male over Female,
the second Female over Male), then by dress. Hair is ignored.

Usage

data(hire.data)

Format

A matrix of ranks with 12 rows and two columns

Examples

data(hire.data)

hire.despack 5

hire.despack A Design Pack for the Hire Problem

Description

This design pack contains 26 9 card designs and the corresponding line numbers from hire.questionaires$design.

Usage

data(hire.despack)

Format

The format is:

List of 2

$ samps :List of 26 vectors of 12 integres

$ designs:List of 26 data frames, each 9 obs. of 4 variables

Examples

data(hire.despack)

hire.questionaire A Design for the Hiring Problem

Description

This is a Conjoint Analysis design with 12 cards

Usage

data(hire.questionaire)

Format

The format is: List of 3

$ base.design:’data.frame’: 9 obs. or 4 variables
$ added :’data.frame’: 3 obs. of 4 variables

$ design :’data.frame’: 12 obs. of 4 variables:

Examples

data(hire.questionaire)

6 M.Conjoint

M.Conjoint M. Conjoint

Description

Perform Conjoint Analysis by analyzing and averaging a number of designs

Usage

M.Conjoint(despack, data, type = "linear")

Arguments
despack A despack with $cards, $samps and $designs filled
data A matrix with each column the ranks given to despack$cards by one subject
type a string indicating the method to use. Choose from linear

Details

This is a wrapper. It calls

mc.despack.linear.conjoint(despack,data)
mc.despack.linear.utils(despack)

mc. importances (despack)
mean.over.design.utils(despack$all.utils)
mean.over.design.imps(despack$all.imps)

To populate despack

It then calculates and outputs the average utilities and importances

Value

A fully populated design package (invisible)

Author(s)
William Hughes

Examples

data(hire.despack)
data(hire.data)
hire.despack=M.Conjoint(hire.despack,hire.data)

mc.add.to.design 7

mc.add.to.design Add cards to a design

Description

Given a "good" design add some cards to get a new design

Usage

mc.add.to.design(all.possible, old.design, cards.to.add = 3, slack =1,
tol = 0.2, max.trials = 100, max.good.designs=100)

mc.add.to.design.fast(all.possible, old.design, cards.to.add = 3, slack = 1, tol = 0.2)

Arguments

all.possible all possible cards (can be all combinations of factors, or some can be removed)

old.design An initial "good" design

cards.to.add the number of cards to add

slack How much the number of each factor can vary in a "good" design
tol The largest cross correlation in a "good" design

max.trials The maximum number of samples of extra.cards cards to look at.

max.good.designs
For any trial design, the maximum number of good designs to look for

Details

The function will take samples of size extra.cards from the set of cards all.possible-old.design and
add them to old.design. For each sample the number of "good" (balanced an low cross correlation)
designs of the same size as old.design is found. The sample which gives the largest number of
"good" designs is used.

The default max. trials of 100 will lead to run times of several hours for largish problems. You
can usually decrease this without losing too much. Increasing the number of trials may increase the
number of good designs found, but usually not by much.

The default max.good.designs is set to 100. Analyzing more than this number of designs is
unlikely to be needed outside of theoretical work.

mc.add.to.design.fast is useful for quick and dirty work

Value
base.design The original old.design
added The sample of cards added

design The combined set of cards randomized

8 mc.despack.linear.conjoint

Author(s)
William Hughes

Examples

data(hire.candidates)
base.design = mc.get.one.design(hire.candidates, 9)

#use defaults, (except max.trials=10 for speed)
mc.add.to.design(hire.candidates,base.design, max.trials=10)

#add 4 cards, accepting cross corellations up to .35
#warning, this may take several minutes

#mc.add. to.design(hire.candidates,base.design,4,tol=.35)

you can speed this up and in this case
have almost as many good designs (53 vs.54)

#mc.add.to.design(hire.candidates,base.design,4,tol=.35,max.trials=10)

mc.despack.linear.conjoint
mc.despack.linear.conjoint

Description
Given a list of designs and the data find the coefficients of the linear fit for each design and each
column of data.

Usage

mc.despack.linear.conjoint(despack, data = NULL)

Arguments
despack a design pack with the fields $cards. $designs and possibly $samps
data Each column consist of the ranks given to the m cards in despack$cards by a
single subject.
Details

The function will only work correctly if the sample, despack$samps[i] correspond correctly to
despack$desings][i] (eg. the sample consists of the corresponding row numbers from despack$cards).
If despack$samps is null the the row names of despack$designs[i] are assumed to be the correct row
numbers. (in practice this is often true)

mc.despack.linear.utils 9

Value

A despack is returned with the following fields filled

cards copy of despack$cards
samps copy of despack$samps
designs copy of despack$designs
coeffs the calculated coefficients
Author(s)
William Hughes
Examples

data(hire.despack)

data(hire.data)
hire.despack=mc.despack.linear.conjoint(hire.despack,hire.data)
hire.despack$coeffs[[3]]

mc.despack.linear.utils
mc.despack.linear.utils

Description

Calculate the utilities from the linear fit coefficients

Usage

mc.despack.linear.utils(despack)

Arguments

despack a despack with $coeffs filled

Value
a despack with all fields unchanged except that $all.utils will be replaced by the list of lists of
calculated utilities

Author(s)
William Hughes

10 mc.get.initial.design

Examples

data(hire.despack)

data(hire.data)
hire.despack=mc.despack.linear.conjoint(hire.despack,hire.data)
hire.despack=mc.despack.linear.utils(hire.despack)
hire.despack$all.utils[[3]][[2]]

mc.get.initial.design mec.get.initial.design

Description

Given a set of cards, determine an initial design including extra cards.

Usage

mc.get.initial.design(full.design, cards = NULL, extra.cards = 3, slack =1, tol = 0.2,
max.trials = 100)

Arguments
full.design All cards (combinations of levels) that are deemed possible
cards The number of cards in the base design. If this is null then the minimum possible
number of cards + 3 (to allow for model fit issues) is used.
extra.cards The number of extra cards added to the base design
slack How much the number of each factor can vary in a "good" design
tol The largest cross correlation in a "good" design
max.trials The maximum number of samples of extra.cards cards to look at.
Details

This can be slow for big designs (lots of samples, a long time testing each one). You can set
max.trials to limit the length of time the function runs. It will use the best sample it has seen.

For finer control call mc.get.one.design and mc.add. to.design separately.

Value

A design with cards + extra.cards rows

Author(s)
William Hughes

mc.get.one.design 11

See Also

mc.get.one.design, mc.add.to.design
Examples
data(hire.candidates)
#default except max.trials=10 for speed
hire.questionaire = mc.get.initial.design(hire.candidates,max.trials=10)

#A base design of 10 cards with 5 extra cards and good cross correlations less than .17
#takes about 10 seconds

#hire.questionaire = mc.get.initial.design(hire.candidates,cards=10,extra.cards=5,t0l=.17)

mc.get.one.design mc.get.one.design

Description

Get a single "good" design from a list of cards

Usage

mc.get.one.design(all.cards, cards, slack = 1, tol = 0.2, max.tries = 1e+06)

Arguments
all.cards The set of cards from which the design is to be drawn
cards The number of cards in the design.
slack How much the number of each factor level can vary in a "good" design
tol The largest cross correlation in a "good" design
max.tries The maximum number of designs to look at.
Details

Take samples of size cards from all.cards to form designs. Check each of the designs to see if
it is "good". Return the first good design found. (This is one very simple way of getting a design
to start with. Alternatively you could use a classical design (e.g. a fractional factorial design) or an
"optimal" design as produced by the AlgDesign package).

Value

A single design or NULL and an error message if no design is found

12 mc.good.designs

Author(s)
William Hughes

Examples

data(hire.candidates)

#tget a nine card design
mc.get.one.design(hire.candidates,9)

#get a 15 card design with cross correlations less that .1
mc.get.one.design(hire.candidates,15,tol=.1)

mc.good.designs mc.good.design

Description

given a set of m cards, find "good" designs with cards rows

Usage

mc.good.designs(orig.set, cards = NULL, slack = 1, tol = @.2, no.replace = TRUE,
size = 100, max.trials = 1e+06)

Arguments
orig.set a design of length m
cards The number of cards in each "good" design found.
slack How much the number of each factor can vary in a "good" design
tol The largest cross correlation in a "good" design
no.replace Sample without replacement: TRUE or FALSE
size The number of "good" designs to find
max.trials The maximum number of designs to look at
Details

The function takes samples with cards rows from the orig.design. For each sample it checks
whether the design is "good". A design is said to be good if it is balanced (for each factor each
level occurs about the same number of times, the maximum difference is slack) and the different
factors are uncorrelated (maximum cross correlation is tol). Sampling continues (with or without
replacement depending on no. replace) until one of size good designs are found, all designs have
been checked, or max. trials designs have been checked. If fewer than size design are found then
a warning is printed.

mc.importances 13

Value

A despack with the following field filled

cards set equal to orig.set
samps a list of samples, the row numbers of the corresponding designs
designs the good designs found
Author(s)
William Hughes
Examples

data(hire.questionaire)

#default

mc.good.designs(hire.questionaire$design)

#look for 7 card designs, with the cross correlation tolerance increased to .3

#mc.good.designs(hire.questionaire$design,7,tol=.3)

mc.importances mc.importances

Description

Given a despack with $all.utils filled, calculate the importances

Usage

mc. importances(despack)

Arguments

despack a design package with $all.utils filled

Details

Note that this function will only work if despack$utils is correctly filled. However, there is
no requirement that the utilities come from a linear fit. The utilities are not checked against
despack$coeffs which may not exist.

14 mc.mean.over.design.utils

Value

a despack with all fields unchanged except that $all.imps will be replaced by the list of matrices of
calculated utilities

Author(s)
William Hughes

Examples

data(hire.despack)

data(hire.data)
hire.despack=mc.despack.linear.conjoint(hire.despack,hire.data)
hire.despack=mc.despack.linear.utils(hire.despack)
hire.despack=mc.importances(hire.despack)
hire.despack$all.imps[12]

mc.mean.over.design.utils
mean over design functions

Description

Given the utilities or the importances calculate the average over all the designs

Usage

mc.mean.over.design.utils(all.utils)

mc.mean.over.design.imps(all.imps)

Arguments

all.utils A list of lists of utilities, one list for each design

all.imps A list of matrices of importances, one matrix for each design
Details

note the average importances are not the importances calculated from the average utilities

Value

a list of utilities or a matrix of importances

Author(s)
William Hughes

mc.mean.over.design.utils

Examples

data(hire.despack)

data(hire.data)
hire.despack=mc.despack.linear.conjoint(hire.despack,hire.data)
hire.despack=mc.despack.linear.utils(hire.despack)
hire.despack=mc.importances(hire.despack)

mc.mean.over.design.utils(hire.despack$all.utils)
mc.mean.over.design.imps(hire.despack$all.imps)

15

Index

+Topic datasets
hire.candidates, 3
hire.data, 4
hire.despack, 5
hire.questionaire, 5
xTopic multivariate
M.Conjoint, 6

mc

mc

mc

.add.to.design, 7
mc.
.despack.linear.utils, 9
mc.
.get.one.design, 11
mc.
mc.
mc.

despack.linear.conjoint, 8
get.initial.design, 10
good.designs, 12

importances, 13
mean.over.design.utils, 14

+Topic package
MConjoint-package, 2

hire
hire
hire
hire

.candidates, 3
.data, 4
.despack, 5
.questionaire, 5

M.Conjoint, 6
mc.add.to.design, 7, 11
mc.despack.linear.conjoint, 8
mc.despack.linear.utils, 9
mc.get.initial.design, 10
mc.get.one.design, 11,11
mc.good.designs, 12

mc. importances, 13
mc.mean.over.design.imps

(mc.mean.over.design.utils), 14

mc.mean.over.design.utils, 14
MConjoint (MConjoint-package), 2
MConjoint-package, 2

	MConjoint-package
	hire.candidates
	hire.data
	hire.despack
	hire.questionaire
	M.Conjoint
	mc.add.to.design
	mc.despack.linear.conjoint
	mc.despack.linear.utils
	mc.get.initial.design
	mc.get.one.design
	mc.good.designs
	mc.importances
	mc.mean.over.design.utils
	Index

