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Abstract

Generalized linear mixed models provide a flexible framework for modeling a range of
data, although with non-Gaussian response variables the likelihood cannot be obtained in
closed form. Markov chain Monte Carlo methods solve this problem by sampling from a
series of simpler conditional distributions that can be evaluated. The R package MCM-
Cglmm, implements such an algorithm for a range of model fitting problems. More than
one response variable can be analysed simultaneously, and these variables are allowed to
follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored dis-
tributions. A range of variance structures are permitted for the random effects, including
interactions with categorical or continuous variables (i.e., random regression), and more
complicated variance structures that arise through shared ancestry, either through a pedi-
gree or through a phylogeny. Missing values are permitted in the response variable(s) and
data can be known up to some level of measurement error as in meta-analysis. All simu-
lation is done in C/ C++ using the CSparse library for sparse linear systems. If you use
the software please cite this article, as published in the Journal of Statistic Software (?)

Keywords: MCMC, linear mixed model, pedigree, phylogeny, animal model, multivariate,
sparse, R.

Due to their flexibility, linear mixed models are now widely used across the sciences (???).
However, generalizing these models to non-Gaussian data has proved difficult because inte-
grating over the random effects is intractable (?). Although techniques that approximate
these integrals (?) are now popular, Markov chain Monte Carlo (MCMC) methods provide
an alternative strategy for marginalizing the random effects that may be more robust (??).
Developing MCMC methods for generalized linear mixed models (GLMM) is an active area
of research (e.g., ????), and several software packages are now available that implement these
techniques (e.g., WinBUGS (?), MLwiN (?), glmmBUGS (?), JAGS (?)). However, these
methods often require a certain level of expertise on behalf of the user and may take a great
deal of computing time. The MCMCglmm package for R (?) implements Markov chain Monte
Carlo routines for fitting multi-response generalized linear mixed models. A range of distri-
butions are supported and several types of variance structure for the random effects and the
residuals can be fitted. The aim is to provide routines that require little expertise on behalf
of the user while reducing the amount of computing time required to adequately sample the
posterior distribution.

In this paper we explain the underlying structure of GLMM’s and then briefly describe a
general strategy for estimating the parameters. Few new results are presented, and we would
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like to acknowledge that many of the statistical results can be found in ? and many of the
algorithm details that allow the models to be fitted efficiently can be found in ?. The main
body of the paper introduces the software, using a worked example taken from a quantitative
genetic experiment. We end by comparing the routines with WinBUGS (?), and find MCM-
Cglmm to be nearly 40 times faster per iteration, and to have an effective sample size per
iteration more than 3 times greater.

1. Model form

The model has three components: a) probability density functions that relate the data y to
latent variables l, on the link scale b) a standard linear mixed model with fixed and random
predictors applied to l and c) variance structures that describe the expected (co)variances
between the location effects (fixed and random effects). Although we develop these models in
a Bayesian context where the distinction between fixed and random effects does not technically
exist, we make the distinction throughout the manuscript as the terminology is well entrenched
and understood.

1.1. Probability of the data y given the latent variable l

The probability of the ith data point is represented by:

fi(yi|li) (1)

where fi is the probability density function associated with yi. For example, if yi was assumed
to be Poisson distributed and we used the canonical log link function, then Equation 1 would
have the form:

fP (yi|λ = exp(li)) (2)

where λ is the canonical parameter of the Poisson density function fP .

1.2. Linear model for the latent variables l

The vector of latent variables are predicted by the linear model

l = Xβ + Zu + e (3)

where X is a design matrix relating fixed predictors to the data, and Z is a design matrix
relating random predictors to the data. These predictors have associated parameter vectors
β and u, and e is a vector of residuals. In the Poisson case these residuals deal with any
over-dispersion in the data after accounting for fixed and random sources of variation.

1.3. Variance structures for the model parameters

The location effects (β and u), and the residuals (e) are assumed to come from a multivariate
normal distribution:
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where β0 are the prior means for the fixed effects with prior covariance matrix B, and G and
R are the expected (co)variances of the random effects and residuals respectively. The zero
off-diagonal matrices imply a priori independence between fixed effects, random effects, and
residuals. Generally, G and R are large square matrices with dimensions equal to the number
of random effects and residuals. Typically they are unknown, and must be estimated from the
data, usually by assuming they are structured in a way that they can be parametrized by few
parameters. Below we will focus on the structure of G, but the same logic can be applied to R.

At its most general, MCMCglmm allows variance structures of the form:

G = (V1 ⊗A1)⊕ (V2 ⊗A2)⊕ . . . (5)

where the parameter (co)variance matrices (V) are usually low-dimensional and are to be
estimated, and the structured matrices (A) are usually high dimensional and treated as
known. We will refer to terms separated by a direct sum (⊕) as component terms, and the use
of a direct sum explicitly assumes random effects associated with different component terms
are independent. Each component term, however, is formed through the Kronecker product
(⊗) which allows for possible dependence between random effects within a component term.
Equation 24 can be expanded to give:

G =

[
V1 ⊗A1 0

0 V2 ⊗A2

]
(6)

where the zero off-diagonals represent the independence between component terms.

In the simplest models the structured matrices of each component term are often assumed to
be identity matrices and the parameter (co)variance matrices scalar variances:

V1 ⊗A1 = σ21I (7)

which assumes that random effects within a component term are independent but have a
common variance. However, independence between different levels is often too strong an
assumption. For example, if we had made two visits to a sample of schools and recorded test
scores for the children, we may expect dependence between measurements made in the same
school although they were sampled at different times. If the random effects are ordered schools
within ages (u> = [u1 u2]) where u1 are the random effects for the schools at time period
one, and u2 for the same set of schools at time period 2, then an appropriate G component
may have the form:

V1 ⊗A1 =

[
σ2u1 σu1,u2
σu2,u1 σ2u2

]
⊗ I (8)
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Here the diagonal elements model different variances for the two sampling periods, and the
covariance captures any persistent differences between schools. The identity matrix in the
Kronecker product implies the schools are independent. Although the assumption of inde-
pendence may be adequate in many applications, there are situations where it is not tenable.
For example, when data have been collected on related individuals, or related species, then
complicated patterns of dependence can arise if the characteristics are heritable. In these
cases A is not an identity matrix but a matrix whose elements are equal to the proportion of
genes the two individuals have in common.

2. Parameter estimation and DIC

For most types of model (non-Gaussian data) the distribution of l is not in a recognizable
form and is updated using either Metropolis-Hastings updates or the slice sampling method
of (?). Latent variables whose residuals are non-independent are sampled in blocks using
Metropolis-Hastings updates and an efficient proposal distribution is determined during the
burn-in phase using adaptive methods (??). The parameters of the mixed model (β and u)
follow a multivariate normal distribution and can be Gibbs sampled in a single block using
the method of ?. This method requires solving a large, but often sparse set of linear equations
which can be done efficiently using methods provided in the CSparse library (?). With con-
jugate priors the variance structures (R and G) follow an inverse-Wishart distribution which
can also be Gibbs sampled in a single block in many instances. By fitting non-identified
multiplicative working parameters for the random effects non-central F -distributed priors for
the variance components can be fitted (?). This involves updating the working parameters
each iteration which again can be achieved using the method of ?.

The deviance and hence the deviance information criterion (DIC) can be calculated in differ-
ent ways depending on what is in ‘focus’ (?). For non-Gaussian response variables (including
censored Gaussian) MCMCglmm calculates the deviance using the probability of the data
given the latent variables. For Gaussian data, however, the deviance is calculated using the
probability of the data given the location parameters θ> = [β u].

In the appendix the conditional distributions, and computational strategies for sampling from
them, are described in more detail, together with a more in depth explanation on the com-
putation of deviance and DIC.

3. Software

To illustrate the software we reanalyze experimental data collected on the Eurasian passerine
bird, the Blue tit (Cyanistes caeruleus) (?). The data consist of measurements taken on 828
chicks distributed across 106 broods:

R> library("MCMCglmm")

R> data("BTdata")

R> BTdata[1,]

tarsus back animal dam fosternest hatchdate sex
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1 -1.892297 1.146421 R187142 R187557 F2102 -0.6874021 Fem

The day after the chicks hatch, approximately half of the brood are reciprocally swapped with
chicks from another nest. This results in an unbalanced cross-classified data structure where
chicks share a fosternest with both relatives and non-relatives. Using molecular methods
(?) the sex of the chicks were determined in 94% of cases, and the response variables, tarsus
length and back color, were measured in all birds. The response variables are approximately
normal and were mean centered and scaled to unit variance. The date on which the chicks
hatched was recorded for all nests. The parental generation is assumed to consist of unrelated
individuals and all chicks from the same family are assumed to share the same mother and
father. Although in this example, family structure can be modeled more efficiently by fitting
genetic mother (dam) as a random effect, we will use the more general animal model ? which
is parametrized in terms of the relationship matrix, A. The relationship matrix is defined by
the pedigree;

R> data("BTped")

R> BTped[1,]

animal dam sire

1 R187557 <NAR> <NAR>

a 3 column data frame with an individual’s identifier (animal) in the first column and its
parental identifiers in the second and third columns. The pedigree often contains more in-
dividuals than are present in the data frame (in this example the pedigree also includes the
parental generation) but all animal’s in the data frame must have a row in the pedigree.

3.1. MCMCglmm arguments

The function MCMCglmm within the R library of the same name is used for model fitting. ?
were interested in estimating the covariance between tarsus and back for different sources
of variation and to achieve this we fitted the model:

R> m1<-MCMCglmm(cbind(tarsus, back) ~ trait:sex + trait:hatchdate - 1,

R> random = ~ us(trait):animal + us(trait):fosternest, rcov = ~ us(trait):units,

R> prior = prior, family = rep("gaussian", 2), nitt = 60000, burnin = 10000,

R> thin=25, data = BTdata, pedigree=BTped)

In the following sections we work through the four main arguments taken by MCMCglmm: those
that specify the response variables and fixed effects (fixed), the distribution of the response
variables (family), the random effects and associated G-structure (random), and the R-
structure (rcov). The syntax used to specify the model closely follows that used by asreml
(?), an R interface to ASReml (?) - a program for fitting GLMM using restricted maximum
likelihood (REML).

3.2. fixed: Response variables and fixed effects

The fixed argument follows the standard R formula language, and although multiple re-
sponses can be passed as a single vector, it is perhaps easier in many cases to pass them as a
matrix using cbind. For example,
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fixed = cbind(tarsus, back) ~ trait:sex + trait:hatchdate - 1

defines a bivariate model with the responses tarsus and back. For multi-response models
it is usual to make use of the reserved variables trait and units which index columns and
rows of the response matrix, respectively. To understand the use of these variables it can be
easier to think of the response as stacked column-wise:

tarsus back

1 -1.89229718 1.1464212

2 1.13610981 -0.7596521
...

...
...

828 0.833269 -1.438743

=⇒

y trait units

-1.89229718 tarsus 1
1.13610981 tarsus 2

...
...

...
0.833269 tarsus 828
1.1464212 back 1
-0.7596521 back 2

...
...

...
-1.438743 back 828

By fitting trait as a fixed effect we allow the two responses to have different means, and
by fitting interactions such as trait:hatchdate we allow different regression slopes of the
traits on hatchdate. Multi-response models models are generally easier to interpret when an
overall intercept is suppressed (-1) otherwise the parameter estimates associated with back

are interpreted as contrasts with tarsus.

3.3. family: Response variable distributions

For the above model, two distributions must be specified in the family argument, and we
assume Gaussian distributions with identity link functions for both:

family = c("gaussian", "gaussian")

Other distributions and link functions can be specified (See Table ??). Some distributions
require more data columns than linear predictors. For example, censored data are passed as
two columns, the first specifying the lowest value the data could take, and the second column
specifying the highest value the data could take. However, only a single linear predictor
(associated with the uncensored but unobserved data) is fitted for that distribution and it
should be remembered that in this case trait is really indexing linear predictors, not data.
Another example of this is the binomial distribution (specified as "multinomial2" in the
family argument) which is generally specified as a two column response of successes and
failures, but is parametrized by a single linear predictor of the log odds ratio. In addition,
some distributions actually have more linear predictors than data columns. For example, the
zero-inflated Poisson has two linear predictors; one for predicting zero-inflation and one for
predicting the Poisson counts. Similarly, categorical data although passed as a single response
are treated as a multinomial response with J − 1 linear predictors (where J are the number
of categories). Again, it should be remembered that in this case several levels of trait may
be associated with different aspects of the same data column.
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3.4. random: Random effects and G

Simple variance structures, as represented in Equation 7, can also be specified as a standard
R formula:

random = ~ fosternest + ...

although this is often inappropriate, especially for multi-response models where the implicit
assumption has been made that fosternest effects are identical for both traits. Table 3
summarizes covariance matrix specifications for the general 3 case, but to illustrate, we will
focus on a 2× 2 (co)variance matrix (Vf) associated with fosternest effects:

The diagonal elements are the fosternest variance components for tarsus length and back
color, and the off-diagonal elements are the covariance between fosternest effects on the
two traits. The specification above, without an interaction, forces the structure:

Vf =

[
σ2f σ2f
σ2f σ2f

]
(9)

where all components are forced to be the same. It is natural to form interactions with trait

as we did with the fixed effects, although there are three possible ways this could be done.
The straight forward interaction trait:fosternest although still fitting a single variance
component across both traits, assumes that individual effects are independent between traits:

Vf =

[
σ2f 0

0 σ2f

]
(10)

More useful interactions can be formed using the idh() and us() functions. For example,
idh(trait):fosternest fits heterogeneous variances across traits:

Vf =

[
σ2f:tarsus 0

0 σ2f:back

]
(11)

although still assumes that the two traits are independent at the fosternest level. The
specification us(trait):fosternest fits the completely parametrized matrix that allows for
covariance across traits:

Vf =

[
σ2f:tarsus σf:tarsus,back

σf:back,tarsus σ2f:back

]
(12)

Since the experiment was designed to measure the covariances between the two response
variables, completely parametrized (co)variance matrices are specified:

random = ~ us(trait):fosternest + us(trait):animal

For models that have pedigree or phylogenetic effects the vector of random effects needs to
be associated with the inverse relationship matrix A−1. This matrix is formed by passing
a pedigree or phylogeny to the pedigree argument of MCMCglmm. The individuals (or taxa)
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need to be associated with a column in the data frame, and this column must be called animal.

It is also possible to fit random interactions between categorical and continuous variables as
in random regression models. For example, a random intercept-slope model with a covariance
term fitted could be specified:

random = ~ us(1+age):individual

or for higher order polynomials the poly function could be used:

random = ~ us(1+poly(age, 2)):individual

Another form of random effect structure that does not arise in the worked example is that
arising in meta analysis. In meta-analysis each data point is measured with some error.
If the sampling error around the true value is approximately normal, and the variance of
the sampling errors known, then random effect meta-analyses can be fitted by passing the
sampling variances to the mev argument of MCMCglmm. In the simplest case, without additional
random effects and i.i.d R-structure, the latent variables are assumed to have the multivariate
normal distribution:

l ∼ N
(
Xβ,D + σ2eI

)
(13)

where D is a diagonal matrix with mev along the diagonal.

3.5. rcov: Residual variance structure R

The R-structure can be parametrized in the same way as the G-structure although currently
direct sums are not possible. However, unlike the G-structure it is important that the residual
model is specified in away that allows each linear predictor to have a unique residual. For
multi-response models forming an interaction between trait and units satisfies this condi-
tion and as with the G-structure various types of interaction could be considered. Again, we
will use a fully parametrized covariance matrix:

rcov = ~ us(trait):units

3.6. prior: Response variables and fixed effects

If not defined, default priors are used which are not proper and this can lead to both inferen-
tial and numerical problems. The prior specification is passed to MCMCglmm via the argument
prior which takes a list of three elements specifying the priors for the fixed effects (B), the
G-structure (G) and the R-structure (R).

For the fixed effects, a multivariate normal prior distribution can be specified through the
mean vector mu (β0) and a (co)variance matrix V (B) passed as list elements of B. The default
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has a zero mean vector and a diagonal variance matrix with large variances (1e+10).

For non-parameter expanded models, the parameter (co)variance matrices are assumed to
have (conditional) inverse-Wishart prior distributions and individual elements for each com-
ponent of the variance structure take the arguments V, n and fix which specify the expected
(co)variance matrix at the limit, the degree of freedom parameter, and the partition to con-
dition on. The variance structure prior specification for the above models was

R> prior = list(R = list(V = diag(2)/3, n = 2),

R> G = list(G1 = list(V = diag(2)/3, n = 2),

R> G2 = list(V = diag(2)/3, n = 2)))

where the expected covariance matrices for all three components of the variance structure
are diagonal matrices implying a priori independence between tarsus and back. The traits
were scaled to have unit variance prior to analysis and so the specification implies the prior
belief that the total variance is evenly split across all three terms. The term fix has been left
unspecified and so all variance parameters are estimated. However, for certain types of model
it is advantageous to be able to fix sub-matrices at certain values and not estimate them. The
fix argument partitions V into (potentially) 4 sub-matrices where the partition occurs on the
fixth diagonal element. For example, if V is an n× n matrix then V is partitioned:

V =

[
V1:(fix-1),1:(fix-1) V1:(fix-1),fix:n

Vfix:n,1:(fix-1) Vfix:n,fix:n

]
(14)

and the lower right sub-matrix (Vfix:n,fix:n) is fixed and not estimated. When fix = 1 the
whole matrix is fixed.

Two further arguments that can passed are alpha.mu and alpha.V which specify the prior
distribution for the non-identified working parameters. When the matrix alpha.V is non-null
parameter expanded models are fitted. When the variance-structure defines a single variance,
the prior distribution is a scaled non-central F -distribution (?). Without loss of generality
we can have V = 1 in the prior to give:

Pr(σ2) = fF (σ2/alpha.V|1, nu, (alpha.mu2)/alpha.V)

where fF is the density function of the F -distribution defined by three parameters: the nu-
merator and denominator degrees of freedom and the non-centrality parameter, respectively.

3.7. MCMC output

The model was ran for 60,000 iterations with a burn-in phase of 10,000 and a thinning interval
of 25. MCMCglmm returns a list with elements:

• Sol: Posterior distribution of location effects (and cutpoints for ordinal models)

• VCV: Posterior distribution of (co)variance matrices
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Figure 1: Trace of the sampled output and density estimates for male and female tarsus length
and back color.

• Liab: Posterior Distribution of latent variables

• Deviance: Deviance

• DIC: Deviance Information Criterion

The samples from the posterior distribution are stored as mcmc objects, which can be summa-
rized and visualized using the coda package (?). The element Sol contains the fixed effects
(β), and if pr=TRUE then also the random effects (u). The element VCV contains the parameter
(co)variance matrices stacked column-wise, and if pl=TRUE then Liab contains the posterior
distribution of latent variables l. The element Deviance contains the deviance at each stored
iteration and DIC contains the deviance information criterion (?) calculated over all iterations
after burn-in. Traces of the sampled output and density estimates are shown for the effects
of gender on trait expression (Figure 1) and the genetic covariance matrix associated with
animal (See Figure 2).

We also fitted alternative variance structures where some or all covariances were set to zero,



Jarrod Hadfield 11

10000 20000 30000 40000 50000 60000

0
.2

0
.6

Iterations

Trace of animal.trait.tarsus.tarsus

0.2 0.4 0.6 0.8 1.0

0
2

4

N = 2000   Bandwidth = 0.02201

Density of animal.trait.tarsus.tarsus

10000 20000 30000 40000 50000 60000

−
0
.3

0
.0

Iterations

Trace of animal.trait.back.tarsus

−0.4 −0.3 −0.2 −0.1 0.0 0.1

0
4

N = 2000   Bandwidth = 0.01311

Density of animal.trait.back.tarsus

10000 20000 30000 40000 50000 60000

−
0
.3

0
.0

Iterations

Trace of animal.trait.tarsus.back

−0.4 −0.3 −0.2 −0.1 0.0 0.1

0
4

N = 2000   Bandwidth = 0.01311

Density of animal.trait.tarsus.back

10000 20000 30000 40000 50000 60000

0
.1

0
.4

Iterations

Trace of animal.trait.back.back

0.0 0.1 0.2 0.3 0.4 0.5

0
4

N = 2000   Bandwidth = 0.01277

Density of animal.trait.back.back

Figure 2: Trace of the sampled output and density estimates for the genetic covariance matrix
of tarsus length and back color.
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animal fosternest units DIC
variance function variance function variance function

us us us 4043.8/4041.9
idh us us 4050.5/4050.7
idh idh us 4063.0/4062.8
idh idh idh 4077.9/4076.7
us idh us 4056.2/4059.2
us idh idh 4091.1/4089.5
idh us idh 4069.8/4069.9
us us idh 4081.8/4082.4

Table 1: Deviance Information Criteria for several models where the covariance between the
response variable for a designated source of variation was either estimated (us) or set to zero
(idh). Each model was ran twice in order to asses the level of Monte Carlo error in calculating
DIC.

and Table 1 shows the DIC for each model. The priors on the reduced models were set up so
that the marginal prior for the variances was the same as that in the full model. The sampling
error of DIC can be large and so we ran all models for an additional 500,000 iterations.

3.8. Comparison with WinBUGS

We also fitted an identical model in WinBUGS (code available from the author) using a
multivariate extension to the method proposed by ?. On a 2.5Ghz dual core MacBook Pro
with 2GB RAM, MCMCglmm took 7.6 minutes and WinBUGS took 4.8 hours to fit the model.
Moreover, the number of effective samples was 3.2 times higher in MCMCglmm (averaged over
all parameters) indicating that the chain has better mixing properties. Because MCMCglmm
samples all location parameters in a single block the gains in efficiency are expected to be
even higher when the parameters show stronger posterior correlation.
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4. Concluding remarks

This paper introduces an R package for fitting multi-response generalized linear mixed models
using Markov chain Monte Carlo techniques developed in quantitative genetics (?). A key
aspect of these techniques is that they update all location effects (fixed and random) as a
single block which results in better mixing properties and shorter chain lengths than alter-
native strategies. This can involve repeatedly solving a very large but sparse set of mixed
model equations, and the computational cost of doing this is minimized by using the CSparse
C libraries for solving sparse linear systems (?). For the example data set analysed, MCM-
Cglmm collected 120 times more effective samples per unit time than the same model fitted
in WinBUGS. A range of distributions for the response variables are permitted, and flexible
variance structures for the random effects and residuals included. It is hoped that this package
makes the flexibility and simplicity of generalized linear mixed modeling available to a wider
range of researchers.
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A. Appendix

A.1. Updating the latent variables l

The conditional density of l is given by:

Pr(li|y,θ,R,G) ∝ fi(yi|li)fN (ei|riR−1/i e/i, ri − riR
−1
/i r>i ) (15)

where fN indicates a Multivariate normal density with specified mean vector and covariance
matrix. Equation 15 is the probability of the data point yi with linear predictor li on the
link scale for distribution fi, multiplied by the probability of the linear predictor residual.
The linear predictor residual follows a conditional normal distribution where the conditioning
is on the residuals associated with data points other than i. Vectors and matrices with the
row and/or column associated with i removed are denoted /i. In practice, this conditional
distribution only involves other residuals which are expected to show some form of residual
covariation, as defined by the R structure. Because of this we actually update latent variables
in blocks, where the block is defined as groups of residuals which are expected to be correlated:

Pr(lj |y,θ,R,G) ∝
∏
i∈j

pi(yi|li)fN (ej |0,Rj) (16)
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where j indexes blocks of latent variables that have non-zero residual covariances. A special
case arises for multi-parameter distributions in which each parameter is associated with a
linear predictor. For example, in the zero-inflated Poisson two linear predictors are used
to model the same data point, one to predict zero-inflation, and one to predict the Poisson
variable. In this case the two linear predictors are updated in a single block even when the
residual covariance between them is set to zero, because the first probability in Equation 16
cannot be factored:

Pr(lj |y,θ,R,G) ∝ pi(yi|lj)fN (ej |0,Rj) (17)

We use adaptive methods during the burn-in phase to determine an efficient multivariate
normal proposal distribution entered at the previous value of lj with covariance matrix mM.
For computational efficiency we use the same M for each block j, where M is the average
posterior (co)variance of lj within blocks and is updated each iteration of the burn-in period
?. The scalar m is chosen using the method of ? so that the proportion of successful jumps is
optimal, with a rate of 0.44 when lj is a scalar declining to 0.23 when lj is high dimensional (?).

For the standard linear mixed model with a Gaussian response and identity link, Pr(li =
yi|y,θ,R,G) is always unity and so the Metropolis-Hastings steps are always omitted. When
the latent variables within a block j are associated with missing data then their conditional
distribution is multivariate normal and can be Gibbs sampled directly:

Pr(lj |y,θ,R,G) ∼ N(Xjβ + Zju,Rj) (18)

where design matrices subscripted by j are the rows of the original design matrices associated
with the latent variables in block j.

A.2. Updating the location vector θ =
[
β> u>

]>
? provide a method for sampling θ as a complete block that involves solving the sparse linear
system:

θ̃ = C−1W>R−1(l−Wθ? − e?) (19)

where C is the mixed model coefficient matrix:

C = W>R−1W +

[
B−1 0

0 G−1

]
(20)

and W = [X Z], and B is the prior (co)variance matrix for the fixed effects.

θ? and e? are random draws from the multivariate normal distributions:

θ? ∼ N
([

β0

0

]
,

[
B 0
0 G

])
(21)

and
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e? ∼ N (Wθ?,R) (22)

θ̃ + θ? gives a realization from the required probability distribution:

Pr(θ|l,W,R,G) (23)

Equation 19 is solved using Cholesky factorization. Because C is sparse and the pattern
of non-zero elements fixed, an initial symbolic Cholesky factorization of PCP> is preformed
where P is a fill-reducing permutation matrix (?). Numerical factorization must be performed
each iteration but the fill-reducing permutation (found via a minimum degree ordering of
C + C>) reduces the computational burden dramatically compared to a direct factorization
of C (?).

Forming the inverse of the variance structures is usually simpler because they can be expressed
as a series of direct sums and Kronecker products:

G = (V1 ⊗A1)⊕ (V2 ⊗A2)⊕ . . . (24)

and the inverse of such a structure has the form

G−1 =
(
V−11 ⊗A−11

)
⊕
(
V−12 ⊗A−12

)
⊕ . . . (25)

which involves inverting the parameter (co)variance matrices (V), which are usually of low
dimension, and inverting A. For many problems A is actually an identity matrix and so
inversion is not required. When A is a relationship matrix associated with a pedigree, ??
give efficient recursive algorithms for obtaining the inverse, and ? derive a similar procedure
for phylogenies.

A.3. Updating the variance structures G and R

Components of the direct sum used to construct the desired variance structures are condi-
tionally independent. The sum of squares matrix associated with each component term has
the form:

S = U>A−1U (26)

where U is a matrix of random effects where each column is associated with the relevant
row/column of V and each row associated with the relevant row/column of A. The parameter
(co)variance matrix can then be sampled from the inverse Wishart distribution:

V ∼ IW ((Sp + S)−1, np + nu) (27)

where nu is the number of rows in U, and Sp and np are the prior sum of squares and prior
degrees of freedom, respectively.
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In some models, some elements of a parameter (co)variance matrix cannot be estimated from
the data and all the information comes from the prior. In these cases it can be advantageous
to fix these elements at some value and ? provide a strategy for sampling from a conditional
inverse-Wishart distribution which is appropriate when the rows/columns of the parameter
matrix can be permuted so that the conditioning occurs on some diagonal sub-matrix. When
this is not possible Metropolis-Hastings updates can be made.

A.4. Ordinal models

For ordinal models it is necessary to update the cutpoints which define the bin boundaries
for latent variables associated with each category of the outcome. To achieve good mixing
we used the method developed by (?) that allows the latent variables and cutpoints to be
updated simultaneously using a Hastings-with-Gibbs update.

A.5. Parameter expansion

As the covariance matrix approaches a singularity the mixing of the chain becomes noto-
riously slow. This problem is often encountered in single-response models when a variance
component is small and the chain becomes stuck at values close to zero. Similar problems
occur for the EM algorithm and (?) introduced parameter expansion to speed up the rate of
convergence. The idea was quickly applied to Gibbs sampling problems ? and has now been
extensively used to develop more efficient mixed-model samplers (e.g., ???).

The columns of the design matrix (W) can be multiplied by the non-identified working pa-
rameters α = [1, α1, α2, . . . αk]

>:

Wα = [X Z1α1 Z2α2 . . . Zkαk] (28)

where the indices denote sub-matrices of Z which pertain to effects associated with the same
variance component. Replacing W with Wα we can sample the new location effects θα as
described above, and rescale them to obtain θ:

θ = (Inβ ⊕
k
i=1 Inui

αi)θα (29)

where the identity matrices are equal in dimension to nx the number of elements in the sub-
scripted parameter vector x.

Likewise, the (co)variance matrices can be rescaled by the set of α’s associated with the
variances of a particular variance structure component (αV):

V = Diag(αV)VαDiag(αV) (30)

The working parameters are not identifiable in the likelihood, but do have a proper conditional
distribution. Defining Xα as an n × (k + 1) design matrix, with each column equal to the
sub-matrices in Equation 28 post-multiplied by the relevant sub-vectors of θα, we can see that
α is a vector of regression coefficients:
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l = Xαα+ e (31)

and so the methods described above can be used to update them.

A.6. Deviance and DIC

The deviance D is defined as:

D = −2log(Pr(y|Ω)) (32)

where Ω is some parameter set of the model. The deviance can be calculated in different
ways depending on what is in ‘focus’, and MCMCglmm calculates this probability for the lowest
level of the hierarchy (?). For Gaussian response variables the likelihood is the density:

fN (y|Xβ + Zu, R) (33)

where Ω = {θ, R} but for other response variables variables it is the product:∏
i

fi(yi|li) (34)

with Ω = l.

For multivariate models with mixtures of Gaussian and non-Gaussian data (including missing
values) the likelihood of the Gaussian data is the density of yg in the conditional density:

fN

(
yg|Xgβ + Zgu + Rg,lR

−1
l,l (l−Xlβ − Zlu), Rg,g −Rg,lR

−1
l,l Rl,g

)
(35)

where the subscripts g and l denote rows of the data vector/design matrices that pertain
to Gaussian data, and non-Gaussian data respectively. Subscripts on the R-structure index
both rows and columns. The likelihood of the non-Gaussian data are identical to Equation
34 giving the complete parameter set Ω = {θg,R, l}.

The deviance is calculated at each iteration if DIC=TRUE and stored each thinth iteration
after burn-in. The mean deviance (D̄) is calculated over all iterations, as is the mean of the
latent variables (l) the R-structure and the vector of predictors (Xβ + Zu). The deviance
is calculated at the mean estimate of the parameters (D(Ω̄)) and the deviance information
criterion calculated as:

DIC = 2D̄ −D(Ω̄) (36)
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