Package 'MCDM'

September 22, 2016

Type Package
Title Multi-Criteria Decision Making Methods for Crisp Data
Version 1.2
Date 2016-09-21
Author Blanca A. Ceballos Martin
bceballos@decsai.ugr.es>
Maintainer Blanca A. Ceballos Martin
bceballos@decsai.ugr.es>
Description Implementation of several MCDM methos for crisp data for decision making problems. The methods that are implemented in this package are RIM, TOPSIS (with two normalization procedures), VIKOR, Multi-MOORA and WASPAS. In addition, MetaRanking function calculates a new ranking from the sum of the rankings calculated, as well as an aggregated ranking.
Imports RankAggreg
License LGPL (>= 3)
URL http://decsai.ugr.es/index.php?p=miembros&id=19909

RoxygenNote 5.0.1 NeedsCompilation no Repository CRAN Date/Publication 2016-09-22 16:50:45

R topics documented:

MetaRanking																					2	2
MMOORA .																						3
RIM																					2	4
TOPSISLinear																						5
TOPSISVector .																					(6
VIKOR																						7
WASPAS																						8
																						9

Index

MetaRanking

Description

The MetaRanking function internally calls functions MMOORA, RIM, TOPSISLinear, TOPSISVector, VIKOR and WASPAS and then calculates a sum of the their rankings and an aggregated ranking by applying the RankAggreg package.

Usage

```
MetaRanking(decision, weights, cb, lambda, v, AB, CD)
```

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either $cb(i)='max'$ if the <i>i</i> -th criterion is benefit or $cb(i)='min'$ if the <i>i</i> -th criterion is a cost.
lambda	A value in [0,1]. It is used in the calculation of the W index for WASPAS method.
v	A value in [0,1]. It is used in the calculation of the Q index for VIKOR method.
AB	A matrix $(2 \times n)$. AB[1,] corresponds with the A extrem, and AB[2,] represents the B extrem of the domain of each criterion.
CD	A matrix (2 x <i>n</i>). CD[1,] corresponds with the C extrem, and CD[2,] represents the D extrem of the ideal reference of each criterion.

Value

MetaRanking returns a data frame which contains the rankings of the Multi-MOORA, RIM, TOP-SISLinear, TOPSISVector, VIKOR, WASPAS Methods and the both MetaRankings of the alternatives.

```
d <- matrix(c(1,2,5,3000,3750,4500),nrow = 3,ncol = 2)
w <- c(0.5,0.5)
cb <- c('min','max')
lambda <- 0.5
v <- 0.5
AB <- matrix(c(1,5,3000,4500),nrow = 2,ncol=2)
CD <- matrix(c(1,1,4500,4500),nrow = 2,ncol=2)
MetaRanking(d,w,cb,lambda,v,AB,CD)
```

MMOORA

Implementation of MULTIMOORA Method for Multi-Criteria Decision Making Problems.

Description

The MMOORA function implements both the Multi-Objetive Optimization by Ration Analysis (MOORA) and the "Full Multiplicative Form" (MULTIMOORA).

Usage

MMOORA(decision, weights, cb)

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either cb(i)='max' if the <i>i</i> -th criterion is benefit or cb(i)='min' if the <i>i</i> -th criterion is a cost.

Value

MMOORA returns a data frame which contains the scores and the four rankings calculated (Ratio System, Reference Point, Multiplicative Form and Multi-MOORA ranking).

References

Brauers, W. K. M.; Zavadskas, E. K. Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16(1), 5-24, 2010.

```
d <- matrix(c(60,6.35,6.8,10,2.5,4.5,3,0.4,0.15,0.1,0.2,0.1,0.08,0.1,2540,1016,1727.2,
1000,560,1016,1778,500,3000,1500,2000,500,350,1000,990,1041,1676,965,915,508,920),
nrow=7,ncol=5)
w <- c(0.036,0.192,0.326,0.326,0.12)
cb <- c('max','min','max','max','max')
MMOORA(d,w,cb)
```

Description

The RIM function implements the Reference Ideal Method (RIM).

Problems.

Usage

RIM(decision, weights, AB, CD)

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
AB	A matrix $(2 \ge n)$. AB[1,] corresponds with the A extrem, and AB[2,] represents the B extrem of the domain of each criterion.
CD	A matrix $(2 \times n)$. CD[1,] corresponds with the C extrem, and CD[2,] represents the D extrem of the ideal reference of each criterion.

Value

RIM returns a data frame which contains the score of the R index and the ranking of the alternatives.

References

Cables, E.; Lamata, M.T.; Verdegay, J.L. RIM-reference ideal method in multicriteria decision making. Information Science, 337-338, 1-10, 2016.

Examples

d <- matrix(c(30,40,25,27,45,0,9,0,0,15,2,1,3,5,2,3,3,1,3,2,3,2,3,3,3,2,2,2,1,4), nrow = 5, ncol = 6) w <- c(0.2262,0.2143,0.1786,0.1429,0.119,0.119) AB = matrix(c(23,60,0,15,0,10,1,3,1,3,1,5),nrow = 2,ncol = 6) CD = matrix(c(30,35,10,15,0,0,3,3,3,3,4,5),nrow = 2,ncol = 6) RIM(d,w,AB,CD)

RIM

TOPSISLinear

Description

The TOPSISLinear function implements the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method with the linear transformation of maximum as normalization prodecure.

Usage

TOPSISLinear(decision, weights, cb)

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either $cb(i)='max'$ if the <i>i</i> -th criterion is benefit or $cb(i)='min'$ if the <i>i</i> -th criterion is a cost.

Value

TOPSISLinear returns a data frame which contains the score of the R index and the ranking of the alternatives.

References

Garcia Cascales, M.S.; Lamata, M.T. On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56(5-6), 123-132, 2012.

```
d <- matrix(c(1,4,3,5,2,3),nrow = 3,ncol = 2)
w <- c(0.5,0.5)
cb <- c('max','max')
TOPSISLinear(d,w,cb)</pre>
```

TOPSISVector

Description

The TOPSISVector function implements the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method with the vectorial normalization prodecure.

Usage

TOPSISVector(decision, weights, cb)

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either $cb(i)='max'$ if the <i>i</i> -th criterion is benefit or $cb(i)='min'$ if the <i>i</i> -th criterion is a cost.

Value

TOPSISVector returns a data frame which contains the score of the R index and the ranking of the alternatives.

References

Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making. In: Lecture Notes in Economics and Mathematical Systems 186. Springer-Verlag, Berlin, 1981.

```
d <- matrix(c(6,7,10,2,2.75,3.5),nrow = 3,ncol = 2)
w <- c(0.5,0.5)
cb <- c('min','max')
TOPSISVector(d,w,cb)</pre>
```

VIKOR

Description

The VIKOR function implements the "VIseKriterijumska Optimizacija I Kompromisno Resenje" (VIKOR) Method.

Usage

```
VIKOR(decision, weights, cb, v)
```

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either cb(i)='max' if the <i>i</i> -th criterion is benefit or cb(i)='min' if the <i>i</i> -th criterion is a cost.
v	A value in [0,1]. It is used in the calculation of the Q index.

Value

VIKOR returns a data frame which contains the score of the S, R and Q indixes and the ranking of the alternatives according to Q index.

References

Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455, 2004.

```
d <- matrix(c(1,2,5,3000,3750,4500),nrow = 3,ncol = 2)
w <- c(0.5,0.5)
cb <- c('min','max')
v <- 0.5
VIKOR(d,w,cb,v)</pre>
```

WASPAS

Description

The WASPAS function implements the Weighted Aggregated Sum Product ASsessment (WASPAS) Method.

Usage

WASPAS(decision, weights, cb, lambda)

Arguments

decision	The decision matrix $(m \ge n)$ with the values of the <i>m</i> alternatives, for the <i>n</i> criteria.
weights	A vector of length n , containing the weights for the criteria. The sum of the weights has to be 1.
cb	A vector of length <i>n</i> . Each component is either $cb(i)='max'$ if the <i>i</i> -th criterion is benefit or $cb(i)='min'$ if the <i>i</i> -th criterion is a cost.
lambda	A value in [0,1]. It is used in the calculation of the W index.

Value

WASPAS returns a data frame which contains the score of the WSM, WPM and the Q index and the ranking of the alternatives.

References

Zavadskas, E. K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of Weighted Aggregated Sum Product Assessment. Electronics and Electrical Engineering, 122(6), 3-6, 2012.

Examples

d <- matrix(c(370,314,480,850,11,7,10,16,2.69,2.37,3.09,3.17,2.75,3.27,3.67,4.10,
5,35,30,50,1.63,1.72,1.87,1.91,1.47,2.07,1.38,2.22,7.11,5.60,7.82,8.25,88,12.60,94,
23,410,100,410,65,2.93,2.13,2.87,1.10,1.98,3.21,2.94,4.37),nrow = 4,ncol = 12)
w <- c(0.0626,0.0508,0.1114,0.0874,0.0625,0.1183,0.0784,0.0984,0.053,0.1417,
0.0798,0.0557)
cb <- c('min','min','max','max','max','max','max','max','min','min','min','max','max')
lambda <- 0.5
WASPAS(d,w,cb,lambda)</pre>

Index

MetaRanking,2 MMOORA,3

RIM, 4

TOPSISLinear, 5 TOPSISVector, 6

VIKOR, 7

WASPAS, 8