
Package ‘MARSS’
February 4, 2020

Type Package

Title Multivariate Autoregressive State-Space Modeling

Version 3.10.12

Date 2020-01-28

Depends R (>= 3.1.0)

Imports graphics, grDevices, KFAS (>= 1.0.1), mvtnorm, nlme, stats,
utils

Suggests broom, Formula, ggplot2, Hmisc, lattice, lme4, maps, Matrix,
stringr, survival, xtable

Author Eli Holmes, Eric Ward, Mark Scheuerell, and Kellie Wills, NOAA, Seattle, USA

Maintainer Elizabeth Holmes - NOAA Federal <eli.holmes@noaa.gov>

Description The MARSS package provides maximum-likelihood parameter estimation for con-
strained and unconstrained linear multivariate autoregressive state-space (MARSS) mod-
els fit to multivariate time-series data. Fitting is primarily via an Expectation-
Maximization (EM) algorithm, although fitting via the BFGS algorithm (using the optim func-
tion) is also provided. MARSS models are a class of dynamic linear model (DLM) and vec-
tor autoregressive model (VAR) model. Functions are provided for parametric and innova-
tions bootstrapping, Kalman filtering and smoothing, bootstrap model selection crite-
ria (AICb), confidences intervals via the Hessian approximation and via bootstrapping and calcu-
lation of auxiliary residuals for detecting outliers and shocks. The user guide shows exam-
ples of using MARSS for parameter estimation for a variety of applications, model selection, dy-
namic factor analysis, outlier and shock detection, and addition of covariates. Type RShow-
Doc(``UserGuide'', package=``MARSS'') at the R com-
mand line to open the MARSS user guide. Online workshops (lectures and com-
puter labs) at <https://nwfsc-timeseries.github.io/> See the NEWS file for update information.

License GPL-2

LazyData yes

BuildVignettes yes

ByteCompile TRUE

URL https://nwfsc-timeseries.github.io/MARSS

BugReports https://github.com/nwfsc-timeseries/MARSS/issues

1

https://nwfsc-timeseries.github.io/MARSS
https://github.com/nwfsc-timeseries/MARSS/issues

2 R topics documented:

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-04 05:30:02 UTC

R topics documented:
MARSS-package . 3
augment.marssMLE . 5
coef.marssMLE . 8
CSEGriskfigure . 9
CSEGtmufigure . 11
datasets . 12
fitted.marssMLE . 12
glance.marssMLE . 15
harborSeal . 16
is.marssMLE . 17
isleRoyal . 20
loggerhead . 20
logLik.marssMLE . 21
MARSS . 22
MARSS.marss . 28
MARSS.marxss . 30
MARSS.vectorized . 33
MARSSaic . 34
MARSSboot . 36
MARSSFisherI . 38
MARSSharveyobsFI . 40
MARSShatyt . 41
MARSShessian . 43
MARSShessian.numerical . 44
MARSSinfo . 45
MARSSinits . 46
MARSSinnovationsboot . 48
MARSSkem . 49
MARSSkf . 53
marssMLE-class . 57
marssMODEL-class . 57
MARSSoptim . 59
MARSSparamCIs . 62
MARSSresiduals.tT . 63
MARSSresiduals.tt1 . 69
MARSSsimulate . 72
plankton . 73
plot.marssMLE . 74
population-count-data . 76
print.marssMLE . 77
print.marssMODEL . 80

MARSS-package 3

residuals.marssMLE . 81
SalmonSurvCUI . 84
tidy.marssMLE . 85
toLatex.marssMODEL . 89
zscore . 91

Index 92

MARSS-package Multivariate Autoregressive State-Space Model Estimation

Description

The MARSS package fits time-varying constrained and unconstrained multivariate autoregressive
time-series models to multivariate time series data. Get started quickly, go to the Quick Start
Guide (or type RShowDoc("Quick_Start",package="MARSS") at the command line). To open the
MARSS User Guide with many vignettes and examples, go to User Guide (or type RShowDoc("UserGuide",package="MARSS")).

The default MARSS model form is a MARXSS model: Multivariate Auto-Regressive(1) eXoge-
nous inputs State-Space model. This model has the following form:

xt+1 = Bxt + u + Cct + Gwt, where wt ∼ MVN(0,Q)

yt = Zx(t) + a + Ddt + Hvt, where vt ∼ MVN(0,R)

X1 ∼ MVN(x0,V0) or X0 ∼ MVN(x0,V0)

All parameters can be time-varying; "_t" is left off the parameters to remove clutter. Note, by default
V 0 is a matrix of all zeros and thus x1 or x0 is treated as an estimated parameter not a diffuse prior.

The parameter matrices can have fixed values and linear constraints. This is an example of a 3x3
matrix with fixed values and linear constraints. In this example all the matrix elements can be
written as a linear function of a, b, and c: a+ 2b 1 a

1 + 3a+ b 0 b
0 −2 c


Values such as ab or a2 or log(a) are not allowed as those would not be linear.

The MARSS model parameters, hidden state processes (x), and observations (y) are matrices:

• xt, x0, and u are m x 1

• yt and a are n x 1 (m<=n)

• B and V0 are m x m

• Z is n x m

• Q is g x g (default m x m)

• G is m x g (default m x m identity matrix)

• R is h x h (default n x n)

• H is n x h (default n x n identity matrix)

https://cran.r-project.org/package=MARSS/vignettes/Quick_Start.pdf
https://cran.r-project.org/package=MARSS/vignettes/Quick_Start.pdf
https://cran.r-project.org/package=MARSS/vignettes/UserGuide.pdf

4 MARSS-package

• C is m x q

• D is n x p

• ct is q x 1

• dt is p x 1

If a parameter is time-varying then the time dimension is the 3rd dimension. Thus a time-varying Z
parameters would be n x m x T where T is the length of the data time series.

The main fitting function is MARSS() which is used to fit a specified model to data and estimate the
model parameters. MARSS() estimates the model parameters using an EM algorithm (primarily but
see MARSSoptim()). Functions are provided for a variety of output including parameter confidence
intervals and the observed Fisher Information matrix, smoothed state estimates with confidence
intervals, all the Kalman filter and smoother outputs, residuals and residual diagnostics, printing
and plotting, and summaries in tibble format,

Details

Main MARSS functions:

MARSS Top-level function for specifying and fitting MARSS models.

fitted.marssMLE Fitted Y and X estimates output as a tibble. Output can be conditioned on all
the data (T), data up to t-1, or data up to t.

coef.marssMLE Returns the estimated parameters in a variety of formats.

tidy.marssMLE Parameter estimates and fitted Y and X estimates output as a tibble. With confi-
dence intervals if requested

augment.marssMLE Model residuals as a tibble.

plot.marssMLE A series of plots of fits and residuals diagnostics.

autoplot.marssMLE A series of plots using ggplot2 of fits and residuals diagnostics.

glance.marssMLE Brief summary of fit.

logLik.marssMLE Log-likelihood.

print.marssMLE Prints a wide variety of output from a marssMLE object.

print.marssMODEL Prints description of the MARSS model (marssMODEL object).

toLatex.marssMODEL Outputs a LaTeX version of the model.

Other outputs for a fitted model:

MARSSsimulate Produces simulated data from a MARSS model.

MARSSkf, MARSSkfas, MARSSkfss Kalman filters and smoothers with extensive output of all the
intermediate filter and smoother variances and expectations.

MARSSaic Calculates AICc, AICc, and various bootstrap AICs.

MARSSparamCIs Adds confidence intervals to a marssMLE object.

MARSShessian Computes an estimate of the variance-covariance matrix for the MLE parameters.

MARSSFisherI Returns the observed Fisher Information matrix.

Important internal MARSS functions (called by the above functions):

augment.marssMLE 5

MARSSkem Estimates MARSS parameters using an EM algorithm.

MARSSoptim Estimates MARSS parameters using a quasi-Newton algorithm via optim.

MARSShatyt Calculates the expectations involving Y.

MARSSinnovationsboot Creates innovations bootstrapped data.

MARSS.marss Discusses the form in which MARSS models are stored internally.

Use help.search("internal",package="MARSS") to see the documentation of all the internal
functions in the MARSS R package.

Author(s)

Eli Holmes, Eric Ward and Kellie Wills, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov and eric(dot)ward(at)noaa(dot)gov,

References

The MARSS User Guide: Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multi-
variate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Cen-
ter, 2725 Montlake Blvd E., Seattle, WA 98112 User Guide or type RShowDoc("UserGuide",package="MARSS")
to open a copy.

The MARSS Quick Start Guide: Quick Start Guide or type RShowDoc("Quick_Start",package="MARSS")
to open a copy.

augment.marssMLE Return the model and state fitted values, residuals, and residual sigma

Description

augment.marssMLE returns a data.frame with fitted values, residuals, and upper and lower con-
fidence intervals (if requested) for the fitted observations or states. augment is concerned with
predictions of the states or observations at time t, i.e. the right part of a MARSS model equation
with the error terms left off. The error terms are the residuals (the vt or wt). tidy.marssMLE is
concerned with estimates of values (parameters, states or observations) conditioned on all the data.

Usage

augment.marssMLE(x, type = c("ytT", "xtT"),
interval = c("none", "confidence", "prediction"),
conf.level = 0.95,
form=attr(x[["model"]], "form")[1])

https://cran.r-project.org/package=MARSS/vignettes/UserGuide.pdf
https://cran.r-project.org/package=MARSS/vignettes/Quick_Start.pdf

6 augment.marssMLE

Arguments

x a marssMLE object

type What types of fitted values and residuals to return. ytT (observations) and xtT
(states) are the values conditioned on all the data. Read the details below for
xtT. tidy would be the more common function for returning xtT (smoothed
state) estimates.

interval Type of interval: none, confidence or prediction interval. If the confidence,
approximate intervals from the standard errors of the fitted values is given.

conf.level Confidence level.

form If you want the augment function to use a different augment function than aug-
ment_form. This might be useful if you manually specified a DFA model and
want to use augment.dfa for rotating.

Details

See residuals.marssMLE for a discussion of the residuals calculations for MARSS models. The
reported CIs are the approximate CIs computed using the standard deviations: qnorm(alpha/2)*se.fit
+ fitted.

observations (type="ytT")
This returns a model predicted value of the response (y) and the difference between the model
prediction and the observed data is the residual. If there is no data point, then the residual is NA.
The standard errors help visualize how well the model fits to the data. See fitted.marssMLE for
a discussion of the calculation of the fitted values for the observations (the modeled values). The
standardized residuals can be used for outlier detection. See residuals.marssMLE and the chapter
on shock detection in the MARSS User Guide.

In the literature on state-space models, it is very common to use the one-step ahead predicted values
of the data. The fitted values returned by type=ytT are NOT the one-step ahead values and the
residuals are NOT the one-step ahead residuals (called Innovations in the state-space literature).
If you want the one-step ahead fitted values, you can use fitted(x,conditioning="t-1"). The
innovations are also returned by MARSSkf in Innov.

states (type="xtT")
If you want the expected value of the states and an estimate of their standard errors (for confidence
intervals), then augment is not what you want to use. You want to use tidy.marssMLE to return
the smoothed estimate of the state. augment(MLEobj,type="xtT") returns a model prediction of
x(t) given xt−1. The residuals returned are for wt, the difference between the two. These types of
residuals are used for outlier detection or shock detection in the state process. They are also used
for model diagnostics. See residuals.marssMLE and read the references cited.

Value

If interval = "none", the data frame has the following columns:

.fitted Fitted values of observations or states. See details.

.resids Model or states residuals. See details.

.sigma The standard error of the model or state residuals. Intervals for the residuals can
be constructed from .sigma using qnorm(alpha/2)*.sigma + .fitted.

augment.marssMLE 7

.std.resid Standardized residuals. Used for outlier detection. See residuals.marssMLE.

If interval = "confidence", the following are added to the data frame:

.se.fit Standard errors of fitted values

.conf.low Lower confidence level at alpha = 1-conf.level. The interval is approximated
using qnorm(alpha/2)*.se.fit + .fitted.

.conf.up Upper confidence level. The interval is approximated using qnorm(1-alpha/2)*.se.fit
+ .fitted.

If interval = "prediction", the following are added to the data frame:

.sd.x or .sd.y Standard deviation of new x or y iid values.

.lwr Lower range at alpha = 1-conf.level. The interval is approximated using
qnorm(alpha/2)*.sd + .fitted.

.upr Upper range at level. The interval is approximated using qnorm(1-alpha/2)*.sd
+ .fitted.

The standard deviation is for new x or y, not estimated x nor y used in the model. Do not plot the
observed data nor the states estimates on the confidence or prediction intervals. For that you need
to use .sigma and construct intervals as noted above. autoplot() will show the residuals intervals
on the observation plot.

Note

Within the base code, a form-specific internal augment function is called to allow the output to vary
based on form: augment_dfa, augment_marss, augment_marxss.

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11, 12),]
MLEobj <- MARSS(dat, model = list(Z = factor(c("WA", "OR", "OR"))))

library(broom)
library(ggplot2)
theme_set(theme_bw())

Make a plot of the observations and model fits
d <- augment(MLEobj, interval = "confidence")
ggplot(data = d) +

geom_line(aes(t, .fitted)) +
geom_point(aes(t, y)) +
geom_ribbon(aes(x = t, ymin = .conf.low, ymax = .conf.up), linetype = 2, alpha = 0.1) +
facet_grid(~.rownames) +
xlab("Time Step") + ylab("Count")

Make a plot of xtT versus prediction of xt from xtT[t-1]
This is NOT the estimate of the states with CIs. Use tidy() for that.
d <- augment(MLEobj, type = "xtT")

8 coef.marssMLE

ggplot(data = d) +
geom_point(aes(t, xtT)) +
geom_line(aes(x = t, .fitted)) +
facet_grid(~.rownames) +
xlab("Time Step") + ylab("Count") +
ggtitle("xtT (points) and predition (line)")

coef.marssMLE Coefficient function for MARSS MLE objects

Description

MARSS() outputs marssMLE objects. coef(MLEobj), where MLEobj is one’s output from a MARSS()
call, will print out the estimated parameters. The default output is a list with values for each pa-
rameter, however the output can be altered using the type argument to output a vector of all the
estimated values (type="vector") or a list with the full parameter matrix with the estimated and
fixed elements (type="matrix").

Usage

S3 method for class 'marssMLE'
coef(object, ..., type="list", form=NULL, what="par")

Arguments

object A marssMLE object.
... Other arguments for coef.
type What to print. Default is "list". If you input type as a vector, coef returns a list

of output. See examples.
• "list" A list of only the estimated values in each matrix. Each model matrix

has it’s own list element.
• "vector" A vector of all the estimated values in each matrix.
• "matrix" A list of the parameter matrices each parameter with fixed val-

ues at their fixed values and the estimated values at their estimated values.
Time-varying parameters, including d and c in a marxss form model, are
returned as an array with time in the 3rd dimension.

• parameter name Returns the parameter matrix for that parameter with fixed
values at their fixed values and the estimated values at their estimated val-
ues. Note, time-varying parameters, including d and c in a marxss form
model, are returned as an array with time in the 3rd dimension.

form By default, the model form specified in the call to MARSS() is used to determine
how to display the coefficients. This information is in attr(object$model,"form")
. The default form is "marxss"; see MARSS.marxss. However, the internal func-
tions convert this to form "marss"; see MARSS.marss. The marss form of the
model is stored (in object$marss). You can look at the coefficients in marss
form by passing in form="marss". This is mainly useful is for debugging nu-
merical problems since the error reports will be for the "marss" form.

CSEGriskfigure 9

what By default, coef shows the parameter estimates. Other options are "par.se",
"par.lowCI", "par.upCI", "par.bias", and "start".

Value

A list of the estimated parameters for each model matrix.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

augment.marssMLE, tidy.marssMLE, print.marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11),]
MLEobj <- MARSS(dat)

coef(MLEobj)
coef(MLEobj, type = "vector")
coef(MLEobj, type = "matrix")
to retrieve just the Q matrix
coef(MLEobj, type = "matrix")$Q

CSEGriskfigure Plot Extinction Risk Metrics

Description

Generates a six-panel plot of extinction risk metrics used in Population Viability Analysis (PVA).
This is a function used by one of the vignettes in the MARSS-package.

Usage

CSEGriskfigure(data, te = 100, absolutethresh = FALSE, threshold = 0.1,
datalogged = FALSE, silent = FALSE, return.model = FALSE,
CI.method = "hessian", CI.sim = 1000)

10 CSEGriskfigure

Arguments

data A data matrix with 2 columns; time in first column and counts in second col-
umn. Note time is down rows, which is different than the base MARSS-package
functions.

te Length of forecast period (positive integer)

absolutethresh Is extinction threshold an absolute number? (T/F)

threshold Extinction threshold either as an absolute number, if absolutethresh=TRUE, or
as a fraction of current population count, if absolutethresh=FALSE.

datalogged Are the data already logged? (T/F)

silent Suppress printed output? (T/F)

return.model Return state-space model as marssMLE object? (T/F)

CI.method Confidence interval method: "hessian", "parametrc", "innovations", or "none".
See MARSSparamCIs.

CI.sim Number of simulations for bootstrap confidence intervals (positive integer).

Details

Panel 1: Time-series plot of the data. Panel 2: CDF of extinction risk. Panel 3: PDF of time to
reach threshold. Panel 4: Probability of reaching different thresholds during forecast period. Panel
5: Sample projections. Panel 6: TMU plot (uncertainty as a function of the forecast).

Value

If return.model=TRUE, an object of class marssMLE.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multivariate time-series using
the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd
E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS") to open a copy.

(theory behind the figure) Holmes, E. E., J. L. Sabo, S. V. Viscido, and W. F. Fagan. (2007) A
statistical approach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

(CDF and PDF calculations) Dennis, B., P. L. Munholland, and J. M. Scott. (1991) Estimation of
growth and extinction parameters for endangered species. Ecological Monographs 61:115-143.

(TMU figure) Ellner, S. P. and E. E. Holmes. (2008) Resolving the debate on when extinction risk
is predictable. Ecology Letters 11:E1-E5.

See Also

MARSSboot, marssMLE, CSEGtmufigure

CSEGtmufigure 11

Examples

d <- harborSeal[, 1:2]
kem <- CSEGriskfigure(d, datalogged = TRUE)

CSEGtmufigure Plot Forecast Uncertainty

Description

Plot the uncertainty in the probability of hitting a percent threshold (quasi-extinction) for a single
random walk trajectory. This is the quasi-extinction probability used in Population Viability Anal-
ysis. The uncertainty is shown as a function of the forecast, where the forecast is defined in terms
of the forecast length (number of time steps) and forecasted decline (percentage). This is a function
used by one of the vignettes in the MARSS-package.

Usage

CSEGtmufigure(N = 20, u = -0.1, s2p = 0.01, make.legend = TRUE)

Arguments

N Time steps between the first and last population data point (positive integer)

u Per time-step decline (-0.1 means a 10% decline per time step; 1 means a dou-
bling per time step.)

s2p Process variance (Q). (a positive number)

make.legend Add a legend to the plot? (T/F)

Details

This figure shows the region of high uncertainty in dark grey. In this region, the minimum 95 percent
confidence intervals on the probability of quasi-extinction span 80 percent of the 0 to 1 probability.
Green hashing indicates where the 95 percent upper bound does not exceed 5% probability of quasi-
extinction. The red hashing indicates, where the 95 percent lower bound is above 95% probability of
quasi-extinction. The light grey lies between these two certain/uncertain extremes. The extinction
calculation is based on Dennis et al. (1991). The minimum theoretical confidence interval is based
on Fieberg and Ellner (2000). This figure was developed in Ellner and Holmes (2008).

Examples using this figure are shown in the User Guide (RShowDoc("UserGuide",package="MARSS"))
in the PVA chapter.

Author(s)

Eli Holmes, NOAA, Seattle, USA, and Steve Ellner, Cornell Univ.

eli(dot)holmes(at)noaa(dot)gov

12 fitted.marssMLE

References

Dennis, B., P. L. Munholland, and J. M. Scott. (1991) Estimation of growth and extinction parame-
ters for endangered species. Ecological Monographs 61:115-143.

Fieberg, J. and Ellner, S.P. (2000) When is it meaningful to estimate an extinction probability?
Ecology, 81, 2040-2047.

Ellner, S. P. and E. E. Holmes. (2008) Resolving the debate on when extinction risk is predictable.
Ecology Letters 11:E1-E5.

See Also

CSEGriskfigure

Examples

CSEGtmufigure(N = 20, u = -0.1, s2p = 0.01)

datasets Example Data Sets

Description

Example data sets for use in MARSS vignettes for the MARSS-package.

• plankton Plankton datasets: Lake WA plankton 32-year time series and Ives et al data from
West Long Lake.

• SalmonSurvCUI Snake River spring/summer chinook survival indices.

• isleRoyal Isle Royale wolf and moose data with temperature and precipitation covariates.

• population-count-data A variety of fish, mammal and bird population count data sets.

• loggerhead Loggerhead turtle tracking (location) data from ARGOS tags.

• harborSeal Harbor seal survey data (haul out counts) from Oregon, Washington and California,
USA.

fitted.marssMLE fitted function for MARSS MLE objects

Description

MARSS() outputs marssMLE objects. fitted(MLEobj), where MLEobj is the output from a MARSS()
call, will return the modeled value of yt or xt. For yt, this is Ztx̃t+at. For xt, this is Btx̃t−1+ut.
If you want the estimate of xt, then use tidy.marssMLE.

fitted.marssMLE 13

Usage

S3 method for class 'marssMLE'
fitted(object, ...,
type = c("ytT", "xtT", "ytt", "ytt1", "xtt1"),
interval = c("none", "confidence", "prediction"),
conf.level = 0.95,
output = c("tibble", "matrix"))

Arguments

object A marssMLE object.

... Other arguments. Used for backwards compatibility with old arguments.

type Fitted values for the observations (y) or the states (x). If ’tT’, then the estimate
at time ’t’ is conditioned on all the data. If ’tt’, then the estimate is conditioned
on data up to time t. If ’tt1’, estimate is conditioned on data up to time t-1. This
is also known as one-step-ahead estimate or for y, the innovations.

interval If interval="confidence", then the standard error and confidence interval of the
fitted value is returned.

conf.level Level for the intervals if interval != "none".

output tibble or list of matrices

Details

observation fitted values
The model predicted (fitted) ŷt is Ztx̃t + at, where the model is written in marss form. See
MARSS.marss for a discussion of the conversion of MARSS models with covariates (c and d) into
marss form which is how models are written in the internal MARSS algorithms).

x̃t is the expected value of the states at time t. If type="ytT", x̃t is the expected value conditioned
on all the data, i.e. xtT returned by MARSSkf(). If type="ytt1", then expected value uses only the
data up to time t− 1, i.e. xtt1 returned by MARSSkf(). These are commonly known as the one step
ahead predictions for a state-space model. If type="ytt", then the expected value uses the data up
to time t, i.e. xtt returned by MARSSkf().

If interval="confidence", the se and interval is for the fitted y. The standard error of the fitted values
is ZtṼtZ

>
t . If interval="prediction", the standard deviation of new iid y datasets is returned. The

standard deviation of new y is ZtṼtZ
>
t . Ṽt is either conditioned on 1:T, 1:t, or 1:t-1 depending on

type. Do not plot the data used in the model on these intervals. For that you want the conditional
model residuals (and se’s). Use augment.marssMLE.

state fitted values
The model predicted x(t) given xt−1 is B(t)x̃(t−1) +u(t), where the model is written in "marss"
form (MARSS.marss). This type of state fitted value is used for process outlier detection and shock
detection. See residuals.marssMLE and read the references cited.

If you want estimates of the states, rather than the model predictions based on xt−1 then you’ll want
either the states estimate conditioned on all the data (or conditioned on the data up to time t− 1 or
up to time t). These are returned by MARSSkf() in xtT, xtt1 and xtt respectively. Which one you

14 fitted.marssMLE

want depends on your objective and application. You can also use the tidy.marssMLE() function
to return a data.frame (tibble) with the estimated states with standard errors and intervals.

x̃t−1 used in the prediction is the expected value of the states at time t − 1. If type="xtT", this is
the expected value at time t−1 conditioned on all the data, i.e. xtT[,t-1] returned by MARSSkf().
If type="xtt1", it is the expected value conditioned on the data up to time t − 1, i.e. xtt[,t-1]
returned by MARSSkf(). The fitted state values conditioned on data up to t is not provided. This
would require the expected value of states at time t conditioned on data up to time t+ 1, and this is
not output by the Kalman filter. Only conditioning on data up to t− 1 and T are output.

The intervals returned by fitted.marssMLE for the fitted states, are not typically what one uses
or needs–however might be useful for simulation work. If you are doing outlier detection or
shock detection, you need the intervals on the smoothed state residuals which are returned by
residuals.marssMLE or augment.marssMLE. If you want intervals on the states estimates, use
tidy.marssMLE.

If interval="confidence", the standard error of the fitted values (meaning the ’expected value of
Xt’ given Xt−1) is returned. The standard error of the fitted value is BtṼt−1B

>
t . If inter-

val="prediction", the standard deviation of Xt given Xt−1 is output. The latter is BtṼt−1B
>
t +Q

(notice it includes Q). Ṽt−1 is either conditioned on 1:T or 1:t-1 depending on type. Do not plot
(or compare) the estimate of xt to the intervals for the fitted values. You need the conditional states
residuals intervals in that case; use augment.marssMLE.

Value

If interval="none" (the default), a T column matrix of the fitted values with one row for each obser-
vation (or state) time series is returned.

If interval = "confidence", the following are returned in a list:

.fitted Fitted values of observations (y) or states (x). See details.

.se.fit Standard errors of fitted values

.conf.low Lower confidence level at alpha = 1-conf.level. The interval is approximated
using qnorm(alpha/2)*.se.fit + .fitted.

.conf.up Upper confidence level. The interval is approximated using qnorm(1-alpha/2)*.se.fit
+ .fitted.

The confidence interval is for the fitted value, i.e. Ztx̃t + at or Btx̃t−1 + ut.

If interval = "prediction", the following are returned in a list:

.fitted Fitted values of observations (y) or states (x). See details.

.sd.x or .sd.y Standard deviation of new xt or yt iid values.

.lwr Lower range at alpha = 1-conf.level. The interval is approximated using
qnorm(alpha/2)*.sd + .fitted.

.upr Upper range at level. The interval is approximated using qnorm(1-alpha/2)*.sd
+ .fitted.

The prediction interval is for new xt or yt, not estimated xt nor yt used in the model. Do not
plot the observed data nor the states estimates on these intervals. For that you need the residuals
intervals provided by augment.marssMLE.

glance.marssMLE 15

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

MARSSkf, augment.marssMLE, tidy.marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11, 12),]
fit <- MARSS(dat, model = list(Z = factor(c("WA", "OR", "OR"))))
fitted(fit)

Example of fitting a stochastic level model to the Nile River flow data
red line is smooothed level estimate
grey line is one-step-ahead prediction using xtt1
nile <- as.vector(datasets::Nile)
mod.list <- list(

Z = matrix(1), A = matrix(0), R = matrix("r"),
B = matrix(1), U = matrix(0), Q = matrix("q"),
x0 = matrix("pi")

)
fit <- MARSS(nile, model = mod.list, silent = TRUE)
plot(nile, type = "p", pch = 16, col = "blue")
lines(fitted(fit, type="ytT")[1,], col = "red", lwd = 2)
lines(fitted(fit, type="ytt1")[1,], col = "grey", lwd = 2)

glance.marssMLE Return brief summary information on a MARSS fit

Description

This returns a data.frame with brief summary information.

coef.det The coefficient of determination. This is the squared correlation between the fitted values
and the original data points. This is simply a metric for the difference between the data points
and the fitted values and should not be used for formal model comparison.

sigma The sample variance (unbiased) of the data residuals (fitted minus data). This is another
simple metric of the difference between the data and fitted values. This is different than the
sigma returned by an arima() call for example. That sigma would be akin to sqrt(Q) in the
MARSS parameters; ’akin’ because MARSS models are multivariate and the sigma returned
by arima is for a univariate model.

df The number of estimated parameters. Denoted num.params in a marssMLE object.

logLik The log-likelihood.

16 harborSeal

AIC Akaike information criterion.

AICc Akaike information criterion corrected for small sample size.

AICbb Non-parametric bootstrap Akaike information criterion if in the marssMLE object.

AICbp Parametric bootstrap Akaike information criterion if in the marssMLE object.

convergence 0 if converged according to the convergence criteria set. Note the default convergence
criteria are high in order to speed up fitting. A number other than 0 means the model did not
meet the convergence criteria.

errors 0 if no errors. 1 if some type of error or warning returned.

Usage

glance.marssMLE(x, ...)

Arguments

x A marssMLE object

... Not used.

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11, 12),]
MLEobj <- MARSS(dat, model = list(Z = factor(c("WA", "OR", "OR"))))

library(broom)
glance(MLEobj)

harborSeal Harbor Seal Population Count Data (Log counts)

Description

Data sets used in MARSS vignettes in the MARSS-package. These are data sets based on LOGGED
count data from Oregon, Washington and California sites where harbor seals were censused while
hauled out on land. "harborSeallnomiss" is an extrapolated data set where missing values in the
original dataset have been extrapolated so that the data set can be used to demonstrate fitting popu-
lation models with different underlying structures.

Usage

data(harborSeal)
data(harborSealWA)

is.marssMLE 17

Format

Matrix "harborSeal" contains columns "Years", "StraitJuanDeFuca", "SanJuanIslands", "Eastern-
Bays", "PugetSound", "HoodCanal", "CoastalEstuaries", "OlympicPeninsula", "CA.Mainland", "OR.NorthCoast",
"CA.ChannelIslands", and "OR.SouthCoast". Matrix "harborSealnomiss" contains columns "Years",
"StraitJuanDeFuca", "SanJuanIslands", "EasternBays", "PugetSound", "HoodCanal", "CoastalEstu-
aries", "OlympicPeninsula", "OR.NorthCoast", and "OR.SouthCoast". Matrix "harborSealWA"
contains columns "Years", "SJF", "SJI", "EBays", "PSnd", and "HC", representing the same five
sites as the first five columns of "harborSeal".

Details

Matrix "harborSealWA" contains the original 1978-1999 LOGGED count data for five inland WA
sites. Matrix "harborSealnomiss" contains 1975-2003 data for the same sites as well as four coastal
sites, where missing values have been replaced with extrapolated values. Matrix "harborSeal" con-
tains the original 1975-2003 LOGGED data (with missing values) for the WA and OR sites as well
as a CA Mainland and CA ChannelIslands time series.

Source

Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-1999. Journal of
Wildlife Management 67(1):208-219.

Brown, R. F., Wright, B. E., Riemer, S. D. and Laake, J. 2005. Trends in abundance and current
status of harbor seals in Oregon: 1977-2003. Marine Mammal Science, 21: 657-670.

Lowry, M. S., Carretta, J. V., and Forney, K. A. 2008. Pacific harbor seal census in California during
May-July 2002 and 2004. California Fish and Game 94:180-193.

Hanan, D. A. 1996. Dynamics of Abundance and Distribution for Pacific Harbor Seal, Phoca vi-
tulina richardsi, on the Coast of California. Ph.D. Dissertation, University of California, Los An-
geles. 158pp. DFO. 2010. Population Assessment Pacific Harbour Seal (Phoca vitulina richardsi).
DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2009/011.

Examples

str(harborSealWA)
str(harborSeal)

is.marssMLE Tests marssMLE object for completeness

Description

Tests an marssMLE for completeness to determine if it has all the pieces and attributes necessary
to be passed to MARSS functions for fitting, filtering, smoothing, or displaying. Internal function,
use MARSS::: to access. This is a very slow function which should not be called repeatedly in a for
loop for example.

18 is.marssMLE

Usage

is.marssMLE(MLEobj)

Arguments

MLEobj An object of class marssMLE. See Details.

Details

The is.marssMLE() function checks components marss, start and control, which must be
present for estimation by functions e.g. MARSSkem(). Components returned from estimation must
include at least method, par, kf, numIter, convergence and logLik. Additional components (e.g.
AIC) may be returned, as described in function help files.

model An object of class marssMODEL in whatever form the user specified in the call to MARSS().
Default is form "marxss".

marss An object of class marssMODEL in "marss" forms, needed for all the base MARSS functions.

start List with matrices specifying initial values for parameters to be used (if needed) by the
maximization algorithm.

B Initial value(s) for B matrix (m x m).
U Initial value(s) for U matrix (m x 1).
Q Initial value(s) for Q variance-covariance matrix (m x m).
Z Initial value(s) for Z matrix (n x m).
A Initial value(s) for A matrix (n x 1).
R Initial value(s) for R variance-covariance matrix (n x n).
x0 Initial value(s) for initial state vector (m x 1).
V0 Initial variance(s) for initial state variance (m x m).

control A list specifying estimation options. The following options are needed by MARSSkem().
Other control options can be set if needed for other estimation methods, e.g. the control
options listed for optim for use with MARSSoptim(). The default values for control options
are set in alldefaults[[method]] which is specified in MARSSsettings.R.

minit The minimum number of iterations to do in the maximization routine (if needed by
method).

maxit Maximum number of iterations to be used in the maximization routine (if needed by
method).

min.iter.conv.test Minimum iterations to run before testing convergence via the slope of
the log parameter versus log iterations.

conv.test.deltaT=9 Number of iterations to use for the testing convergence via the slope
of the log parameter versus log iterations.

conv.test.slope.tol The slope of the log parameter versus log iteration to use as the cut-
off for convergence. The default is 0.5 which is a bit high. For final analyses, this should
be set lower.

abstol The logLik.(iter-1)-logLik.(iter) convergence tolerance for the maximization routine.
Both the abstol and the slope of the log of the parameters versus the log iteration tests
must be met for convergence.

is.marssMLE 19

trace A positive integer. If not 0, a record will be created during maximization iterations
(what’s recorded depends on method of maximization). -1 turns off most internal error
checking.

safe Logical. If TRUE, then the Kalman filter is run after each update equation in the EM
algorithm. This slows down the algorithm. The default is FALSE.

allow.degen If TRUE, replace Q or R diagonal elements by 0 when they become very small.
min.degen.iter Number of iterations before trying to set a diagonal element of Q or R to

zero).
degen.lim How small the Q or R diagonal element should be before attempting to replace it

with zero.
silent Suppresses printing of progress bar, error messages and convergence information.

method A string specifying the estimation method. MARSS allows "kem" for EM and "BFGS" for
quasi-Newton. Once the model has been fitted, additional elements are added.

par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q, x0, V0.

states Expected values of the x (hidden states).

states.se Standard errors on the estimates states.

ytT Expected values of the y. This is just y for non-missing y.

ytT.se Standard errors on the ytT. This will be 0 for non-missing y.

kf A list containing Kalman filter/smoother output if control$trace is > 0.

Ey A list containing expectations involving y. Output if control$trace is > 0.

numIter Number of iterations which were required for convergence.

convergence Convergence status and errors. 0 means converged successfully. Anything else
means an error or warning.

logLik Log-likelihood.

AIC AIC

AICc Corrected AIC.

call A list of all the arguments passed into the MARSS call. Not required for most functions, but
is a record of what was used to call MARSS for checking and can be used to customize the
printing of MARSS output.

Value

TRUE if no problems; otherwise a message describing the problems.

Author(s)

Eli Holmes and Kellie Wills, NOAA, Seattle, USA.

See Also

marssMODEL, MARSSkem

20 loggerhead

isleRoyal Isle Royale Wolf and Moose Data

Description

Example data set for estimation of species interaction strenths. These are data on the number
of wolves and moose on Isle Royal, Michigan. The data are unlogged. The covariate data are
the average Jan-Feb, average Apr-May and average July-Sept temperature (F) and precipitation
(inches). Also included are 3-year running means of these covariates. The choice of covariates is
based on those presented in the Isle Royale 2012 annual report.

Usage

data(isleRoyal)

Format

The data are supplied as a matrix with years in the first column.

Source

Peterson R. O., Thomas N. J., Thurber J. M., Vucetich J. A. and Waite T. A. (1998) Population
limitation and the wolves of Isle Royale. In: Biology and Conservation of Wild Canids (eds. D.
Macdonald and C. Sillero-Zubiri). Oxford University Press, Oxford, pp. 281-292.

Vucetich, J. A. and R. O. Peterson. (2010) Ecological studies of wolves on Isle Royale. Annual
Report 2009-10. School of Forest Resources and Environmental Science, Michigan Technological
University, Houghton, Michigan USA 49931-1295

The source for the covariate data is the Western Regional Climate Center (http://www.wrcc.dri.edu)
using their data for the NE Minnesota division. The website used was http://www.wrcc.dri.edu/cgi-
bin/divplot1_form.pl?2103 and www.wrcc.dri.edu/spi/divplot1map.html.

Examples

str(isleRoyal)

loggerhead Loggerhead Turtle Tracking Data

Description

Data used in MARSS vignettes in the MARSS-package. Tracking data from ARGOS tags on eight
individual loggerhead turtles, 1997-2006.

logLik.marssMLE 21

Usage

data(loggerhead)
data(loggerheadNoisy)

Format

Data frames "loggerhead" and "loggerheadNoisy" contain the following columns:

turtle Turtle name.

day Day of the month (character).

month Month number (character).

year Year (character).

lon Longitude of observation.

lat Latitude of observation.

Details

Data frame "loggerhead" contains the original latitude and longitude data. Data frame "loggerhead-
Noisy" has noise added to the lat and lon data to represent data corrupted by errors.

Source

Gray’s Reef National Marine Sanctuary (Georgia) and WhaleNet: http://whale.wheelock.edu/whalenet-
stuff/stop_cover_archive.html

Examples

str(loggerhead)
str(loggerheadNoisy)

logLik.marssMLE logLik method for MARSS MLE objects

Description

Returns a logLik class object with attributes nobs and df.

Usage

S3 method for class 'marssMLE'
logLik(object, ...)

Arguments

object A marssMLE object.

... Other arguments. Not used.

22 MARSS

Value

An object of class logLik.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

MARSSkf

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11, 12),]
MLEobj <- MARSS(dat, model = list(Z = factor(c("WA", "OR", "OR"))))
logLik(MLEobj)

MARSS Fit a MARSS Model via Maximum-Likelihood Estimation

Description

This is the main function for fitting multivariate autoregressive state-space (MARSS) models with
linear constraints. Scroll down to the bottom to see some short examples. To open a guide to show
you how to get started quickly, type RShowDoc("Quick_Start",package="MARSS"). To open the
MARSS User Guide from the command line, type RShowDoc("UserGuide",package="MARSS").
To get an overview of the package and all its main functions and how to get output (parameter
estimates, fitted values, residuals, Kalmin filter or smoother output, or plots), go to MARSS-package.
If MARSS() is throwing errors or warnings that you don’t understand, try the Troubleshooting section
of the user guide or type MARSSinfo() at the command line.

The default MARSS model form is "marxss", which is Multivariate Auto-Regressive(1) eXogenous
inputs State-Space model:

xt+1 = Bxt + u + Cct + Gwt, where wt ∼ MVN(0,Q)

yt = Zxt + a + Ddt + Hvt, where vt ∼ MVN(0,R)

X1 ∼ MVN(x0,V0) or X0 ∼ MVN(x0,V0)

All parameters (except x0 and V0) can be time-varying; t is left off the parameters to remove clutter.
All parameters can be zero-ed out, including the variance matrices. Parameters can be estimated or
fixed. The parameters are everything except mathbfx, mathbfy, mathbfv, mathbfw, mathbfc
and mathbfc. mathbfy are data (missing values allowed). c and d are inputs.

MARSS 23

The parameters can have fixed values and linear constraints. This is an example of a 3x3 matrix
with linear constraints. All matrix elements can be written as a linear function of a, b, and c: a+ 2b 1 a

1 + 3a+ b 0 b
0 −2 c


Values such as ab or a2 or log(a) are not linear constraints.

Usage

MARSS(y,
model=NULL,
inits=NULL,
miss.value=as.numeric(NA),
method = "kem",
form = "marxss",
fit=TRUE,
silent = FALSE,
control = NULL,
fun.kf = "MARSSkfas",
...)

Arguments

The default settings for the optional arguments are set in MARSSsettings.R and
are given below in the details section. For form specific defaults see the form
help file (e.g. MARSS.marxss or MARSS.dfa).

A n x T matrix of n time series over T time steps. Only y is required for the
function.

yinits A list with the same form as the list outputted by coef(fit) that specifies initial
values for the parameters. See also MARSS.marxss.

model Model specification using parameter model text shortcuts or matrices. See De-
tails and MARSS.marxss for the default form. Or better yet open the Quick Start
Guide RShowDoc("Quick_Start",package="MARSS").

miss.value Deprecated. Denote missing values by NAs in your data.

method Estimation method. MARSS provides an EM algorithm (method="kem") (see
MARSSkem) and the BFGS algorithm (method="BFGS") (see MARSSoptim).

form The equation form used in the MARSS() call. The default is "marxss". See
MARSS.marxss or MARSS.dfa.

fit TRUE/FALSE Whether to fit the model to the data. If FALSE, a marssMLE
object with only the model is returned.

silent TRUE/FALSE Suppresses printing of full error messages, warnings, progress
bars and convergence information. Setting silent=2 will produce more verbose
error messages and progress information.

24 MARSS

control Estimation options for the maximization algorithm. The typically used con-
trol options for method="kem" are below but see marssMLE for the full list of
control options. Note many of these are not allowed if method="BFGS"; see
MARSSoptim for the allowed control options for this method.

• minit The minimum number of iterations to do in the maximization routine
(if needed by method). If method="kem", this is an easy way to up the
iterations and see how your estimates are converging. (positive integer)

• maxit Maximum number of iterations to be used in the maximization rou-
tine (if needed by method) (positive integer).

• min.iter.conv.test Minimum iterations to run before testing conver-
gence via the slope of the log parameter versus log iterations.

• conv.test.deltaT=9 Number of iterations to use for the testing conver-
gence via the slope of the log parameter versus log iterations.

• conv.test.slope.tol The slope of the log parameter versus log iteration
to use as the cut-off for convergence. The default is 0.5 which is a bit
high. For final analyses, this should be set lower. If you want to only use
abstol as your convergence test, then to something very large, for example
conv.test.slope.tol=1000. Type MARSSinfo(11) to see some comments of
when you might want to do this.

• abstol The logLik.(iter-1)-logLik.(iter) convergence tolerance for the max-
imization routine. To meet convergence both the abstol and slope tests must
be passed.

• allow.degen Whether to try setting Q or R elements to zero if they appear
to be going to zero.

• trace An integer specifying the level of information recorded and error-
checking run during the algorithms. trace=0, specifies basic error-checking
and brief error-messages; trace>0 will print full error messages. In ad-
dition if trace>0, the Kalman filter output will be added to the outputted
marssMLE object. Additional information recorded depends on the method
of maximization. For the EM algorithm, a record of each parameter esti-
mate for each EM iteration will be added. See optim for trace output details
for the BFGS method. trace=-1 will turn off most internal error-checking
and most error messages. The internal error checks are time expensive so
this can speed up MARSS. This is particularly useful for bootstrapping and
simulation studies.

• silent TRUE/FALSE(default), Suppresses all printing including progress
bars, error messages and convergence information. 0, Turns on all printing
of progress bars, fitting information and error messages. 2, Prints a brief
success/failure message.

• safe TRUE/FALSE(default), Setting safe=TRUE runs the Kalman smoother
after each parameter update rather than running the smoother only once af-
ter updated all parameters. The latter is faster but is not a strictly correct
EM algorithm. In most cases, safe=FALSE (default) will not change the
fits. If this setting does cause problems, you will know because you will
see an error regarding the log-likelihood dropping and it will direct you to
set safe=TRUE.

MARSS 25

fun.kf What Kalman filter function to use. MARSS has two: MARSSkfas() which
is based on the Kalman filter in the KFAS package based on Koopman and
Durbin and MARSSkfss() which is a native R implimentation of the Kalman
filter and smoother in Shumway and Stoffer. The KFAS filter is much faster.
MARSSkfas() modifies the input and output in order to output the lag-one co-
variance smoother needed for the EM algorithm (per page 321 in Shumway and
Stoffer (2000).

... Optional arguments passed to function specified by form.

Details

The model argument specifies the structure of your model. There is a one-to-one correspondence
between how you would write your model in matrix form on the whiteboard and how you specify
the model for MARSS(). Many different types of multivariate time-series models can be converted
to the MARSS form. See the User Guide and Quick Start Guide for examples.

The MARSS package has two forms for standard users: marxss and dfa.

MARSS.marxss This is the default form. This is a MARSS model with (optional) inputs c(t) or d(t).
Most users will want this help page.

MARSS.dfa This is a model form to allow easier specification of models for Dynamic Factor Anal-
ysis. The Z parameters has a specific form and the Q is set at i.i.d with variance of 1.

Those looking to modify or understand the base code, should look at MARSS.marss and MARSS.vectorized.
These describe the forms used by the base functions. The EM algorithm uses the MARSS model
written in vectorized form. This form is what allows linear constraints.

The likelihood surface for MARSS models can be multimodal or with strong ridges. It is rec-
ommended that for final analyses the ML estimates are checked by using a Monte Carlo initial
conditions search; see the chapter on initial conditions searches in the User Guide. This requires
more computation time, but reduces the chance of the algorithm terminating at a local maximum
and not reaching the true MLEs. Also it is wise to check the EM results against the BFGS results
(if possible) if there are strong ridges in the likelihood. Such ridges seems to slow down the EM
algorithm considerably and can cause the algorithm to report convergence far from the ML values.
EM steps up the likelihood and the convergence test is based on the rate of change of the LL in each
step; once on a strong ridge, the steps can slow dramatically. You can force the algorithm to keep
working by setting minit. BFGS seems less hindered by the ridges but can be prodigiously slow
for some multivariate problems. BFGS tends to work better if you give it good initial conditions
(see Examples below for how to do this).

If you are working with models with time-varying parameters, it is important to notice the time-
index for the parameters in the process equation (the x equation). In some formulations (e.g. in
KFAS), the process equation is x(t) = B(t − 1)x(t − 1) + w(t − 1) so B(t − 1) goes with x(t)
not B(t). Thus one needs to be careful to line up the time indices when passing in time-varying
parameters to MARSS(). See the User Guide for examples.

Value

An object of class marssMLE. The structure of this object is discussed below, but if you want to
know how to get specific output (like residuals, coefficients, smoothed states, confidence intervals,
etc), see print.marssMLE, tidy.marssMLE, augment.marssMLE and plot.marssMLE.

https://cran.r-project.org/package=MARSS/vignettes/UserGuide.pdf
https://cran.r-project.org/package=MARSS/vignettes/Quick_Start.pdf

26 MARSS

The outputted marssMLE object has the following components:

model MARSS model specification. It is a marssMODEL object in the form specified by
the user in the MARSS() call. This is used by print functions so that the user sees
the expected form.

marss The marssMODEL object in marss form. This form is needed for all the internal
algorithms, thus is a required part of a marssMLE object.

call All the information passed in in the MARSS() call.

start List with specifying initial values that were used for each parameter matrix.

control A list of estimation options, as specified by arguments control.

method Estimation method.

If fit=TRUE, the following are also added to the marssMLE object. If fit=FALSE, a marssMLE object
ready for fitting via the specified method is returned.

par A list of estimated parameter values Z, A, R, B, U, Q, x0, V0 in marss form. Use
print.marssMLE, tidy.marssMLE or coef.marssMLE for outputing the model
estimates in the MARSS() call (e.g. the default "marxss" form).

states The expected value of x conditioned on all the data, i.e. smoothed states.

states.se The standard errors of the expected value of x.

ytT The expected value of y conditioned on the data. Note this is just y for those y
that are not missing.

ytT.se The standard errors of the expected value of y. Note this is 0 for any non-missing
y.

numIter Number of iterations required for convergence.

convergence Convergence status. 0 means converged successfully. Anything else is a warning
or error. 2 means the MLEobj has an error; the MLEobj is returned so you can
debug it. The other numbers are errors during fitting. The error code depends
on the fitting method. See MARSSkem and MARSSoptim.

logLik Log-likelihood.

AIC Akaike’s Information Criterion.

AICc Sample size corrected AIC.

If control$trace is set to 1 or greater, the following are also added to the marssMLE object.

kf A list containing Kalman filter/smoother output from MARSSkf. This is not nor-
mally added to a marssMLE object since it is verbose, but can be added using
MARSSkf().

Ey A list containing output from MARSShatyt. This isn’t normally added to a
marssMLE object since it is verbose, but can be computed using MARSShatyt().

Author(s)

Eli Holmes, Eric Ward and Kellie Wills, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov and eric(dot)ward(at)noaa(dot)gov

MARSS 27

References

The MARSS User Guide: Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multi-
variate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Cen-
ter, 2725 Montlake Blvd E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS")
to open a copy.

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multivari-
ate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]

Holmes, E. E., E. J. Ward and K. Wills. (2012) MARSS: Multivariate autoregressive state-space
models for analyzing time-series data. R Journal 4: 11-19.

See Also

marssMLE MARSSkem, MARSSoptim, MARSSkf, MARSS-package, print.marssMLE, print.marssMODEL,
MARSS.marxss, MARSS.dfa, augment.marssMLE, tidy.marssMLE, coef.marssMLE

Examples

dat <- t(harborSealWA)
dat <- dat[2:4,] # remove the year row
fit a model with 1 hidden state and 3 observation time series
kemfit <- MARSS(dat, model = list(

Z = matrix(1, 3, 1),
R = "diagonal and equal"

))
kemfit$model # This gives a description of the model
print(kemfit$model) # same as kemfit$model
summary(kemfit$model) # This shows the model structure

add CIs to a marssMLE object
default uses an estimated Hessian matrix
kem.with.hess.CIs <- MARSSparamCIs(kemfit)
kem.with.hess.CIs

fit a model with 3 hidden states (default)
kemfit <- MARSS(dat, silent = TRUE) # suppress printing
kemfit

Fit the above model with BFGS using a short EM fit as initial conditions
kemfit <- MARSS(dat, control=list(minit=5, maxit=5))
bffit <- MARSS(dat, method="BFGS", inits=kemfit)

fit a model with 3 correlated hidden states
with one variance and one covariance
maxit set low to speed up example, but more iters are needed for convergence
kemfit <- MARSS(dat, model = list(Q = "equalvarcov"), control = list(maxit = 50))
use Q="unconstrained" to allow different variances and covariances

fit a model with 3 independent hidden states
where each observation time series is independent
the hidden trajectories 2-3 share their U parameter
kemfit <- MARSS(dat, model = list(U = matrix(c("N", "S", "S"), 3, 1)))

28 MARSS.marss

same model, but with fixed independent observation errors
and the 3rd x processes are forced to have a U=0
Notice how a list matrix is used to combine fixed and estimated elements
all parameters can be specified in this way using list matrices
kemfit <- MARSS(dat, model = list(U = matrix(list("N", "N", 0), 3, 1), R = diag(0.01, 3)))

fit a model with 2 hidden states (north and south)
where observation time series 1-2 are north and 3 is south
Make the hidden state process independent with same process var
Make the observation errors different but independent
Make the growth parameters (U) the same
Create a Z matrix as a design matrix that assigns the "N" state to the first 2 rows of dat
and the "S" state to the 3rd row of data
Z <- matrix(c(1, 1, 0, 0, 0, 1), 3, 2)
You can use factor is a shortcut making the above design matrix for Z
Z <- factor(c("N","N","S"))
name the state vectors
colnames(Z) <- c("N", "S")
kemfit <- MARSS(dat, model = list(

Z = Z,
Q = "diagonal and equal", R = "diagonal and unequal", U = "equal"

))

print the model followed by the marssMLE object
kemfit$model

Not run:
simulate some new data from our fitted model
sim.data <- MARSSsimulate(kemfit, nsim = 10, tSteps = 10)

Compute bootstrap AIC for the model; this takes a long, long time
kemfit.with.AICb <- MARSSaic(kemfit, output = "AICbp")
kemfit.with.AICb

End(Not run)

Not run:
Many more short examples can be found in the
Quick Examples chapter in the User Guide
RShowDoc("UserGuide", package = "MARSS")

You can find the R scripts from the chapters by
going to the index page
RShowDoc("index", package = "MARSS")

End(Not run)

MARSS.marss Multivariate AR-1 State-space Model

MARSS.marss 29

Description

The form of MARSS models for users is "marxss", the MARSS models with inputs. See MARSS.marxss.
In the internal algorithms (e.g. MARSSkem), the "marss" form is used and the D and d are incorpo-
rated into the A matrix and C and c are incorporated into the U matrix.

This is a MARSS(1) model of the marss form:

x(t+ 1) = B(t)x(t) + U(t) +G(t)w(t), wherew(t) MVN(0, Q(t))

y(t) = Z(t)x(t) +A(t) +H(t)v(t), wherev(t) MVN(0, R(t))

x(1) MVN(x0, V 0)orx(0) MVN(x0, V 0)

Note, by default V 0 is a matrix of all zeros and thus x(1) or x(0) is treated as an estimated parameter
not a diffuse prior.

Note, "marss" is a model form. A model form is defined by a collection of form functions discussed
in marssMODEL. These functions are not exported to the user, but are called by MARSS() using the
argument form. These internal functions convert the users model list into the vec form of a MARSS
model and do extensive error-checking.

Details

See the help page for the MARSS.marxss form for details.

Value

A object of class marssMLE.

Usage

MARSS(y,inits=NULL,model=NULL,miss.value=as.numeric(NA),method = "kem",form = "marxss",fit=TRUE,silent
= FALSE,control = NULL,fun.kf = "MARSSkfas",...)

Author(s)

Eli Holmes, NOAA, Seattle, USA.

See Also

marssMODEL, MARSS.marxss

Examples

Not run:
See the MARSS man page for examples
?MARSS

and the Quick Examples chapter in the User Guide
RShowDoc("UserGuide", package = "MARSS")

End(Not run)

30 MARSS.marxss

MARSS.marxss Multivariate AR-1 State-space Model with Inputs

Description

The argument form="marxss" in a MARSS() function call specifies a MAR-1 model with eXoge-
nous variables model. This is a MARSS(1) model of the form:

x(t+ 1) = B(t)x(t) + U(t) + C(t)c(t) +G(t)w(t), wherew(t) MVN(0, Q(t))

y(t) = Z(t)x(t) +A(t) +D(t)d(t) +H(t)v(t), wherev(t) MVN(0, R(t))

x(1) MVN(x0, V 0)orx(0) MVN(x0, V 0)

Note, by default V 0 is a matrix of all zeros and thus x(1) or x(0) is treated as an estimated parameter
not a diffuse prior.

Note, "marxss" is a model form. A model form is defined by a collection of form functions discussed
in marssMODEL. These functions are not exported to the user, but are called by MARSS() using the
argument form.

Details

The allowed arguments when form="marxss" are 1) the arguments common to all forms: "data",
"inits", "control", "method", "form", "fit", "silent", "fun.kf" (see MARSS for information on these ar-
guments) and 2) the argument "model" which is a list describing the MARXSS model (the model list
is described below). See the Quick Start guide (RShowDoc("Quick_Start",package="MARSS"))
or the User Guide (RShowDoc("UserGuide",package="MARSS")) for examples.

The argument model must be a list. The elements in the list specify the structure for the B, u, C,
c, Q, Z, a, D, d, R, x0, and V0 in the MARXSS model (above). The list elements can have the
following values:

• Z Default="identity". A text string, "identity","unconstrained", "diagonal and unequal", "diag-
onal and equal", "equalvarcov", or "onestate", or a length n vector of factors specifying which
of the m hidden state time series correspond to which of the n observation time series. May
be specified as a n x m list matrix for general specification of both fixed and shared elements
within the matrix. May also be specified as a numeric n x m matrix to use a custom fixed
Z. "onestate" gives a n x 1 matrix of 1s. "identity","unconstrained", "diagonal and unequal",
"diagonal and equal", and "equalvarcov" all specify n x n matrices.

• B Default="identity". A text string, "identity", "unconstrained", "diagonal and unequal", "di-
agonal and equal", "equalvarcov", "zero". Can also be specified as a list matrix for general
specification of both fixed and shared elements within the matrix. May also be specified as a
numeric m x m matrix to use custom fixed B, but in this case all the eigenvalues of B must fall
in the unit circle.

• U, x0 Default="unconstrained". A text string, "unconstrained", "equal", "unequal" or "zero".
May be specified as a m x 1 list matrix for general specification of both fixed and shared
elements within the matrix. May also be specified as a numeric m x 1 matrix to use a custom
fixed U or x0. Notice that U is capitalized.

MARSS.marxss 31

• A Default="scaling". A text string, "scaling","unconstrained", "equal", "unequal" or "zero".
May be specified as a n x 1 list matrix for general specification of both fixed and shared
elements within the matrix. May also be specified as a numeric n x 1 matrix to use a custom
fixed A. Care must be taken when specifying A so that the model is not under-constrained and
unsolveable model. The default "scaling" only applies to Z matrices that are design matrices
(only 1s and 0s and all rows sum to 1). When a column in Z has multiple 1s, the first row with
a 1 is assigned A=0 and the rows with 1s for that column have an estimated A. This is used
to treat A as an intercept where one A for each X (hidden state) is fixed at 0 and any other Ys
associated with that X have an estimated A value. This ensures a solvable model (when Z is a
design matrix). A is capitalized.

• Q Default="diagonal and unequal". A text string, "identity", "unconstrained", "diagonal and
unequal", "diagonal and equal", "equalvarcov", "zero". May be specified as a list matrix
for general specification of both fixed and shared elements within the matrix. May also be
specified as a numeric g x g matrix to use a custom fixed matrix. Default value of g is m, so Q
is a m x m matrix. g is the num of columns in G (below).

• R Default="diagonal and equal". A text string, "identity", "unconstrained", "diagonal and
unequal", "diagonal and equal", "equalvarcov", "zero". May be specified as a list matrix
for general specification of both fixed and shared elements within the matrix. May also be
specified as a numeric h x h matrix to use a custom fixed matrix. Default value of h is n, so R
is a n x n matrix. h is the num of columns in H (below).

• V0 Default="zero". A text string, "identity", "unconstrained", "diagonal and unequal", "diago-
nal and equal", "equalvarcov", "zero". May be specified as a list matrix for general specifica-
tion of both fixed and shared elements within the matrix. May also be specified as a numeric
m x m matrix to use a custom fixed matrix.

• D and C Default="zero". A text string, "identity", "unconstrained", "diagonal and unequal",
"diagonal and equal", "equalvarcov", "zero". Can be specified as a list matrix for general
specification of both fixed and shared elements within the matrix. May also be specified as a
numeric matrix to use custom fixed values. Must have n rows (D) or m rows (C).

• d and c Default="zero". Numeric matrix. No missing values allowed. Must have 1 column
or the same number of columns as the data, y. The numbers of rows in d must be the same as
number of columns in D; similarly for c and C. c and d are lower case.

• G and H Default="identity". A text string, "identity". Can be specified as a numeric matrix or
array for time-varying cases. Must have m rows and g columns (G) or n rows and h columns
(H). g is the dim of Q and h is the dim of R.

• tinitx Default=0. Whether the initial state is specified at t=0 (default) or t=1.

All parameters except x0 and V0 may be time-varying. If time-varying, then text shortcuts cannot be
used. Enter as an array with the 3rd dimension being time. Time dimension must be 1 or equal to the
number of time-steps in the data. See Quick Start guide (RShowDoc("Quick_Start",package="MARSS"))
or the User Guide (RShowDoc("UserGuide",package="MARSS")) for examples.Valid model struc-
tures for method="BFGS" are the same as for method="kem". See MARSSoptim for the allowed
options for this method.

The default estimation method, method="kem", is the EM algorithm described in the MARSS User
Guide. The default settings for the control and inits arguments are set via MARSS:::alldefaults$kem
in MARSSsettings.R. The defaults for the model argument are set in MARSS_marxss.R For this
method, they are:

32 MARSS.marxss

• inits = list(B=1, U=0, Q=0.05, Z=1, A=0, R=0.05, x0=-99, V0=0.05, G=0, H=0, L=0, C=0,
D=0, c=0, d=0)

• model = list(Z="identity", A="scaling", R="diagonal and equal", B="identity", U="unconstrained",
Q="diagonal and unequal", x0="unconstrained", V0="zero", C="zero",D="zero",c=matrix(0,0,1),
d=matrix(0,0,1), tinitx=0, diffuse=FALSE)

• control=list(minit=15, maxit=500, abstol=0.001, trace=0, sparse=FALSE, safe=FALSE, al-
low.degen=TRUE, min.degen.iter=50, degen.lim=1.0e-04, min.iter.conv.test=15, conv.test.deltaT=9,
conv.test.slope.tol= 0.5, demean.states=FALSE) You can read about these in MARSS. If you
want to speed up your fits, you can turn off most of the model checking using trace=-1.

• fun.kf = "MARSSkfas"; This sets the Kalman filter function to use. MARSSkfas() is generally
more stable as it uses Durban & Koopman’s algorithm. But it may dramatically slow down
when the dataset is large (more than 10 rows of data). Try the classic Kalman filter algorithm
to see if it runs faster by setting fun.kf="MARSSkfss". You can read about the two algorithms
in MARSSkf.

For method="BFGS", type MARSS:::alldefaults$BFGS to see the defaults.

Value

A object of class marssMLE. See print.marssMLE for a discussion of the various output available
for marssMLE objects (coefficients, residuals, Kalman filter and smoother output, imputed values
for missing data, etc.). See MARSSsimulate for simulating from marssMLE objects. MARSSboot
for bootstrapping, MARSSaic for calculation of various AIC related model selection metrics, and
MARSSparamCIs for calculation of confidence intervals and bias. See plot.marssMLE for some
default plots of a model fit.

Usage

MARSS(y,inits=NULL,model=NULL,miss.value=as.numeric(NA),method = "kem",form = "marxss",fit=TRUE,silent
= FALSE,control = NULL,fun.kf = "MARSSkfas",...)

Author(s)

Eli Holmes, NOAA, Seattle, USA.

See Also

marssMODEL, MARSS.dfa

Examples

Not run:
#See the MARSS man page for examples
?MARSS

#and the Quick Examples chapter in the User Guide
RShowDoc("UserGuide",package="MARSS")

End(Not run)

MARSS.vectorized 33

MARSS.vectorized Vectorized Multivariate AR-1 State-space Model

Description

The EM algorithm (MARSSkem) in the MARSS package works by converting the more familiar
MARSS model in matrix form into the vectorized form which allows general linear constraints
(Holmes 2012).

The vectorized form is:

x(t) = (x(t−1)>⊗Im)(fb(t)+Db(t)β)+(fu(t)+Du(t)υ)+w(t), where w(t) ∼ MVN(0,Q(t))

y(t) = (x(t)> ⊗ In)(fz(t) + Dz(t)ζ) + (fa(t) + Da(t)α) + v(t), where v(t) ∼ MVN(0,R(t))

x(1) ∼ MVN(x0, V 0) or x(0) ∼ MVN(x0, V 0)

where β, υ, ζ, and α are column vectors of estimated values, the f are column vectors of inputs
(fixed values), and the D are pertubation matrices that align the estimated values into the right
rows. The f and D are potentially time-varying. ⊗ means kronecker product and Ip is a p x p
identity matrix.

Normally the user will specify their model in "marxss" form, perhaps with text short-cuts. The
"marxss" form is then converted to "marss" form using the conversion function marxss_to_marss().
In "marss" form, the D, d, C, and c information is put in A and U respectively. If there are inputs (d
and c), then this will make A and U time-varying. This is unfortunate, because this slows down the
EM algorithm considerably due to the unfortunate decision (early on) to store time-varying param-
eters as 3-dimensional. The functions for the "marss" form (in the file MARSS_marss.R) convert the
"marss" form model into vectorized form and prepares the f (fixed) and D (free) matrices that are at
the heart of the model specification.

Note, "marss" is a model form. A model form is defined by a collection of form functions discussed
in marssMODEL. These functions are not exported to the user, but are called by MARSS() using the
argument form. These internal functions convert the users model list into the vectorized form of a
MARSS model and do extensive error-checking. "marxss" is also a model form and these models
are also stored in vectorized form (See examples below).

Details

See Holmes (2012) for a discussion of MARSS models in vectorized form.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

References

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multivari-
ate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]

34 MARSSaic

See Also

marssMODEL, MARSS.marss, MARSS.marxss

Examples

dat <- t(harborSealWA)
dat <- dat[2:4,]
MLEobj <- MARSS(dat)

free (D) and fixed (f) matrices
names(MLEobj$model$free)
names(MLEobj$model$fixed)
In marss form, the D, C, d, and c matrices are found in A and U
If there are inputs, this makes U time-varying
names(MLEobj$marss$free)
names(MLEobj$marss$fixed)

par is in marss form so does not have values for D, C, d, or c
names(MLEobj$par)
if you need the par in marxss form, you can use print
tmp <- print(MLEobj, what="par", form="marxss", silent=TRUE)
names(tmp)

MARSSaic AIC for MARSS Models

Description

Calculates AIC, AICc, a parametric bootstrap AIC (AICbp) and a non-parametric bootstrap AIC
(AICbb). If you simply want the AIC value for a marssMLE object, you can use AIC(fit).

Usage

MARSSaic(MLEobj, output = c("AIC", "AICc"),
Options = list(nboot = 1000, return.logL.star = FALSE,
silent = FALSE))

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem().

output A vector containing one or more of the following: "AIC", "AICc", "AICbp",
"AICbb", "AICi", "boot.params". See Details.

Options A list containing:

• nboot Number of bootstraps (positive integer)
• return.logL.star Return the log-likelihoods for each bootstrap? (T/F)
• silent Suppress printing of the progress bar during AIC bootstraps? (T/F)

MARSSaic 35

Details

When sample size is small, Akaike’s Information Criterion (AIC) under-penalizes more complex
models. The most commonly used small sample size corrector is AICc, which uses a penalty term
of Kn/(n − K − 1), where K is the number of estimated parameters. However, for time series
models, AICc still under-penalizes complex models; this is especially true for MARSS models.

Two small-sample estimators specific for MARSS models have been developed. Cavanaugh and
Shumway (1997) developed a variant of bootstrapped AIC using Stoffer and Wall’s (1991) bootstrap
algorithm ("AICbb"). Holmes and Ward (2010) developed a variant on AICb ("AICbp") using a
parametric bootstrap. The parametric bootstrap permits AICb calculation when there are missing
values in the data, which Cavanaugh and Shumway’s algorithm does not allow. More recently,
Bengtsson and Cavanaugh (2006) developed another small-sample AIC estimator, AICi, based on
fitting candidate models to multivariate white noise.

When the output argument passed in includes both "AICbp" and "boot.params", the bootstrapped
parameters from "AICbp" will be added to MLEobj.

Value

Returns the marssMLE object that was passed in with additional AIC components added on top as
specified in the ’output’ argument.

Author(s)

Eli Holmes and Eric Ward, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

References

Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multivariate time-series using
the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd
E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS") to open a copy.

Bengtsson, T., and J. E. Cavanaugh. 2006. An improved Akaike information criterion for state-
space model selection. Computational Statistics & Data Analysis 50:2635-2654.

Cavanaugh, J. E., and R. H. Shumway. 1997. A bootstrap variant of AIC for state-space model
selection. Statistica Sinica 7:473-496.

See Also

MARSSboot

Examples

dat <- t(harborSealWA)
dat <- dat[2:3,]
kem <- MARSS(dat, model = list(

Z = matrix(1, 2, 1),
R = "diagonal and equal"

))
kemAIC <- MARSSaic(kem, output = c("AIC", "AICc"))

36 MARSSboot

MARSSboot Bootstrap MARSS Parameter Estimates

Description

Creates bootstrap parameter estimates and simulated (or bootstrapped) data (if appropriate). This is
a base function in the MARSS-package.

Usage

MARSSboot(MLEobj, nboot = 1000,
output = "parameters", sim = "parametric",
param.gen = "MLE", control = NULL, silent = FALSE)

Arguments

MLEobj An object of class marssMLE. Must have a $par element containing MLE pa-
rameter estimates.

nboot Number of bootstraps to perform.

output Output to be returned: "data", "parameters" or "all".

sim Type of bootstrap: "parametric" or "innovations". See Details.

param.gen Parameter generation method: "hessian" or "MLE".

control The options in MLEobj$control are used by default. If supplied here, must
contain all of the following:

max.iter Maximum number of EM iterations.
tol Optional tolerance for log-likelihood change. If log-likelihood decreases

less than this amount relative to the previous iteration, the EM algorithm
exits.

allow.degen Whether to try setting Q or R elements to zero if they appear to
be going to zero.

silent Suppresses printing of progress bar.

Details

Approximate confidence intervals (CIs) on the model parameters can be calculated by the observed
Fisher Information matrix (the Hessian of the negative log-likelihood function). The Hessian CIs
(param.gen="hessian") are based on the asymptotic normality of ML estimates under a large-
sample approximation. CIs that are not based on asymptotic theory can be calculated using para-
metric and non-parametric bootstrapping (param.gen="MLE"). In this case, parameter estimates are
generated by the ML estimates from each bootstrapped data set. The MLE method (kem or BFGS)
is determined by MLEobj$method.

Stoffer and Wall (1991) present an algorithm for generating CIs via a non-parametric bootstrap
for state-space models (sim = "innovations"). The basic idea is that the Kalman filter can be
used to generate estimates of the residuals of the model fit. These residuals are then standardized

MARSSboot 37

and resampled and used to generate bootstrapped data using the MARSS model and its maximum-
likelihood parameter estimates. One of the limitations of the Stoffer and Wall algorithm is that it
cannot be used when there are missing data, unless all data at time t are missing. An alternative
approach is a parametric bootstrap (sim = "parametric"), in which the ML parameter estimates
are used to produce bootstrapped data directly from the state-space model.

Value

A list with the following components:

boot.params Matrix (number of params x nboot) of parameter estimates from the bootstrap.

boot.data Array (n x t x nboot) of simulated (or bootstrapped) data (if requested and ap-
propriate).

marss The marssMODEL object (form="marss") that was passed in via MLEobj$marss.

nboot Number of bootstraps performed.

output Type of output returned.

sim Type of bootstrap.

param.gen Parameter generation method: "hessian" or "KalmanEM".

Author(s)

Eli Holmes and Eric Ward, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

References

Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multivariate time-series using
the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd
E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS") to open a copy.

Stoffer, D. S., and K. D. Wall. 1991. Bootstrapping state-space models: Gaussian maximum like-
lihood estimation and the Kalman filter. Journal of the American Statistical Association 86:1024-
1033.

Cavanaugh, J. E., and R. H. Shumway. 1997. A bootstrap variant of AIC for state-space model
selection. Statistica Sinica 7:473-496.

See Also

marssMLE, marssMODEL, MARSSaic, MARSShessian, MARSSFisherI

Examples

nboot is set low in these examples in order to run quickly
normally nboot would be >1000 at least
dat <- t(kestrel)
dat <- dat[2:3,]
maxit set low to speed up the example
kem <- MARSS(dat,

model = list(U = "equal", Q = diag(.01, 2)),

38 MARSSFisherI

control = list(maxit = 50)
)
bootstrap parameters from a Hessian matrix
hess.list <- MARSSboot(kem, param.gen = "hessian", nboot = 4)

from resampling the innovations (no missing values allowed)
boot.innov.list <- MARSSboot(kem, output = "all", sim = "innovations", nboot = 4)

bootstrapped parameter estimates
hess.list$boot.params

MARSSFisherI Observed Fisher Information Matrix at the MLE

Description

Returns the observed Fisher Information matrix for a marssMLE object (a fitted MARSS model) via
either the analytical algorithm of Harvey (1989) or a numerical estimate.

The observed Fisher Information is the negative of the second-order partial derivatives of the log-
likelihood function evaluated at the MLE. The derivatives being with respect to the parameters. The
Hessian matrix is the second-order partial derivatives of a scalar-valued function. Thus the observed
Fisher Information matrix is the Hessian of the negative log-likelihood function evaluated at the
MLE (or equivalently the negative of the Hessian of the log-likelikhood function). The inverse of
the observed Fisher Information matrix is an estimate of the asymptotic variance-covariance matrix
for the estimated parameters. Use MARSShessian() (which calls MARSSFisherI()) to return the
parameter variance-covariance matrix computed from the observed Fisher Information matrix.

Note for the numerically estimated Hessian, we pass in the negative log-likelihood funcation to
a minimization function. As a result, the numerical functions return the Hessian of the negative
log-likelihood function (which is the observed Fisher Information matrix).

Usage

MARSSFisherI(MLEobj, method=c("Harvey1989", "fdHess", "optim"))

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem.

method The method to use for computing the observed Fisher Information matrix. Op-
tions are ’Harvey1989’ to use the Harvey (1989) recursion, which is an analyt-
ical solution, ’fdHess’ or ’optim’ which are two numerical methods. Although
’optim’ can be passed to the function, ’fdHess’ is used for all numerical esti-
mates used in the MARSS package.

MARSSFisherI 39

Details

Method ’fdHess’ uses fdHess from package nlme to numerically estimate the Hessian of the neg-
ative log-likelihood function at the MLEs. Method ’optim’ uses optim with hessian=TRUE and
list(maxit=0) to ensure that the Hessian is computed at the values in the par element of the MLE
object. The par element of the marssMLE object is the MLE.

Method ’Harvey1989’ (the default) uses the recursion in Harvey (1989) to compute the observed
Fisher Information of a MARSS model analytically. See Holmes (2016c) for a discussion of the
Harvey (1989) algorithm and see Holmes (2017) on how to implement the algorithm for MARSS
models with linear constraints (the type of MARSS models that the MARSS R package addresses).

There has been research on computing the observed Fisher Information matrix from the derivatives
used by EM algorithms (discussed in Holmes (2016a, 2016b)), for example Louis (1982). Unfor-
tunately, the EM algorithm used in the MARSS package is for time series data and the temporal
correlation must be dealt with, e.g. Duan & Fulop (2011). Oakes (1999) has an approach that
only involves derivatives of E(LL(theta)|data,theta’) but one of the derivatives will be the derivative
of the E(X|data,theta’) with respect to theta’. It is not clear how to do that derivative. Moon-Ho,
Shumway and Ombao (2006) suggest (page 157) that this derivative is hard to compute.

Value

Returns the observed Fisher Information matrix.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Harvey, A. C. (1989) Section 3.4.5 (Information matrix) in Forecasting, structural time series mod-
els and the Kalman filter. Cambridge University Press, Cambridge, UK.

See also J. E. Cavanaugh and R. H. Shumway (1996) On computing the expected Fisher information
matrix for state-space model parameters. Statistics & Probability Letters 26: 347-355. This paper
discusses the Harvey (1989) recursion (and proposes an alternative).

Holmes, E. E. 2016a. Notes on computing the Fisher Information matrix for MARSS models. Part
I Background. Technical Report. https://doi.org/10.13140/RG.2.2.27306.11204/1 Notes

Holmes, E. E. 2016b. Notes on computing the Fisher Information matrix for MARSS models. Part
II Louis 1982. Technical Report. https://doi.org/10.13140/RG.2.2.35694.72000 Notes

Holmes, E. E. 2016c. Notes on computing the Fisher Information matrix for MARSS models. Part
III Overview of Harvey 1989. https://eeholmes.github.io/posts/2016-6-16-FI-recursion-3/

Holmes, E. E. 2017. Notes on computing the Fisher Information matrix for MARSS models. Part
IV Implementing the Recursion in Harvey 1989. https://eeholmes.github.io/posts/2017-5-31-FI-
recursion-4/

Duan, J. C. and A. Fulop. (2011) A stable estimator of the information matrix under EM for
dependent data. Statistics and Computing 21: 83-91

Louis, T. A. 1982. Finding the observed information matrix when using the EM algorithm. Journal
of the Royal Statistical Society. Series B (Methodological). 44: 226-233.

https://eeholmes.github.io/posts/2016-5-18-FI-recursion-1/
https://eeholmes.github.io/posts/2016-5-19-FI-recursion-2/

40 MARSSharveyobsFI

Oakes, D. 1999. Direct calculation of the information matrix via the EM algorithm. Journal of the
Royal Statistical Society. Series B (Methodological). 61: 479-482.

Moon-Ho, R. H., R. H. Shumway, and Ombao 2006. The state-space approach to modeling dynamic
processes. Chapter 7 in Models for Intensive Longitudinal Data. Oxford University Press.

See Also

MARSSharveyobsFI, MARSShessian.numerical, MARSSparamCIs, marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[2:4,]
MLEobj <- MARSS(dat, model=list(Z=matrix(1,3,1), R="diagonal and equal"))
MARSSFisherI(MLEobj)
MARSSFisherI(MLEobj, method="fdHess")

MARSSharveyobsFI Hessian Matrix via the Harvey (1989) Recursion

Description

Calculates the observed Fisher Information analytically via the recursion by Harvey (1989) as
adapted by Holmes (2017) for MARSS models with linear constraints. This is the same as the
Hessian of the negative log-likelihood function at the MLEs. This is a utility function in the
MARSS-package and is not exported. Use MARSShessian to access.

Usage

MARSSharveyobsFI(MLEobj)

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem.

Value

The observed Fisher Information matrix computed via equation 3.4.69 in Harvey (1989). The dif-
ferentials in the equation are computed in the recursion in equations 3.4.73a to 3.4.74b. See Holmes
(2016c) for a discussion of the Harvey (1989) algorithm and Holmes (2017) for the specific imple-
mention of the algorithm for MARSS models with linear constraints.

Harvey (1989) discusses missing observations in section 3.4.7. However, the MARSSharveyobsFI()
function implements the approach of Shumway and Stoffer (2006) in section 6.4 for the missing
values. See Holmes (2012) for a full discussion of the missing values modifications.

MARSShatyt 41

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

R. H. Shumway and D. S. Stoffer (2006). Section 6.4 (Missing Data Modifications) in Time series
analysis and its applications. Springer-Verlag, New York.

Harvey, A. C. (1989) Section 3.4.5 (Information matrix) in Forecasting, structural time series mod-
els and the Kalman filter. Cambridge University Press, Cambridge, UK.

See also J. E. Cavanaugh and R. H. Shumway (1996) On computing the expected Fisher information
matrix for state-space model parameters. Statistics & Probability Letters 26: 347-355. This paper
discusses the Harvey (1989) recursion (and proposes an alternative).

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multivari-
ate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]

Holmes, E. E. 2016c. Notes on computing the Fisher Information matrix for MARSS models. Part
III Overview of Harvey 1989. https://eeholmes.github.io/posts/2016-6-16-FI-recursion-3/

Holmes, E. E. 2017. Notes on computing the Fisher Information matrix for MARSS models. Part
IV Implementing the Recursion in Harvey 1989. https://eeholmes.github.io/posts/2017-5-31-FI-
recursion-4/

See Also

MARSShessian, MARSSparamCIs

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11),]
MLEobj <- MARSS(dat)
MARSS:::MARSSharveyobsFI(MLEobj)

MARSShatyt Compute Expected Value of Y, YY, and YX

Description

Computes the expected value of random variables involving Y. Users can also use print(MLEobj,what="Ey")
to access this output. See print.marssMLE.

Usage

MARSShatyt(MLEobj, only.kem = TRUE)

42 MARSShatyt

Arguments

MLEobj A marssMLE object with the par element of estimated parameters, model ele-
ment with the model description and data.

only.kem Return only ytT, OtT, yxtT, and yxttpT (values conditioned on the data from
1:T). If only.kem If TRUE, only return (and compute) values needed for the
EM algorithm. If only.kem=FALSE, then also return values conditioned on data
from 1 to t-1 (Ott1 and ytt1) and 1 to t (Ott and ytt), yxtt1T (E[Y(t),X(t-1)|1:T]),
var.ytT (var[Y(t)|1:T]), and var.EytT (var_X[E_Y|x[Y(t)|1:T,x(t)]]).

Details

For state space models, MARSShatyt() computes the expectations involving Y. If Y is completely
observed, this entails simply replacing Y with the observed y. When Y is only partially observed,
the expectation involves the conditional expectation of a multivariate normal.

Value

A list with the following components (n is the number of state processes). Following the notation
in Holmes (2012), y(1) is the observed data (for t=1:T) while y(2) is the unobserved data. y(1,1:t-1)
is the observed data from time 1 to t-1.

ytT E[Y(t) | Y(1,1:T)=y(1,1:T)] (n x T matrix).

ytt1 E[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x T matrix).

ytt E[Y(t) | Y(1,1:t)=y(1,1:t)] (n x T matrix).

OtT E[Y(t) t(Y(t)) | Y(1,1:T)=y(1,1:T)] (n x n x T array).

var.ytT var[Y(t) | Y(1,1:T)=y(1,1:T)] (n x n x T array).

var.EytT var_X[E_Y|x[Y(t) | Y(1,1:T)=y(1,1:T), X(t)=x(t)]] (n x n x T array).

Ott1 E[Y(t) t(Y(t)) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).

Ott E[Y(t) t(Y(t)) | Y(1,1:t)=y(1,1:t)] (n x n x T array).

yxtT E[Y(t) t(X(t)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).

yxtt1T E[Y(t) t(X(t-1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).

yxttpT E[Y(t) t(X(t+1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).

errors Any error messages due to ill-conditioned matrices.

ok (TRUE/FALSE) Whether errors were generated.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Holmes, E. E. (2012) Derivation of the EM algorithm for constrained and unconstrained multivariate
autoregressive state-space (MARSS) models. Technical report. arXiv:1302.3919 [stat.ME] Type
RShowDoc("EMDerivation",package="MARSS") to open a copy. See the section on ’Computing
the expectations in the update equations’ and the subsections on expectations involving Y.

MARSShessian 43

See Also

MARSS, marssMODEL, MARSSkem

Examples

dat <- t(harborSeal)
dat <- dat[2:3,]
MLEobj <- MARSS(dat)
EyList <- MARSShatyt(MLEobj)

MARSShessian Parameter Variance-Covariance Matrix from the Hessian Matrix

Description

Calculates an approximate parameter variance-covariance matrix for the parameters using an inverse
of the Hessian of the negative log-likelihood function at the MLEs (the observed Fisher Information
matrix). It appends $Hessian, $parMean, $parSigma to the marssMLE object.

Usage

MARSShessian(MLEobj, method=c("Harvey1989", "fdHess", "optim"))

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem.

method The method to use for computing the Hessian. Options are ’Harvey1989’ to
use the Harvey (1989) recursion, which is an analytical solution, ’fdHess’ or
’optim’ which are two numerical methods. Although ’optim’ can be passed to
the function, ’fdHess’ is used for all numerical estimates used in the package.

Details

See MARSSFisherI for a discussion of the observed Fisher Information matrix and references.

Method ’fdHess’ uses fdHess from package nlme to numerically estimate the Hessian matrix (the
matrix of partial 2nd derivatives of the negative log-likelihood function at the MLE). Method ’op-
tim’ uses optim with hessian=TRUE and list(maxit=0) to ensure that the Hessian is computed
at the values in the par element of the MLE object. Method ’Harvey1989’ (the default) uses the
recursion in Harvey (1989) to compute the observed Fisher Information of a MARSS model ana-
lytically.

Note that the parameter confidence intervals computed with the observed Fisher Information matrix
are based on the asymptotic normality of ML estimates under a large-sample approximation.

Value

MARSShessian() attaches Hessian, parMean and parSigma to the marssMLE object that is passed
into the function.

44 MARSShessian.numerical

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Harvey, A. C. (1989) Section 3.4.5 (Information matrix) in Forecasting, structural time series mod-
els and the Kalman filter. Cambridge University Press, Cambridge, UK.

See also J. E. Cavanaugh and R. H. Shumway (1996) On computing the expected Fisher information
matrix for state-space model parameters. Statistics & Probability Letters 26: 347-355. This paper
discusses the Harvey (1989) recursion (and proposes an alternative).

See Also

MARSSFisherI, MARSSharveyobsFI, MARSShessian.numerical, MARSSparamCIs, marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11),]
MLEobj <- MARSS(dat)
MLEobj.hessian <- MARSShessian(MLEobj)

show the approx Hessian
MLEobj.hessian$Hessian

generate a parameter sample using the Hessian
this uses the rmvnorm function in the mvtnorm package
hess.params <- mvtnorm::rmvnorm(1,

mean = MLEobj.hessian$parMean,
sigma = MLEobj.hessian$parSigma

)

MARSShessian.numerical

Hessian Matrix via Numerical Approximation

Description

Calculates the Hessian of the log-likelihood function at the MLEs using either the fdHess function
in the nlme package or the optim function. This is a utility function in the MARSS-package and is
not exported. Use MARSShessian to access.

Usage

MARSShessian.numerical(MLEobj, fun=c("fdHess", "optim"))

MARSSinfo 45

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem.

fun The function to use for computing the Hessian. Options are ’fdHess’ or ’optim’.

Details

Method ’fdHess’ uses fdHess from package nlme to numerically estimate the Hessian matrix (the
matrix of partial 2nd derivatives) of the negative log-likelihood function with respect to the pa-
rameters. Method ’optim’ uses optim with hessian=TRUE and list(maxit=0) to ensure that the
Hessian is computed at the values in the par element of the MLE object.

Value

The numerically estimated Hessian of the log-likelihood function at the MLEs.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

MARSSharveyobsFI, MARSShessian, MARSSparamCIs

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11),]
MLEobj <- MARSS(dat)
MARSS:::MARSShessian.numerical(MLEobj)

MARSSinfo MARSS Error Messages and Warnings

Description

Prints out more information for MARSS error messages and warnings.

Usage

MARSSinfo(number)

Arguments

number An error or warning message number.

46 MARSSinits

Value

A print out of information.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

Examples

Show all the info options
MARSSinfo()

MARSSinits Initial Values for MLE

Description

Sets up generic starting values for parameters for maximum-likelihood estimation algorithms that
use an iterative maximization routine needing starting values. Examples of such algorithms are the
EM algorithm in MARSSkem() and Newton methods in MARSSoptim(). This is a utility function in
the MARSS-package. It is not exported to the user. Users looking for information on specifying
initial conditions should look at the help file for MARSS() and the User Guide section on initial
conditions.

The function assumes that the user passed in the inits list using the parameter names in whatever
form was specified in the MARSS() call. The default is form="marxss". The MARSSinits() function
calls MARSSinits_foo, where foo is the form specified in the MARSS() call. MARSSinits_foo
translates the inits list in form foo into form marss.

Usage

MARSSinits(MLEobj, inits=list(B=1, U=0, Q=0.05, Z=1, A=0,
R=0.05, x0=-99, V0=5, G=0, H=0, L=0))

Arguments

MLEobj An object of class marssMLE.

inits A list of column vectors (matrices with one column) of the estimated values in
each parameter matrix.

MARSSinits 47

Details

Creates an inits parameter list for use by iterative maximization algorithms.

Default values for inits is supplied in MARSSsettings.R. The user can alter these and supply any
of the following (m is the dim of X and n is the dim of Y in the MARSS model):

• elem=A,U A numeric vector or matrix which will be constructed into inits$elem by the com-
mand array(inits$elem),dim=c(n or m,1)). If elem is fixed in the model, any inits$elem
values will be overridden and replaced with the fixed value. Default is array(0,dim=c(n or
m,1)).

• elem=Q,R,B A numeric vector or matrix. If length equals the length MODELobj$fixed$elem
then inits$elem will be constructed by array(inits$elem),dim=dim(MODELobj$fixed$elem)).
If length is 1 or equals dim of Q or dim of R then inits$elem will be constructed into a diagonal
matrix by the command diag(inits$elem). If elem is fixed in the model, any inits$elem
values will be overridden and replaced with the fixed value. Default is diag(0.05,dim of Q
or R) for Q and R. Default is diag(1,m) for B.

• x0 If inits$x0=-99, then starting values for x0 are estimated by a linear regression through
the count data assuming A=0. This will be a poor start if inits$A is not 0. If inits$x0 is a nu-
meric vector or matrix, inits$x0 will be constructed by the command array(inits$x0),dim=c(m,1)).
If x0 is fixed in the model, any inits$x0 values will be overridden and replaced with the fixed
value. Default is inits$x0=-99.

• Z If Z is fixed in the model, inits$Z set to the fixed value. If Z is not fixed, then the user must
supply inits$Z. There is no default.

• elem=V0 V0 is never estimated, so this is never used.

Value

A list with initial values for the estimated values for each parameter matrix in a MARSS model in
marss form. So this will be a list with elements B, U, Q, Z, A, R, x0, V0, G, H, L.

Note

Within the base code, a form-specific internal MARSSinits function is called to allow the output to
vary based on form: MARSSinits_dfa, MARSSinits_marss, MARSSinits_marxss.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

marssMODEL, MARSSkem, MARSSoptim

48 MARSSinnovationsboot

MARSSinnovationsboot Bootstrapped Data using Stoffer and Wall’s Algorithm

Description

Creates bootstrap data via sampling from the standardized innovations matrix. This is an internal
function in the MARSS-package and is not exported. Users should access this with MARSSboot.

Usage

MARSSinnovationsboot(MLEobj, nboot = 1000, minIndx = 3)

Arguments

MLEobj An object of class marssMLE. This object must have a $par element containing
MLE parameter estimates from e.g. MARSSkem() or MARSS(). This algorithm
may not be used if there are missing datapoints in the data.

nboot Number of bootstraps to perform.

minIndx Number of innovations to skip. Stoffer & Wall suggest not sampling from inno-
vations 1-3.

Details

Stoffer and Wall (1991) present an algorithm for generating CIs via a non-parametric bootstrap for
state-space models. The basic idea is that the Kalman filter can be used to generate estimates of the
residuals of the model fit. These residuals are then standardized and resampled and used to generate
bootstrapped data using the MARSS model and its maximum-likelihood parameter estimates. One
of the limitations of the Stoffer and Wall algorithm is that it cannot be used when there are missing
data, unless all data at time t are missing.

Value

A list containing the following components:

boot.states Array (dim is m x tSteps x nboot) of simulated state processes.

boot.data Array (dim is n x tSteps x nboot) of simulated data.

marss marssMODEL object element of the marssMLE object (marssMLE$marss) in "marss"
form.

nboot Number of bootstraps performed.

m is the number state processes (x in the MARSS model) and n is the number of observation time
series (y in the MARSS model).

Author(s)

Eli Holmes and Eric Ward, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

MARSSkem 49

References

Stoffer, D. S., and K. D. Wall. 1991. Bootstrapping state-space models: Gaussian maximum like-
lihood estimation and the Kalman filter. Journal of the American Statistical Association 86:1024-
1033.

See Also

stdInnov, MARSSparamCIs, MARSSboot

Examples

dat <- t(kestrel)
dat <- dat[2:3,]
MLEobj <- MARSS(dat, model = list(U = "equal", Q = diag(.01, 2)))
boot.obj <- MARSSinnovationsboot(MLEobj)

MARSSkem EM Algorithm function for MARSS models

Description

MARSSkem() performs maximum-likelihood estimation, using an EM algorithm for constrained and
unconstrained MARSS models. Users would not call this function directly normally. The function
MARSS() calls MARSSkem(). However users might want to use MARSSkem() directly if they need to
avoid some of the error-checking overhead associated with the MARSS() function.

Usage

MARSSkem(MLEobj)

Arguments

MLEobj An object of class marssMLE.

Details

Objects of class marssMLE may be built from scatch but are easier to construct using MARSS() with
MARSS(...,fit=FALSE).

Options for MARSSkem() may be set using MLEobj$control. The commonly used elements of
control are follows (see marssMLE:

minit Minimum number of EM iterations. You can use this to force the algorithm to do a certain
number of iterations. This is helpful if your soln is not converging.

maxit Maximum number of EM iterations.

min.iter.conv.test The minimum number of iterations before the log-log convergence test will
be computed. If maxit is set less than this, then convergence will not be computed (and the
algorithm will just run for maxit iterations).

50 MARSSkem

kf.x0 Whether to set the prior at t=0 ("x00") or at t=1 ("x10"). The default is "x00".

conv.test.deltaT The number of iterations to use in the log-log convergence test. This defaults
to 9.

abstol Tolerance for log-likelihood change for the delta logLik convergence test. If log-likelihood
changes less than this amount relative to the previous iteration, the EM algorithm exits. This
is normally (default) set to NULL and the log-log convergence test is used instead.

allow.degen Whether to try setting Q or R elements to zero if they appear to be going to zero.

trace A positive integer. If not 0, a record will be created of each variable over all EM iterations
and detailed warning messages (if appropriate) will be printed.

safe If TRUE, MARSSkem will rerun MARSSkf after each individual parameter update rather than
only after all parameters are updated. The latter is slower and unnecessary for many models,
but in some cases, the safer and slower algorithm is needed because the ML parameter matrices
have high condition numbers.

silent Suppresses printing of progress bars, error messages, warnings and convergence informa-
tion.

Value

The marssMLE object which was passed in, with additional components:

method String "kem".

kf Kalman filter output.

iter.record If MLEobj$control$trace = TRUE, a list with par = a record of each estimated
parameter over all EM iterations and logLik = a record of the log likelikelihood
at each iteration.

numIter Number of iterations needed for convergence.

convergence Did estimation converge successfully?

convergence=0 Converged in both the abstol test and the log-log plot test.
convergence=1 Some of the parameter estimates did not converge (based on

the log-log plot test AND abstol tests) before MLEobj$control$maxit was
reached. This is not an error per se.

convergence=2 No convergence diagnostics were computed because the MLE
object had problems and was not fit. This isn’t a convergence error just
information.

convergence=3 No convergence diagnostics were computed because the MLE
object was not fit. This isn’t a convergence error just information.

convergence=10 Abstol convergence only. Some of the parameter estimates
did not converge (based on the log-log plot test) before MLEobj$control$maxit
was reached. However MLEobj$control$abstol was reached.

convergence=11 Log-log convergence only. Some of the parameter estimates
did not converge (based on the abstol test) before MLEobj$control$maxit
was reached. However the log-log convergence test was passed.

convergence=12 Abstol convergence only. Log-log convergence test was not
computed because MLEobj$control$maxit was set to less than control$min.iter.conv.test.

MARSSkem 51

convergence=13 Lack of convergence info. Parameter estimates did not con-
verge based on the abstol test before MLEobj$control$maxit was reached.
No log-log information since control$min.iter.conv.test is less than
MLEobj$control$maxit so no log-log plot test could be done.

convergence=42 MLEobj$control$abstol was reached but the log-log plot
test returned NAs. This is an odd error and you should set control$trace=TRUE
and look at the outputted $iter.record to see what is wrong.

convergence=52 The EM algorithm was abandoned due to numerical errors.
Usually this means one of the variances either went to zero or to all ele-
ments being equal. This is not an error per se. Most likely it means that
your model is not very good for your data (too inflexible or too many pa-
rameters). Try setting control$trace=1 to view a detailed error report.

convergence=62 The algorithm was abandoned due to errors in the log-log con-
vergence test. You should not get this error (it is included for debugging
purposes to catch improper arguments passed into the log-log convergence
test).

convergence=63 The algorithm was run for control$maxit iterations, control$abstol
not reached, and the log-log convergence test returned errors. You should
not get this error (it is included for debugging purposes to catch improper
arguments passed into the log-log convergence test).

convergence=72 Other convergence errors. This is included for debugging pur-
poses to catch misc. errors.

logLik Log-likelihood.

states State estimates from the Kalman filter.

states.se Confidence intervals based on state standard errors, see caption of Fig 6.3 (p.
337) Shumway & Stoffer.

errors Any error messages.

Discussion

To ensure that the global maximum-likelihood values are found, it is recommended that you test
the fit under different initial parameter values, particularly if the model is not a good fit to the
data. This requires more compuation time, but reduces the chance of the algorithm terminating at
a local maximum and not reaching the true MLEs. For many models and for draft analyses, this is
unnecessary, but answers should be checked using an initial conditions search before reporting final
values. See the chapter on initial conditions in the User Guide for a discussion on how to do this.

MARSSkem() calls a Kalman filter/smoother (MARSSkf) for hidden state estimation. The algorithm
allows two options for the initial state conditions: fixed but unknown or a prior. In the first case, x0
(whether at t=0 or t=1) is treated as fixed but unknown (estimated); in this case, fixed$V0=0 and
x0 is estimated. This is the default behavior. In the second case, the initial conditions are specified
with a prior and V0!=0. In the later case, x0 or V0 may be estimated. MARSS will allow you to
try to estimate both, but many researchers have noted that this is not robust so you should fix one or
the other.

If you get errors, you can type MARSSinfo() for help. Fitting problems often mean that the solution
involves an ill-conditioned matrix. For example, your Q or R matrix is going to a value in which
all elements have the same value, for example zero. If for example, you tried to fit a model with

52 MARSSkem

fixed and high R matrix and the variance in that R matrix was much higher than what is actually in
the data, then you might drive Q to zero. Also if you try to fit a structurally inadequate model, then
it is not unusual that Q will be driven to zero. For example, if you fit a model with 1 hidden state
trajectory to data that clearly have 2 quite different hidden state trajectories, you might have this
problem. Comparing the likelihood of this model to a model with more structural flexibility should
reveal that the structually inflexible model is inadequate (much lower likelihood).

Convergence testing is done via a combination of two tests. The first test (abstol test) is the test
that the change in the absolute value of the log-likelihood from one iteration to another is less than
some tolerance value (abstol). The second test (log-log test) is that the slope of a plot of the log
of the parameter value or log-likelihood versus the log of the iteration number is less than some
tolerance. Both of these must be met to generate the Success! parameters converged output. If
you want to circumvent one of these tests, then set the tolerance for the unwanted test to be high.
That will guarantee that that test is met before the convergence test you want to use is met. The
tolerance for the abstol test is set by control$abstol and the tolerance for the log-log test is set by
control$conv.test.slope.tol. Anything over 1 is huge for both of these.

Author(s)

Eli Holmes and Eric Ward, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

References

R. H. Shumway and D. S. Stoffer (2006). Chapter 6 in Time series analysis and its applications.
Springer-Verlag, New York.

Ghahramani, Z. and Hinton, G. E. (1996) Parameter estimation for linear dynamical systems. Tech-
nical Report CRG-TR-96-2, University of Totronto, Dept. of Computer Science.

Harvey, A. C. (1989) Chapter 5 in Forecasting, structural time series models and the Kalman filter.
Cambridge University Press, Cambridge, UK.

The MARSS User Guide: Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multi-
variate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Cen-
ter, 2725 Montlake Blvd E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS")
to open a copy.

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multivari-
ate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]RShowDoc("EMDerivation",package="MARSS")
to open a copy.

See Also

MARSSkf, marssMLE, MARSSoptim, MARSSinfo

Examples

dat <- t(harborSeal)
dat <- dat[2:4,]
you can use MARSS to construct a proper marssMLE object.
MLEobj <- MARSS(dat, model = list(Q = "diagonal and equal", U = "equal"), fit = FALSE)
Pass this MLEobj to MARSSkem to do the fit.

MARSSkf 53

kemfit <- MARSSkem(MLEobj)

MARSSkf Kalman Filtering and Smoothing

Description

Provides Kalman filter and smoother output for MARSS models with (or without) time-varying
parameters. MARSSkf() is a small helper function to select which Kalman filter/smoother function to
use based on the value in MLEobj$fun.kf. The choices are MARSSkfas which uses the filtering and
smoothing algorithms in the KFAS package based on algorithms in Koopman and Durbin (2001-
2003), and MARSSkfss() which uses the algorithms in Shumway and Stoffer. The default function
is MARSSkfas() which is faster and generally more stable (fewer matrix inversions), but there are
some cases where MARSSkfss() will be more stable and MARSSkfss() returns some values that
MARSSkfas() does not.

Usage

MARSSkf(MLEobj, only.logLik=FALSE, return.lag.one=TRUE, return.kfas.model=FALSE)
MARSSkfss(MLEobj)
MARSSkfas(MLEobj, only.logLik=FALSE, return.lag.one=TRUE, return.kfas.model=FALSE)

Arguments

MLEobj A marssMLE object with the par element of estimated parameters, marss ele-
ment with the model description (in marss form) and data, and control element
for the fitting algorithm specificitions. control$debugkf specifies that detailed
error reporting will be returned (only used by MARSSkf). model$diffuse=TRUE
specifies that a diffuse prior be used (only used by MARSSkfas). See KFS docu-
mentation. When the diffuse prior is set, V0 should be non-zero since the diffuse
prior variance is V0*kappa, where kappa goes to infinity.

only.logLik Used by MARSSkfas. If set, only the log-likelihood is returned using the KFAS
package function logLik.SSModel. This is much faster if only the log-likelihood
is needed.

return.lag.one

Used by MARSSkfas. If set to FALSE, the smoothed lag-one covariance values
are not returned (Vtt1T is set to NULL). This speeds up MARSSkfas because to
return the smoothed lag-one covariance a stacked MARSS model is used with
twice the number of state vectors—thus the state matrices are larger and take
more time to work with.

return.kfas.model

Used by MARSSkfas. If set to TRUE, it returns the MARSS model in KFAS
model form (class SSModel). This is useful if you want to use other KFAS
functions or write your own functions to work with optim to do optimization.
This can speed things up since there is a bit of code overhead in MARSSoptim
associated with the marssMODEL model specification needed for the constrained
EM algorithm (but not strictly needed for optim; useful but not required.).

54 MARSSkf

Details

For state-space models, the Kalman filter and smoother provide optimal (minimum mean square
error) estimates of the hidden states. The Kalman filter is a forward recursive algorithm which
computes estimates of the states x(t) conditioned on the data up to time t (xtt). The Kalman
smoother is a backward recursive algorithm which starts at time T and works backwards to t = 1 to
provide estimates of the states conditioned on all data (xtT). The data may contain missing values
(NAs). All parameters may be time varying.

The expected value of the initial state, x0, is an estimated parameter (or treated as a prior). This
E(initial state) can be treated in two different ways. One can treat it as x00, meaning E(x at t=0
| y at t=0), and then compute x10, meaning E(x at t=1 | y at t=0), from x00. Or one can simply
treat the initial state as x10, meaning E(x at t=1 | y at t=0). The approaches lead to the same
parameter estimates, but the likelihood is written slightly differently in each case and you need
your likelihood calculation to correspond to how the initial state is treated in your model (either
x00 or x10). The EM algorithm in the MARSS package (MARSSkem()) provides both Shumway
and Stoffer’s derivation that uses tinitx=0 and Ghahramani et al algorithm which uses tinitx=1. The
MLEobj$model$tinitx argument specifies whether the initial states (specified with x0 and V0) is
at t=0 (tinitx=0) or t=1 (tinitx=1).

MARSSkfss() is a native R implementation based on the Kalman filter and smoother equation as
shown in Shumway and Stoffer (sec 6.2, 2006). The equations have been altered slightly to the
initial state distribution to be to be specified at t=0 or t=1 (data starts at t=1) per per Ghahramani
and Hinton (1996). In addition, the filter and smoother equations have been altered to allow par-
tially deterministic models (some or all elements of the Q diagonals equal to 0), partially perfect
observation models (some or all elements of the R diagonal equal to 0) and fixed (albeit unknown)
initial states (some or all elements of the V0 diagonal equal to 0) (per Holmes 2012). The code in-
cludes numerous checks to alert the user if matrices are becoming ill-conditioned and the algorithm
unstable.

MARSSkfas() uses the (Fortran-based) Kalman filter and smoother function (KFS) in the KFAS
package (Helske 2012) based on the algorithms of Koopman and Durbin (2000, 2001, 2003). The
Koopman and Durbin algorithm is faster and more stable since it avoids matrix inverses. Exact dif-
fuse priors are also allowed in the KFAS Kalman filter function. The standard output from the KFAS
functions do not include the lag-one covariance smoother needed for the EM algorithm. MARSSkfas
computes the smoothed lag-one covariance using the Kalman filter applied to a stacked MARSS
model as described on page 321 in Shumway and Stoffer (2000). Also the KFAS model specifi-
cation only has the initial state at t=1 (as x(1) conditioned on y(0), which is missing). When the
initial state is specified at t=0 (as x(0) conditioned on y(0), which is missing), MARSSkfas computes
the required E(x(1)|y(0)) and var(x(1)|y(0)) using the Kalman filter equations per Ghahramani and
Hinton (1996).

The likelihood returned for both functions is the exact likelihood when there are missing values
rather than the approximate likelihood sometimes presented in texts for the missing values case.
The functions return the same filter, smoother and log-likelihood values. The differences are that
MARSSkfas() is faster (and more stable) but MARSSkf() has many internal checks and error mes-
sages which can help debug numerical problems (but slow things down). Also MARSSkf() returns
some output specific to the traditional filter algorithm (J and Kt).

MARSSkf 55

Value

A list with the following components (m is the number of state processes). "V" elements are called
"P" in Shumway and Stoffer (S&S eqn 6.17 with s=T). The output is referenced against equations
in Shumway and Stoffer (2006); the Kalman filter and smoother implemented in MARSS is for a
more general MARSS model than that shown in S&S but the output has the same meaning. In the
expectations below, the parameters are left off, so E[x | y] is really E[x | theta, y] where theta is the
parameter list.

xtT State first moment conditioned on y(1:T): E[x(t) | y(1:T)] (m x T matrix). Kalman
smoother output.

VtT State variance conditioned on y(1:T): E[(x(t)-xtT(t))(x(t)-xtT(t))’| | y(1:T)] (m x
m x T array). Kalman smoother output. P_t^T in S&S (S&S eqn 6.18 with s=T,
t1=t2=t). State second moment E[x(t)x(t)’| y(1:T)] = VtT(t)+xtT(t)xtT(t)’

Vtt1T State lag-one covariance E[(x(t)-xtT(t))(x(t-1)-xtT(t-1))’ | y(1:T)] (m x m x T).
Kalman smoother output. P_t,t-1^T in S&S (S&S eqn 6.18 with s=T, t1=t, t2=t-
1). State lag-one second moments E[x(t)x(t-1)’| y(1:T)] = Vtt1T(t)+xtT(t)xtT(t-
1)’.

x0T Initial state estimate E[x(i) | y(1:T)] (m x 1). If control$kf.x0="x00", i=0; if
="x10", i=1. Kalman smoother output.

V0T Estimate of initial state covariance matrix E[x(i)x(i)’ | y(1:T)] (m x m). If
model$tinitx=0, i=0; if =1, i=1. Kalman smoother output. P_0^T in S&S.

J (m x m x T) Kalman smoother output. Only for MARSSkfss. (ref S&S eqn 6.49)

J0 J at init time (t=0 or t=1) (m x m x T). Kalman smoother output. Only for
MARSSkfss.

xtt State first moment conditioned on y(1:t): E[x(t) | y(1:t)] (m x T). Kalman filter
output. (S&S eqn 6.17 with s=t)

xtt1 State first moment conditioned on y(1:t-1): E[x(t) | y(1:t-1)] (m x T). Kalman
filter output. (S&S eqn 6.17 with s=t-1)

Vtt State variance conditioned on y(1:t): E[(x(t)-xtt(t))(x(t)-xtt(t))’| | y(1:t)] (m x m
x T array). Kalman filter output. P_t^t in S&S (S&S eqn 6.18 with s=t, t1=t2=t).
State second moment E[x(t)x(t)’| y(1:t)] = Vtt(t)+xtt(t)xtt(t)’

Vtt1 State variance conditioned on y(1:t-1): E[(x(t)-xtt1(t))(x(t)-xtt1(t))’| | y(1:t-1)]
(m x m x T array). Kalman filter output. P_t^t in S&S (S&S eqn 6.18 with s=t-
1, t1=t2=t). State second moment E[x(t)x(t)’| y(1:t-1)] = Vtt1(t)+xtt1(t)xtt1(t)’

Kt Kalman gain (m x m x T). Kalman filter output (ref S&S eqn 6.23). Only for
MARSSkfss.

Innov Innovations y(t) - E[y(t) | y(1:t-1)] (n x T). Kalman filter output. Only returned
with MARSSkfss. (ref page S&S 339).

Sigma Innovations covariance matrix. Kalman filter output. Only returned with MARSSkfss.
(ref S&S eqn 6.61)

logLik Log-likelihood logL(y(1:T) | theta) (ref S&S eqn 6.62)

kfas.model The model in KFAS model form (class SSModel). Only for MARSSkfas.

errors Any error messages.

56 MARSSkf

Author(s)

Eli Holmes, NOAA, Seattle, USA. eli(dot)holmes(at)noaa(dot)gov

References

A. C. Harvey (1989). Chapter 5, Forecasting, structural time series models and the Kalman filter.
Cambridge University Press.

R. H. Shumway and D. S. Stoffer (2006). Time series analysis and its applications: with R exam-
ples. Second Edition. Springer-Verlag, New York.

Ghahramani, Z. and Hinton, G.E. (1996) Parameter estimation for linear dynamical systems. Uni-
versity of Toronto Technical Report CRG-TR-96-2.

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multi-
variate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]
RShowDoc("EMDerivation",package="MARSS") to open a copy.

Jouni Helske (2012). KFAS: Kalman filter and smoother for exponential family state space models.
http://CRAN.R-project.org/package=KFAS

Koopman, S.J. and Durbin J. (2000). Fast filtering and smoothing for non-stationary time series
models, Journal of American Statistical Assosiation, 92, 1630-38.

Koopman, S.J. and Durbin J. (2001). Time series analysis by state space methods. Oxford: Oxford
University Press.

Koopman, S.J. and Durbin J. (2003). Filtering and smoothing of state vector for diffuse state space
models, Journal of Time Series Analysis, Vol. 24, No. 1.

The MARSS User Guide: Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multi-
variate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Cen-
ter, 2725 Montlake Blvd E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS")
to open a copy.

See Also

MARSS, marssMODEL, MARSSkem, KFAS

Examples

dat <- t(harborSeal)
dat <- dat[2:nrow(dat),]
you can use MARSS to construct a MLEobj
MARSS calls MARSSinits to construct default initial values
with fit = FALSE, the $par element of MLEobj will be NULL
MLEobj <- MARSS(dat, fit = FALSE)
MARSSkf needs a marss MLE object with the par element set
MLEobj$par <- MLEobj$start
Compute the kf output at the params used for the inits
kfList <- MARSSkf(MLEobj)

marssMLE-class 57

marssMLE-class Class "marssMLE"

Description

marssMLE objects specify fitted multivariate autoregressive state-space models (maximum-likelihood)
in the package MARSS-package.

A marssMLE object in the MARSS-package that has all the elements needed for maximum-likelihood
estimation of multivariate autoregressive state-space model: the data, model, estimation methods,
and any control options needed for the method. If the model has been fit and parameters estimated,
the object will also have the MLE parameters. Other functions add other elements to the marssMLE
object, such as CIs, s.e.’s, AICs, and the observed Fisher Information matrix. There are print, sum-
mary, coef, residuals, predict and simulate methods for marssMLE objects and a bootstrap func-
tion. Rather than working directly with the elements of a marssMLE object, use print.marssMLE,
tidy.marssMLE, or augment.marssMLE to extract output.

Methods

print signature(x = "marssMLE"): ...

summary signature(object = "marssMLE"): ...

coef signature(object = "marssMLE"): ...

predict signature(object = "marssMLE"): ...

simulate signature(object = "marssMLE"): ...

Author(s)

Eli Holmes and Kellie Wills, NOAA, Seattle, USA

eli(dot)holmes(at)noaa(dot)gov

See Also

is.marssMLE

marssMODEL-class Class "marssMODEL"

Description

marssMODEL objects describe a vectorized form for the multivariate autoregressive state-space mod-
els used in the package MARSS-package.

58 marssMODEL-class

Details

The object has the following attributes:

• form The form that the model object is in.

• par.names The names of each parameter matrix in the model.

• model.dims A list with the dimensions of all the matrices in non-vectorized form.

• X.names Names for the X rows.

• Y.names Names for the Y rows.

• equation The model equation. Used to write the model in LaTeX.

These attributes are set in the MARSS_form.R file, in the MARSS.form() function and must be
internally consistent with the elements of the model. These attributes are used for internal error
checking.

Each parameter matrix in a MARSS equation can be written in vectorized form: vec(P) = f + Dp,
where f is the fixed part, p are the estimated parameters, and D is the matrix that transforms the p
into a vector to be added to f.

An object of class marssMODEL is a list with elements:

• data Data supplied by user.

• fixed A list with the f row vectors for each parameter matrix.

• free A list with the D matrices for each parameter matrix.

• tinitx At what t, 0 or 1, is the initial x defined at?

• diffuse Whether a diffuse initial prior is used. TRUE or FALSE. Not used unless method="BFGS"
was used.

For the marss form, the matrices are called: Z, A, R, B, U, Q, x0, V0. This is the form used by all
internal algorithms, thus alternate forms must be transformed to marss form before fitting. For the
marxss form (the default form in a MARSS() call), the matrices are called: Z, A, R, B, U, Q, D, C,
d, c, x0, V0.

Each form, should have a file called MARSS_form.R, with the following functions. Let foo be
some form.

• MARSS.foo(MARSS.call) This is called in MARSS() and takes the input from the MARSS()
call (a list called MARSS.call) and returns that list with two model objects added. First is a
model object in marss form in the $marss element and a model object in the form foo.

• marss_to_foo(marssMLE or marssMODEL) If called with marssMODEL (in form marss),
marss_to_foo returns a model in form foo. If marss_to_foo is called with a marssMLE object
(which must have a $marss element by definition), it returns a $model element in form foo
and all if the marssMLE object has par, par.se, par.CI, par.bias, start elements, these are also
converted to foo form. The function is mainly used by print.foo which needs the par (and
related) elements of a marssMLE object to be in foo form for printing.

• foo_to_marss(marssMODEL or marssMLE) This converts marssMODEL(form=foo) to marss-
MODEL(form=marss). This transformation is always possible since MARSS only works for
models for which this is possible. If called with marssMODEL, it returns only a marssMODEL
object. If called with a marssMLE object, it adds the $marss element with a marssMODEL in
"marss" form and if the par (or related) elements exists, these are converted to "marss" form.

MARSSoptim 59

• print_foo(marssMLE or marssMODEL) print.marssMLE prints the par (and par.se and start)
element of a marssMLE object but does not make assumptions about its form. Normally this
element is in form=marss. print.marssMLE checks for a print_foo function and runs that on the
marssMLE object first. This allows one to call foo_to_marss() to covert the par (and related)
element to foo form so they look familiar to the user (the marss form will look strange).
If called with marssMLE, print_foo returns a marssMLE object with the par (and related)
elements in foo form. If called with a marssMODEL, print_foo returns a marssMODEL in
foo form.

• coef_foo(marssMLE) See print_foo. Coef.marssMLE also uses the par (and related) elements.

• predict_foo(marssMLE) Called by predict.marssMLE to do any needed conversions. Typi-
cally a form will want the newdata element in a particular format and this will need to be
converted to marss form. This returns an updated marssMLE object and newdata.

• describe_foo(marssMODEL) Called by describe.marssMODEL to do allow custom descrip-
tion output.

• is.marssMODEL_foo(marssMODEL) Check that the model object in foo form has all the parts
it needs and that these have the proper size and form.

• MARSSinits_foo(marssMLE, inits.list) Allows customization of the inits used by the form.
Returns an inits list in marss form.

Methods

print signature(x = "marssMODEL"): ...

summary signature(object = "marssMODEL"): ...

toLatex signature(object = "marssMODEL"): ...

model.frame signature(object = "marssMODEL"): ...

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

MARSSoptim Parameter estimation for MARSS models using optim

Description

Parameter estimation for MARSS models using R’s optim function. This allows access to R’s
quasi-Newton algorithms available in that function. The MARSSoptim() function is called when
MARSS() is called with method="BFGS". This is an internal function in the MARSS-package.

Usage

MARSSoptim(MLEobj)

60 MARSSoptim

Arguments

MLEobj An object of class marssMLE.

Details

Objects of class marssMLE may be built from scratch but are easier to construct using MARSS()
called with MARSS(...,fit=FALSE,method="BFGS").

Options for optim are passed in using MLEobj$control. See optim for a list of that function’s
control options. If lower and upper for optim need to be passed in, they should be passed in as
part of control as control$lower and control$upper. Additional control arguments affect
printing and initial conditions.

MLEobj$control$kf.x0 The initial condition is at $t=0$ if kf.x0="x00". The initial condition is
at $t=1$ if kf.x0="x10".

MLEobj$marss$diffuse If diffuse=TRUE, a diffuse initial condition is used. MLEobjparV0 is
then the scaling function for the diffuse part of the prior. Thus the prior is V0*kappa where
kappa–>Inf. Note that setting a diffuse prior does not change the correlation structure within
the prior. If diffuse=FALSE, a non-diffuse prior is used and MLEobjparV0 is the non-
diffuse prior variance on the initial states. The the prior is V0.

MLEobj$control$silent Suppresses printing of progress bars, error messages, warnings and con-
vergence information.

Value

The marssMLE object which was passed in, with additional components:

method String "BFGS".

kf Kalman filter output.

iter.record If MLEobj$control$trace = TRUE, then this is the $message value from optim.

numIter Number of iterations needed for convergence.

convergence Did estimation converge successfully?

convergence=0 Converged in less than MLEobj$control$maxit iterations and
no evidence of degenerate solution.

convergence=1 Maximum number of iterations MLEobj$control$maxit was
reached before MLEobj$control$abstol condition was satisfied.

convergence=10 Some of the variance elements appear to be degenerate. T
convergence=52 The algorithm was abandoned due to errors from the "L-BFGS-

B" method.
convergence=53 The algorithm was abandoned due to numerical errors in the

likelihood calculation from MARSSkf. If this happens with "BFGS", it can
sometimes be helped with a better initial condition. Try using the EM al-
gorithm first (method="kem"), and then using the parameter estimates from
that to as initial conditions for method="BFGS".

logLik Log-likelihood.

states State estimates from the Kalman filter.

MARSSoptim 61

states.se Confidence intervals based on state standard errors, see caption of Fig 6.3 (p.
337) Shumway & Stoffer.

errors Any error messages.

Discussion

The function only returns parameter estimates. To compute CIs, use MARSSparamCIs but if you
use parametric or non-parametric bootstrapping with this function, it will use the EM algorithm
to compute the bootstrap parameter estimates! The quasi-Newton estimates are too fragile for the
bootstrap routine since one often needs to search to find a set of initial conditions that work (i.e.
don’t lead to numerical errors).

Estimates from MARSSoptim (which come from optim) should be checked against estimates from
the EM algorithm. If the quasi-Newton algorithm works, it will tend to find parameters with higher
likelihood faster than the EM algorithm. However, the MARSS likelihood surface can be mul-
timodal with sharp peaks at degenerate solutions where a Q or R diagonal element equals 0. The
quasi-Newton algorithm sometimes gets stuck on these peaks even when they are not the maximum.
Neither an initial conditions search nor starting near the known maximum (or from the parameters
estimates after the EM algorithm) will necessarily solve this problem. Thus it is wise to check
against EM estimates to ensure that the BFGS estimates are close to the MLE estimates (and vis-a-
versa, it’s wise to rerun with method="BFGS" after using method="kem"). Conversely, if there is a
strong flat ridge in your likelihood, the EM algorithm can report early convergence while the BFGS
may continue much further along the ridge and find very different parameter values. Of course a
likelihood surface with strong flat ridges makes the MLEs less informative...

Note this is mainly a problem if the time series are short or very gappy. If the time series are
long, then the likelihood surface should be nice with a single interior peak. In this case, the quasi-
Newton algorithm works well but it can still be sensitive (and slow) if not started with a good initial
condition. Thus starting it with the estimates from the EM algorithm is often desirable.

One should be aware that the prior set on the variance of the initial states at t=0 or t=1 can have
catastrophic effects on one’s estimates if the presumed prior covariance structure conflicts with the
structure implied by the MARSS model. For example, if you use a diagonal variance-covariance
matrix for the prior but the model implies a variance-covariance matrix with non-zero covariances,
your MLE estimates can be strongly influenced by the prior variance-covariance matrix. Setting a
diffuse prior does not help because the diffuse prior still has the correlation structure specified by
V0. One way to detect priors effects is to compare the BFGS estimates to the EM estimates. Per-
sistent differences typically signify a problem with the correlation structure in the prior conflicting
with the implied correlation structure in the MARSS model.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

See Also

MARSS, MARSSkem, marssMLE, optim

62 MARSSparamCIs

Examples

dat <- t(harborSealWA)
dat <- dat[2:4,] # remove the year row

fit a model with EM and then use that fit as the start for BFGS
fit a model with 1 hidden state where obs errors are iid
R="diagonal and equal" is the default so not specified
Q is fixed
kemfit <- MARSS(dat, model = list(Z = matrix(1, 3, 1), Q = matrix(.01)))
bfgsfit <- MARSS(dat,

model = list(Z = matrix(1, 3, 1), Q = matrix(.01)),
inits = coef(kemfit, form = "marss"), method = "BFGS"

)

MARSSparamCIs Standard Errors, Confidence Intervals and Bias for MARSS Parame-
ters

Description

Computes standard errors, confidence intervals and bias for the maximum-likelihood estimates of
MARSS model parameters. If you want confidence intervals on the estimated hidden states, see
print.marssMLE and look for "states.cis".

Usage

MARSSparamCIs(MLEobj, method = "hessian", alpha = 0.05, nboot =
1000, silent = TRUE, hessian.fun = "Harvey1989")

Arguments

MLEobj An object of class marssMLE. Must have a $par element containing the MLE
parameter estimates.

method Method for calculating the standard errors: "hessian", "parametric", and "inno-
vations" implemented currently.

alpha alpha level for the 1-alpha confidence intervals.

nboot Number of bootstraps to use for "parametric" and "innovations" methods.

hessian.fun The function to use for computing the Hessian. See MARSShessian.

silent If false, a progress bar is shown for "parametric" and "innovations" methods.

Details

Approximate confidence intervals (CIs) on the model parameters may be calculated from the ob-
served Fisher Information matrix ("Hessian CIs", see MARSSFisherI) or parametric or non-parametric
(innovations) bootstrapping using nboot bootstraps. The Hessian CIs are based on the asymptotic
normality of MLE parameters under a large-sample approximation. The Hessian computation for

MARSSresiduals.tT 63

variance-covariance matrices is a symmetric approximation and the lower CIs for variances might
be negative. Bootstrap estimates of parameter bias are reported if method "parametric" or "innova-
tions" is specified.

Note, these are added to the par elements of a marssMLE object but are in "marss" form not "marxss"
form. Thus the MLEobj$par.upCI and related elements that are added to the marssMLE object may
not look familiar to the user. Instead the user should extract these elements using print(MLEobj)
and passing in the argument what set to "par.se","par.bias","par.lowCIs", or "par.upCIs". See
print.marssMLE. Or use tidy.marssMLE.

Value

MARSSparamCIs returns the marssMLE object passed in, with additional components par.se, par.upCI,
par.lowCI, par.CI.alpha, par.CI.method, par.CI.nboot and par.bias (if method is "paramet-
ric" or "innovations").

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multivariate time-series using
the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd
E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS") to open a copy.

See Also

MARSSboot, MARSSinnovationsboot, MARSShessian

Examples

dat <- t(harborSealWA)
dat <- dat[2:4,]
kem <- MARSS(dat, model = list(

Z = matrix(1, 3, 1),
R = "diagonal and unequal"

))
kem.with.CIs.from.hessian <- MARSSparamCIs(kem)
kem.with.CIs.from.hessian

MARSSresiduals.tT MARSS Smoothed Residuals

Description

Calculates the standardized (or auxiliary) smoothed residuals sensu Harvey, Koopman and Penzer
(1998). The expected values and variance for missing (or left-out) data are also returned (Holmes
2014). Not exported. Access this function with residuals(object,conditioning="T").

64 MARSSresiduals.tT

Usage

MARSSresiduals.tT(object, Harvey=FALSE, normalize=FALSE, silent=FALSE)

Arguments

object An object of class marssMLE.

Harvey TRUE/FALSE. Use the Harvey et al. (1998) algorithm or use the Holmes (2014)
algorithm. The values are the same except for missing values.

normalize TRUE/FALSE

silent If TRUE, don’t print inversion warnings.

Details

This function returns the raw, Cholesky standardized and marginal standardized smoothed model
and state residuals. ’smoothed’ means conditioned on all the observed data and a set of parameters.
These are the residuals presented in Harvey, Koopman and Penzer (1998) pages 112-113, with the
addition of the values for unobserved data (Holmes 2014). If Harvey=TRUE, the function uses the
algorithm on page 112 of Harvey, Koopman and Penzer (1998) to compute the conditional residuals
and variance of the residuals. If Harvey=FALSE, the function uses the equations in the technical
report (Holmes 2014).

The residuals matrix has a value for each time step. The residuals in column t rows 1 to n are the
model residual associated with the data at time t. The residuals in rows n+1 to n+m are the state
residuals associated with the transition from xt to xt+1, not the transition from xt to xt+1. Because
xt+1 does not exist at time T , the state residuals and associated variances at time T are NA.

Below the conditional residuals and their variance are discussed. The random variables are capital-
ized and the realizations from the random variables are lower case. The random variables are X,
Y, V and W. There are two types of Y. The observed Y that are used to estimate the states x.
These are termed Y(1). The unobserved Y are termed Y(2). These are not used to estimate the
states x and we may or may not know the values of y(2). Typically we treat y(2) as unknown but
it may be known but we did not include it in our model fitting. Note that the model parameters Θ
are treated as fixed or known. The ’fitting’ does not involve estimating Θ; it involves estimating x.
All MARSS parameters can be time varying but the t subscripts are left off parameters to reduce
clutter.

Model residuals
vt is the difference between the data and the predicted data at time t given xt:

vt = yt − Zxt − a

The observed model residuals v̂t are the difference between the observed data and the predicted
data at time t using the fitted model. MARSSresiduals.tT fits the model using all the data. So

v̂t = yt − Zx̃T
t − a

where x̃T
t is the expected value of Xt conditioned on the data from 1 to T (all the data), i.e. the

Kalman smoother estimate of the states at time t. yt are your data and missing values will appear
as NA in the observed model residuals. These are returned as model.residuals and rows 1 to n of
residuals.

res1 and res2 in the code below will be the same.

MARSSresiduals.tT 65

dat = t(harborSeal)[2:3,]
MLEobj = MARSS(dat)
Z = coef(MLEobj, type="matrix")$Z
A = coef(MLEobj, type="matrix")$A
res1 = dat - Z %*% MLEobj$states - A %*% matrix(1,1,ncol(dat))
res2 = residuals(MLEobj)$model.residuals

state.residuals
wt are the difference between the state at time t and the expected value of the state at time t given
the state at time t− 1:

wt = xt −Bxt−1 − u

The estimated state residuals ŵt are the difference between estimate of xt minus the estimate using
xt−1.

ŵt = x̃T
t −Bx̃T

t−1 − u

where x̃T
t is the Kalman smoother estimate of the states at time t and x̃T

t−1 is the Kalman smoother
estimate of the states at time t− 1. The estimated state residuals are returned in state.residuals
and rows n + 1 to n + m of residuals. There are no NAs in the estimated state residuals as an
estimate of the state exists whether or not there are associated data.

res1 and res2 in the code below will be the same.

dat = t(harborSeal)[2:3,]
TT = ncol(dat)
MLEobj = MARSS(dat)
B = coef(MLEobj, type="matrix")$B
U = coef(MLEobj, type="matrix")$U
statest = MLEobj$states[,2:TT]
statestm1 = MLEobj$states[,1:(TT-1)]
res1 = statest - B %*% statestm1 - U %*% matrix(1,1,TT-1)
res2 = residuals(MLEobj)$state.residuals

Note that the state residual at the last time step (T) will be NA because it is the residual associated
with xT to xT+1 and T + 1 is beyond the data. Similarly, the variance matrix at the last time step
will have NAs for the same reason.

Variance of the residuals
In a state-space model, X and Y are stochastic, and the model and state residuals are random vari-
ables V̂t and Ŵt+1. To evaluate the residuals we observed (with y(1)), we use the joint distribution
of V̂t,Ŵt+1 across all the different possible data sets that our MARSS equations with parameters
Θ might generate. Denote the matrix of V̂t,Ŵt+1, as as Êt. That distribution has an expected value
(mean) and variance:

E[Êt] = 0; var[Êt] = Σ̂t

Our observed residuals residuals are one sample from this distribution. To standardize the ob-
served residuals, we will use Σ̂t. Σ̂t is returned in var.residuals. Rows/columns 1 to n are the
conditional variances of the model residuals and rows/columns n+ 1 to n+m are the conditional
variances of the state residuals. The off-diagonal blocks are the covariances between the two types
of residuals.

Standardized residuals

66 MARSSresiduals.tT

residuals.marssMLE will return the Cholesky standardized residuals sensu Harvey et al. (1998) in
std.residuals for outlier and shock detection. These are the model and state residuals multiplied
by the inverse of the Cholesky decomposition of var.residuals. The standardized model resid-
uals are set to NA when there are missing data. The standardized state residuals however always
exist since the expected value of the states exist without data. The calculation of the standardized
residuals for both the observations and states requires the full residuals variance matrix. Since the
state residuals variance is NA at the last time step, the standarized residual in the last time step will
be all NA.

The interpretation of the Cholesky standardized residuals is not straight-forward when the Q and
R variance-covariance matrices are non-diagonal. The residuals which were generated by a non-
diagonal variance-covariance matrices are transformed into orthogonal residuals in MVN(0,I) space.
For example, if v is 2x2 correlated errors with variance-covariance matrix R. The transformed resid-
uals (from this function) for the i-th row of v is a combination of the row 1 effect and the row 1 effect
plus the row 2 effect. So in this case, row 2 of the transformed residuals would not be regarded as
solely the row 2 residual but rather how different row 2 is from row 1, relative to expected. If the
errors are highly correlated, then the transformed residuals can look rather non-intuitive.

The marginal standardized residuals are returned in mar.residuals. These are the model and state
residuals multiplied by the inverse of the diagonal matrix formed by the square root of the diagonal
of var.residuals. These residuals will be correlated (across the residuals at time t) but are easier
to interpret when Q and R are non-diagonal.

Normalized residuals

If normalize=FALSE, the unconditional variance of Wt and Vt are Q and R and the model is
assumed to be written as

yt = Zxt + a+ vt

xt = Bxt−1 + u+ wt

Harvey et al (1998) writes the model as

yt = Zxt + a+Hvt

xt = Bxt−1 + u+Gwt

with the variance of Vt and Wt equal to I (identity).

MARSSresiduals.tT returns the residuals defined as in the first equations. To get the residuals
defined as Harvey et al. (1998) define them (second equations), then use normalize=TRUE. In that
case the unconditional variance of residuals will be I instead of Q and R.

Missing or left-out data

E[Êt] and var[Êt] are for the distribution across all possible X and Y. We can also compute
the expected value and variance conditioned on a specific value of Y, the one we obseved y(1)

(Holmes 2014). If there are no missing values, this is not very interesting as E[V̂t|y(1)] = v̂t and
var[V̂t|y(1)] = 0. If we have data that are missing because we left them out, however, E[V̂t|y(1)]

and var[V̂t|y(1)] are the values we need to evaluate whether the left-out data are unusual relative to
what you expect given the data you did collect.

E.obs.residuals is the conditional expected value E[V̂|y(1)] (notice small y). It is

E[Yt|y(1)]− Zx̃T
t − a

MARSSresiduals.tT 67

It is similar to v̂t. The difference is the y term. E[Y
(1)
t |y(1)] is y

(1)
t for the non-missing values.

For the missing values, the value depends on R. If R is diagonal, E[Y
(2)
t |y(1)] is Zx̃T

t + a and the
expected residual value is 0. If R is non-diagonal however, it will be non-zero.

var.obs.residuals is the conditional variance var[V̂|y(1)] (eqn 24 in Holmes (2014)). For the
non-missing values, this variance is 0 since V̂|y(1) is a fixed value. For the missing values, V̂|y(1)

is not fixed because Y(2) is a random variable. For these values, the variance of V̂|y(1) is deter-
mined by the variance of Y(2) conditioned on Y(1) = y(1). This variance matrix is returned in
var.obs.residuals. The variance of Ŵ|y(1) is 0 and thus is not included.

The variance var[V̂t|Y(1)] (uppercase Y) returned in the 1 to n rows/columns of var.residuals
may also be of interest depending on what you are investigating with regards to missing values. For
example, it may be of interest in a simulation study or cases where you have multiple replicated
Y data sets. var.residuals would allow you to determine if the left-out residuals are unusual
with regards to what you would expect for left-out data in that location of the Y matrix but not
specifically relative to the data you did collect. If R is non-diagonal and the y(1) and y(2) are
highly correlated, the variance of var[V̂t|Y(1)] and variance of var[V̂t|y(1)] for the left-out data
would be quite different. In the latter, the variance is low because y(1) has strong information
about y(2). In the former, we integrate over Y(1) and the variance could be high (depending on the
parameters).

Value

A list with the following components

model.residuals

The the observed smoothed model residuals: data minus the model predictions
conditioned on all observed data. This is different than the Kalman filter inno-
vations which use on the data up to time t− 1 for the predictions. See details.

state.residuals

The smoothed state residuals x̃T
t+1 − Zx̃T

t − u.

residuals The residuals conditioned on the observed data. Returned as a (n+m) x T matrix
with model.residuals in rows 1 to n and state.residuals in rows n+1 to
n+m. NAs will appear in rows 1 to n is the places where data are missing.

var.residuals The joint variance of the model and state residuals conditioned on observed data.
Returned as a (n+m) x (n+m) x T matrix. For Harvey=FALSE, this is Holmes
(2014) equation 57. For Harvey=TRUE, this is the residual variance in eqn. 24,
page 113, in Harvey et al. (1998). They are identical except for missing values,
for those Harvey=TRUE returns 0s.

std.residuals The Cholesky standardized residuals as a (n+m) x T matrix. This is residuals
multiplied by the inverse of the Cholesky decomposition of var.residuals.
The model standardized residuals associated with the missing data are replaced
with NA. This for convenience for residuals diagnostics.

mar.residuals The marginal standardized residuals as a (n+m) x T matrix. This is residuals
multiplied by the inverse of the diagonal matrix formed by the square-root of
the diagonal of var.residuals. The model marginal residuals associated with
the missing data are replaced with NA. This for convenience for residuals diag-
nostics.

68 MARSSresiduals.tT

E.obs.residuals

The expected value of the model residuals conditioned on the observed data.
Returned as a n x T matrix. For observed data, this will be the observed resid-
uals. For unobserved data, this will be 0 if R is diagonal but non-zero if R is
non-diagonal. See details.

var.obs.residuals

The variance value of the model residuals conditioned on the observed data.
Returned as a n x n x T matrix. For observed data, this will be 0. See details.

msg Any warning messages. This will be printed unless Object$control$trace = -1
(suppress all error messages).

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Harvey, A., S. J. Koopman, and J. Penzer. 1998. Messy time series: a unified approach. Advances
in Econometrics 13: 103-144 (see page 112-113). Eqn 21 is the Kalman eqns. Eqn 23 and 24 is the
backward recursion to compute the smoothations. This function uses the MARSSkf output for eqn
21 and then implements the backwards recursion in eqn 23 and eqn 24. Pages 120-134 discuss the
use of standardized residuals for outlier and structural break detection.

de Jong, P. and J. Penzer. 1998. Diagnosing shocks in time series. Journal of the American Statis-
tical Association 93: 796-806. This one shows the same equations; see eqn 6. This paper mentions
the scaling based on the inverse of the sqrt (chol) of the variance-covariance matrix for the residuals
(model and state together). This is in the right column, half-way down on page 800.

Koopman, S. J., N. Shephard, and J. A. Doornik. 1999. Statistical algorithms for models in state
space using SsfPack 2.2. Econometrics Journal 2: 113-166. (see pages 147-148).

Harvey, A. and S. J. Koopman. 1992. Diagnostic checking of unobserved-components time series
models. Journal of Business & Economic Statistics 4: 377-389.

Holmes, E. E. 2014. Computation of standardized residuals for (MARSS) models. Technical Re-
port. arXiv:1411.0045.

See Also

residuals.marssMLE, MARSSresiduals.tt1, fitted.marssMLE, plot.marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2,11),]
MLEobj <- MARSS(dat)

#state residuals
state.resids1 <- residuals(MLEobj, conditioning="T")$state.residuals
#this is the same as
states <- MLEobj$states

MARSSresiduals.tt1 69

Q <- coef(MLEobj,type="matrix")$Q
state.resids2 <- states[,2:30]-states[,1:29]-matrix(coef(MLEobj,type="matrix")$U,2,29)
#compare the two
cbind(t(state.resids1[,-30]), t(state.resids2))

#normalize to variance of 1
state.resids1 <- residuals(MLEobj, normalize=TRUE, conditioning="T")$state.residuals
state.resids2 <- (solve(t(chol(Q))) %*% state.resids2)
cbind(t(state.resids1[,-30]), t(state.resids2))

#Cholesky standardized (by joint variance) model & state residuals
residuals(MLEobj)$std.residuals

MARSSresiduals.tt1 MARSS One-Step-Ahead Residuals

Description

Calculates the standardized (or auxiliary) one-step-ahead residuals, aka the innovations residuals
and their variance. Not exported. Access this function with residuals(object,conditioning="t-1").

Usage

MARSSresiduals.tt1(object, method=c("SS"), normalize=FALSE, silent=FALSE)

Arguments

object An object of class marssMLE.

method Algorithm to use. Currently only "SS".

normalize TRUE/FALSE

silent If TRUE, don’t print inversion warnings.

Details

This function returns the conditional expected value (mean) and variance of the model one-step-
ahead residuals. ’conditional’ means in this context, conditioned on the observed data up to time
t− 1 and a set of parameters.

Model residuals

vt is the difference between the data and the predicted data at time t given xt:

vt = yt − Zxt − a

The observed model residuals v̂t are the difference between the observed data and the predicted
data at time t using the fitted model. MARSSresiduals.tt1 fits the model using the data up to time
t− 1. So

v̂t = yt − Zx̃t−1
t − a

70 MARSSresiduals.tt1

where x̃t−1
t is the expected value of Xt conditioned on the data from 1 to t − 1 from the Kalman

filter. yt are your data and missing values will appear as NA. These will be returned in residuals.

var.residuals returned by the function is the conditional variance of the residuals conditioned on
the data up to t− 1 and the parameter set Θ. The conditional variance is

Σ̂t = R + ZtV
t−1
t Z>t

where Vt−1
t is the variance of Xt conditioned on the data up to time t − 1. This is returned by

MARSSkf in Vtt1.

Standardized residuals
std.residuals are Cholesky standardized residuals. These are the residuals muliplied by the
inverse of the Cholesky decomposition of the variance matrix of the residuals:

Σ̂
−1/2
t v̂t

These residuals are uncorrelated.

The interpretation of the Cholesky standardized residuals is not straight-forward when the Q and
R variance-covariance matrices are non-diagonal. The residuals which were generated by a non-
diagonal variance-covariance matrices are transformed into orthogonal residuals in MVN(0,I) space.
For example, if v is 2x2 correlated errors with variance-covariance matrix R. The transformed resid-
uals (from this function) for the i-th row of v is a combination of the row 1 effect and the row 1 effect
plus the row 2 effect. So in this case, row 2 of the transformed residuals would not be regarded as
solely the row 2 residual but rather how different row 2 is from row 1, relative to expected. If the
errors are highly correlated, then the Cholesky standardized residuals can look rather non-intuitive.

mar.residuals are the marginal standardized residuals. These are the residuals muliplied by the
inverse of the diagonal matrix formed from the square-root of the diagonal of the variance matrix
of the residuals:

dg(Σ̂t)
−1/2v̂t

, where ’dg(A)’ is the square matrix formed from the diagonal of A, aka diag(diag(A)). These
residuals will be correlated if the variance matrix is non-diagonal.

Normalized residuals
If normalize=FALSE, the unconditional variance of Vt and Wt are R and Q and the model is as-
sumed to be written as

yt = Zxt + a+ vt

xt = Bxt−1 + u+ wt

If normalize=TRUE, the model is assumed to be written

yt = Zxt + a+Hvt

xt = Bxt−1 + u+Gwt

with the variance of Vt and Wt equal to I (identity).

residuals.marssMLE returns the residuals defined as in the first equations. To get the residuals
defined as Harvey et al. (1998) define them (second equations), then use normalize=TRUE. In that
case the unconditional variance of residuals will be I instead of R and Q. Note, that the ‘normalized’
residuals are not the same as the ‘standardized’ residuals. In former, the unconditional residuals
have a variance of I while in the latter it is the conditional residuals that have a variance of I.

MARSSresiduals.tt1 71

Value

A list with the following components

residuals The model residuals conditioned on the data up to time t−1 and the set of model
parameters. Called the innovations. Residuals associated with missing data will
appear as NA.

var.residuals The variance of the model residuals as a n x n x T matrix. The variance exists
for all t values including missing data.

std.residuals The Cholesky standardized model residuals as a n x T matrix. This is residuals
multiplied by the inverse of the Cholesky decomposition of var.residuals.

mar.residuals The marginal standardized model residuals as a n x T matrix. This is residuals
multiplied by the inverse of the diagonal matrix formed by the square-root of the
diagonal of var.residuals.

msg Any warning messages. This will be printed unless Object$control$trace = -1
(suppress all error messages).

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

R. H. Shumway and D. S. Stoffer (2006). Section on the calculation of the likelihood of state-space
models in Time series analysis and its applications. Springer-Verlag, New York.

Holmes, E. E. 2014. Computation of standardized residuals for (MARSS) models. Technical Re-
port. arXiv:1411.0045.

See Also

MARSSresiduals.tT, fitted.marssMLE, plot.marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2,11),]
MLEobj <- MARSS(dat)

residuals(MLEobj, conditioning="t-1")$std.residuals

72 MARSSsimulate

MARSSsimulate Simulate Data from a MARSS Model

Description

Generates simulated data from a MARSS model with specified parameter estimates. This is a base
function in the MARSS-package.

Usage

MARSSsimulate(object, tSteps = NULL, nsim = 1, silent = TRUE,
miss.loc = NULL)

Arguments

object A fitted marssMLE object, as output by MARSS().

tSteps Number of time steps in each simulation. If left off, it is taken to be consistent
with MLEobj.

nsim Number of simulated data sets to generate.

silent Suppresses progress bar.

miss.loc Optional matrix specifying where to put missing values. See Details.

Details

Optional argument miss.loc is an array of dimensions n x tSteps x nsim, specifying where to put
missing values in the simulated data. If missing, this would be constructed using MLEobj$marss$data.
If the locations of the missing values are the same for all simulations, miss.loc can be a matrix of
dim=c(n, tSteps) (the original data for example). The default, if miss.loc is left off, is that there
are no missing values even if MLEobj$marss$data has missing values.

Value

sim.states Array (dim m x tSteps x nsim) of state processes simulated from parameter
estimates. m is the number of states (rows in X).

sim.data Array (dim n x tSteps x nsim) of data simulated from parameter estimates. n is
the number of rows of data (Y).

MLEobj The marssMLE object from which the data were simulated.

miss.loc Matrix identifying where missing values were placed. It should be exactly the
same dimensions as the data matrix. The location of NAs in the miss.loc matrix
indicate where the missing values are.

tSteps Number of time steps in each simulation.

nsim Number of simulated data sets generated.

plankton 73

Author(s)

Eli Holmes and Eric Ward, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

See Also

marssMODEL, marssMLE, MARSSboot

Examples

d <- harborSeal[, c(2, 11)]
dat <- t(d)
MLEobj <- MARSS(dat)

simulate data that are the
same length as original data and no missing data
sim.obj <- MARSSsimulate(MLEobj, tSteps = dim(d)[1], nsim = 5)

simulate data that are the
same length as original data and have missing data in the same location
sim.obj <- MARSSsimulate(MLEobj, tSteps = dim(d)[1], nsim = 5, miss.loc = dat)

plankton Plankton Data Sets

Description

Example plankton data sets for use in MARSS vignettes for the MARSS-package.

The lakeWAplankton dataset consists for two datasets: lakeWAplanktonRaw and a dataset derived
from the raw dataset, lakeWAplanktonTrans. lakeWAplanktonRaw is a 32-year time series (1962-
1994) of monthly plankton counts from Lake Washington, Washington, USA. Columns 1 and 2 are
year and month. Column 3 is temperature (C), column 4 is total phosphorous, and column 5 is
pH. The next columns are the plankton counts in units of cells per mL for the phytoplankton and
organisms per L for the zooplankton. Since MARSS functions require time to be across columns,
these data matrices must be transposed before passing into MARSS functions.

lakeWAplanktonTrans is a transformed version of lakeWAplanktonRaw. Zeros have been replaced
with NAs (missing). The logged (natural log) raw plankton counts have been standardized to a mean
of zero and variance of 1 (so logged and then z-scored). Temperature, TP & pH were also z-scored
but not logged (so z-score of the untransformed values for these covariates). The single missing
temperature value was replaced with -1 and the single missing TP value was replaced with -0.3.

The Ives data are from Ives et al. (2003) for West Long Lake (the low planktivory case). The Ives
data are unlogged. ivesDataLP and ivesDataByWeek are the same data with LP having the missing
weeks in winter removed while in ByWeek, the missing values are left in. The phosporous column
is the experimental input rate + the natural input rate for phosphorous, and Ives et al. used 0.1 for
the natural input rate when no extra phosporous was added. The phosporous input rates for weeks
with no sampling (and no experimental phosporous input) have been filled with 0.1 in the "by week"
data.

74 plot.marssMLE

Usage

data(ivesDataLP)
data(ivesDataByWeek)
data(lakeWAplankton)

Format

The data are provided as a matrix with time running down the rows.

Source

• ivesDataLP and ivesDataByWeek Ives, A. R. Dennis, B. Cottingham, K. L. Carpenter, S.
R. (2003) Estimating community stability and ecological interactions from time-series data.
Ecological Monographs, 73, 301-330.

• lakeWAplanktonTrans Hampton, S. E. Scheuerell, M. D. Schindler, D. E. (2006) Coales-
cence in the Lake Washington story: Interaction strengths in a planktonic food web. Limnol-
ogy and Oceanography, 51, 2042-2051.

• lakeWAplanktonRaw Adapted from the Lake Washington database of Dr. W. T. Edmondson,
as funded by the Andrew Mellon Foundation; data courtesy of Dr. Daniel Schindler, Univer-
sity of Washington, Seattle, WA.

Examples

str(ivesDataLP)
str(ivesDataByWeek)

plot.marssMLE Plot MARSS MLE objects

Description

Plots fitted observations and estimated states with confidence intervals using base R graphics (plot)
and ggplot2 (autoplot). Diagnostic plots also shown. By default all plots are plotted. Individual
plots can be plotted by passing in type.plot. If an individual plot is made using autoplot, the
ggplot object is returned which can be further manipulated.

Usage

S3 method for class 'marssMLE'
plot(x, plot.type=c("observations", "states", "model.residuals",

"state.residuals", "model.residuals.qqplot",
"state.residuals.qqplot"),

form=c("marxss", "marss", "dfa"),
conf.int=TRUE, conf.level=0.95, decorate=TRUE,
plot.par = list(), ...)

S3 method for class 'marssMLE'
autoplot(x, plot.type=c("observations", "states", "model.residuals",

plot.marssMLE 75

"state.residuals", "model.residuals.qqplot",
"state.residuals.qqplot", "expected.value.observations",
"model.residuals.acf", "state.residuals.acf"),

form=c("marxss", "marss", "dfa"),
conf.int=TRUE, conf.level=0.95, decorate=TRUE, pi.int = FALSE,
plot.par = list(), ...)

Arguments

x A marssMLE object.

plot.type Type of plot. If not passed in, all plots are drawn. Options for arguments in-
clude "observations" (fits to the raw data), "states" (estimates of the hid-
den or latent trends), "model.residuals" (residuals for the observation error),
"state.residuals" (residuals associated with the process model), "model.residuals.qqplot"
(qq plot for the observation residuals), "state.residuals.qqplot" (qq plot
for the state residuals). "expected.value.observations" (estimates of the
missing data points), "model.residuals.acf" and "state.residuals.acf"
(ACF of the residuals).

form Optional. Form of the model. This is normally taken from the form attribute of
the MLE object (x), but the user can specify a different form.

conf.int TRUE/FALSE. Whether to include a confidence interval.

pi.int TRUE/FALSE. Whether to include a prediction interval on the observations plot

conf.level Confidence level for CIs.

decorate TRUE/FALSE. Add smoothing lines to residuals plots or qqline to qqplots and
add data points plus residuals confidence intervals to states and observations
plots.

plot.par A list of plot parameters to adjust the look of the plots. The default is list(point.pch
= 19, point.col = "blue", point.fill = "blue", point.size = 1, line.col = "black",
line.size = 1, line.linetype = "solid", ci.fill = "grey70", ci.col = "grey70", ci.linetype
= "solid", ci.linesize = 0, ci.alpha = 0.6).

... Other arguments, not used.

Value

If an individual plot is selected using plot.type and autoplot is called, then the ggplot object is
returned invisibly.

Author(s)

Eric Ward and Eli Holmes

Examples

data(harborSealWA)
model.list <- list(Z = as.factor(c(1, 1, 1, 1, 2)), R = "diagonal and equal")
fit <- MARSS(t(harborSealWA[, -1]), model = model.list)

76 population-count-data

plot(fit, plot.type = "observations")

require(ggplot2)
autoplot(fit, plot.type = "observations")

Not run:
DFA example
dfa <- MARSS(t(harborSealWA[, -1]), model = list(m = 2), form = "dfa")
plot(dfa, plot.type = "states")

End(Not run)

population-count-data Population Data Sets

Description

Example data sets for use in the MARSS-package User Guide. Some are logged and some unlogged
population counts. See the details below on each dataset.

The data sets are matrices with year in the first column and counts in other columns. Since MARSS
functions require time to be across columns, these data matrices must be transposed before passing
into MARSS functions.

Usage

data(graywhales)
data(grouse)
data(prairiechicken)
data(wilddogs)
data(kestrel)
data(okanaganRedds)
data(rockfish)
data(redstart)

Format

The data are supplied as a matrix with years in the first column and counts in the second (and higher)
columns.

Source

• graywhales Gerber L. R., Master D. P. D. and Kareiva P. M. (1999) Gray whales and the value
of monitoring data in implementing the U.S. Endangered Species Act. Conservation Biology,
13, 1215-1219.

• grouse Hays D. W., Tirhi M. J. and Stinson D. W. (1998) Washington state status report for
the sharptailed grouse. Washington Department Fish and Wildlife, Olympia, WA. 57 pp.

• prairiechicken Peterson M. J. and Silvy N. J. (1996) Reproductive stages limiting productivity
of the endangered Attwater’s prairie chicken. Conservation Biology, 10, 1264-1276.

print.marssMLE 77

• wilddogs Ginsberg, J. R., Mace, G. M. and Albon, S. (1995). Local extinction in a small and
declining population: Wild Dogs in the Serengeti. Proc. R. Soc. Lond. B, 262, 221-228.

• okanaganRedds A dataset of Chinook salmon redd (egg nest) surveys. This data comes from
the Okanagan River in Washington state, a major tributary of the Columbia River (headwaters
in British Columbia). Unlogged.

• rockfish LOGGED catch per unit effort data for Puget Sound total total rockfish (mix of
species) from a series of different types of surveys.

• kestrel Three time series of American kestrel logged abundance from adjacent Canadian
provinces along a longitudinal gradient (British Columbia, Alberta, Saskatchewan). Data
have been collected annually, and corrected for changes in observer coverage and detectability.
LOGGED.

• redstart 1966 to 1995 counts for American Redstart from the North American Breeding Bird
Survey (BBS record number 0214332808636; Peterjohn 1994) used in Dennis et al. (2006).
Peterjohn, B.G. 1994. The North American Breeding Bird Survey. Birding 26, 386–398. and
Dennis et al. 2006. Estimating density dependence, process noise, and observation error.
Ecological Monographs 76:323-341.

Examples

str(graywhales)
str(grouse)
str(prairiechicken)
str(wilddogs)
str(kestrel)
str(okanaganRedds)
str(rockfish)

print.marssMLE Printing functions for MARSS MLE objects

Description

MARSS() outputs marssMLE objects. print(MLEobj), where MLEobj is a marssMLE object, will print
out information on the fit. However, print can be used to print a variety of information (residuals,
smoothed states, imputed missing values, etc) from a marssMLE object using the what argument in
the print call.

Usage

S3 method for class 'marssMLE'
print(x, digits = max(3, getOption("digits")-4), ..., what="fit", form=NULL, silent=FALSE)

78 print.marssMLE

Arguments

x A marssMLE object.

digits Number of digits for printing.

... Other arguments for print.

what What to print. Default is "fit". If you input what as a vector, print returns a list.
See examples.

• "model" The model parameters with names for the estimted parameters.
The output is customized by the form of the model that was fit. This info is
in attr(x$model,"form") .

• "par" A list of only the estimated values in each matrix. Each model matrix
has it’s own list element. Standard function: coef(x)

• "start" or "inits" The values that the optimization algorithm was started at.
Note, x$start shows this in form="marss" while print shows it in what-
ever form is in attr(x$model,"form") .

• "paramvector" A vector of all the estimated values in each matrix. Standard
function: coef(x,type="vector"). See coef.marssMLE.

• "par.se","par.bias","par.lowCIs","par.upCIs" A vector the estimated param-
eter standard errors, parameter bias, lower and upper confidence intervals.
Standard function: MARSSparamCIs(x) See MARSSparamCIs.

• "xtT" or "states" The estimated states conditioned on all the data. x$states
• "data" The data. This is in x$model$data

• "logLik" The log-likelihood. Standard function: x$logLik. See MARSSkf
for a discussion of the computation of the log-likelihood for MARSS mod-
els.

• "ytT" The expected value of the data conditioned on all the data. Returns
the data if present and the expected value if missing. This is in x$ytT (ytT
is analogous to xtT).

• "states.se" The state standard errors. x$states.se
• "states.cis" Approximate confidence intervals for the states. See MARSSparamCIs.
• "model.residuals" The smoothed model residuals. y(t)-E(y(t)|xtT(t)), aka

actual data at time t minus the expected value of the data conditioned on the
smoothed states estimate at time t. Standard function: residuals(x)$model.residuals
See residuals.marssMLE for a discussion of residuals in the context of
MARSS models.

• "state.residuals" The smoothed state residuals. E(xtT(t))-E(x(t)|xtT(t-1)),
aka the expected value of x at t conditioned on all the data minus the ex-
pected value of x at t conditioned on (x(t-1) conditioned on all the data).
Standard function: residuals(x)$state.residuals See residuals.marssMLE.

• parameter name Returns the parameter matrix for that parameter with fixed
values at their fixed values and the estimated values at their estimated val-
ues. Standard function: coef(x,type="matrix")$elem

• "kfs" The Kalman filter and smoother output. See MARSSkf for a description
of the output. The full kf output is not normally attached to the output from
a MARSS() call. This will run the filter/smoother if needed and return the
list INVISIBLY. So assign the output as foo=print(x,what="kfs")

print.marssMLE 79

• "Ey" The expectations involving y conditioned on all the data. See MARSShatyt
for a discussion of these expectations. This output is not normally attached
to the output from a MARSS() call–except ytT which is the predicted value
of any missing y. The list is returned INVISIBLY. So assign the output as
foo=print(x,what="Ey").

form By default, print uses the model form specified in the call to MARSS(). This
information is in attr(marssMLE$model,"form") , however you can specify
a different form. form="marss" should always work since this is the model
form in which the model objects are stored (in marssMLE$marss).

silent If TRUE, do not print just return the object. If print call is assigned, nothing will
be printed. See examples. If what="fit", there is always output printed.

Value

A print out of information. If you assign the print call to a value, then you can reference the output.
See the examples.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

Examples

dat = t(harborSeal)
dat = dat[c(2,11),]
MLEobj = MARSS(dat)

print(MLEobj)

print(MLEobj,what="model")

print(MLEobj,what="par")

#silent doesn't mean silent unless the print output is assigned
print(MLEobj,what="paramvector", silent=TRUE)
tmp=print(MLEobj,what="paramvector", silent=TRUE)
#silent means some info on what you are printing is shown whether
#or not the print output is assigned
print(MLEobj,what="paramvector", silent=FALSE)
tmp=print(MLEobj,what="paramvector", silent=FALSE)

cis=print(MLEobj,what="states.cis")
cis$up95CI

vars=print(MLEobj, what=c("R","Q"))

80 print.marssMODEL

print.marssMODEL Printing marssMODEL Objects

Description

print(MODELobj), where MODELobj is a marssMODEL object, will print out information on the
model in short form (e.g. ’diagonal and equal’).

summary(marssMODEL), where marssMODEL is a marssMODEL object, will print out detailed infor-
mation on each parameter matrix showing where the estimated values (and their names) occur.

Usage

S3 method for class 'marssMODEL'
print(x, ...)
S3 method for class 'marssMODEL'
summary(object, ..., silent = FALSE)

Arguments

x A marssMODEL object.

object A marssMODEL object.

... Other arguments .

silent TRUE/FALSE Whether to print output.

Value

print(marssMODEL) prints out of the structure of each parameter matrix in ’English’ (e.g. ’diagonal
and unequal’) and returns invisibly the list. If you assign the print call to a value, then you can
reference the output.

summary(marssMODEL) prints out of the structure of each parameter matrix in as list matrices show-
ing where each estimated value occurs in each matrix and returns invisibly the list. The output can
be verbose, especially if parameter matrices are time-varying. Pass in silent=TRUE and assign
output (a list with each parameter matrix) to a variable. Then specific parameters can be looked at.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11),]
MLEobj <- MARSS(dat)

residuals.marssMLE 81

print(MLEobj$model)
this is identical to
print(MLEobj, what = "model")

residuals.marssMLE MARSS Residuals

Description

Calculates the residuals, residuals variance, and standardized residuals for both the one-step-ahead
(conditioned on data up to t-1) and smoothed (conditioned on all the data) residuals.

Usage

S3 method for class 'marssMLE'
residuals(object,..., conditioning=c("T", "t-1"), normalize=FALSE, silent=FALSE)

Arguments

object An object of class marssMLE.

... Additional arguments to be passed to the residuals functions. For condition-
ing="T", Harvey=TRUE can be passed into to use the Harvey et al (1998) algo-
rithm.

conditioning "T" for smoothed residuals and "t-1" for one-step-ahead residuals.

normalize TRUE/FALSE

silent If TRUE, do not print inversion warnings.

Details

For smoothed residuals, see MARSSresiduals.tT.

For one-step-ahead residuals, see MARSSresiduals.tt1.

Standardized residuals
std.residuals are Cholesky standardized residuals. These are the residuals muliplied by the
inverse of the Cholesky decomposition of the variance matrix of the residuals:

Σ̂
−1/2
t v̂t.

These residuals are uncorrelated.

The interpretation of the Cholesky standardized residuals is not straight-forward when the Q and
R variance-covariance matrices are non-diagonal. The residuals which were generated by a non-
diagonal variance-covariance matrices are transformed into orthogonal residuals in MVN(0,I) space.
For example, if v is 2x2 correlated errors with variance-covariance matrix R. The transformed resid-
uals (from this function) for the i-th row of v is a combination of the row 1 effect and the row 1 effect
plus the row 2 effect. So in this case, row 2 of the transformed residuals would not be regarded as
solely the row 2 residual but rather how different row 2 is from row 1, relative to expected. If the
errors are highly correlated, then the Cholesky standardized residuals can look rather non-intuitive.

82 residuals.marssMLE

mar.residuals are the marginal standardized residuals. These are the residuals muliplied by the
inverse of the diagonal matrix formed from the square-root of the diagonal of the variance matrix
of the residuals:

dg(Σ̂t)
−1/2v̂t,

where ’dg(A)’ is the square matrix formed from the diagonal of A, aka diag(diag(A)). These
residuals will be correlated if the variance matrix is non-diagonal.

Normalized residuals

If normalize=FALSE, the unconditional variance of Vt and Wt are R and Q and the model is as-
sumed to be written as

yt = Zxt + a+ vt

xt = Bxt−1 + u+ wt

If normalize=TRUE, the model is assumed to be written

yt = Zxt + a+Hvt

xt = Bxt−1 + u+Gwt

with the variance of Vt and Wt equal to I (identity).

Missing or left-out data

See the discussion of smoothed residuals for missing and left-out data in MARSSresiduals.tT.

Value

Smoothed residuals

If conditioning="T", a list with the following components

model.residuals

The smoothed model residuals (data minus model predicted values) as a n x
T matrix. The residuals are conditioned on all the data and the set of model
parameters. Called the smoothations. This is different than the Kalman filter
innovations which are conditioned on the data up to t− 1.

state.residuals

The smoothed state residuals.

residuals The residuals as a (n+m) x T matrix with model.residuals on top and state.residuals
below.

var.residuals The variance of the model residuals and state residuals as a (n+m) x (n+m) x
T matrix with the model residuals variance in rows/columns 1 to n and state
residuals variances in rows/columns n+1 to n+m.

std.residuals The Cholesky standardized residuals as a (n+m) x T matrix. This is residuals
multiplied by the inverse of the Cholesky decomposition of var.residuals.

mar.residuals The marginal standardized residuals as a (n+m) x T matrix. This is residuals
multiplied by the inverse of the diagonal matrix formed by the square-root of
the diagonal of var.residuals.

residuals.marssMLE 83

E.obs.residuals

The expected value of the model residuals conditioned on the observed data.
Returned as a n x T matrix. For observed data, this will be the observed model
residuals. For unobserved data, this will be 0 if R is diagonal but non-zero if R
is non-diagonal. See MARSSresiduals.tT.

var.obs.residuals

The variance of the model residuals conditioned on the observed data. Returned
as a n x n x T matrix. For observed data, this will be 0. See MARSSresiduals.tT.

msg Any warning messages. This will be printed unless Object$control$trace = -1
(suppress all error messages).

One-step-ahead residuals
If conditioning="t-1", a list with the following components

residuals The model residuals (data minus model predicted values), as a n x T matrix.
The residuals are conditioned on the data up to time t − 1 and the set of model
parameters. Called the innovations. Residuals associated with missing data will
appear as NA.

var.residuals The variance of the model residuals as a n x n x T matrix.

std.residuals The Cholesky standardized model residuals as a n x T matrix. This is residuals
multiplied by the inverse of the Cholesky decomposition of var.residuals.

mar.residuals The marginal standardized model residuals as a n x T matrix. This is residuals
multiplied by the inverse of the diagonal matrix formed by the square-root of the
diagonal of var.residuals.

msg Any warning messages. This will be printed unless Object$control$trace = -1
(suppress all error messages).

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

References

Holmes, E. E. 2014. Computation of standardized residuals for (MARSS) models. Technical Re-
port. arXiv:1411.0045.

See also the discussion and references in MARSSresiduals.tT and MARSSresiduals.tt1.

See Also

MARSSresiduals.tT, MARSSresiduals.tt1, plot.marssMLE

Examples

dat <- t(harborSeal)
dat <- dat[c(2,11),]
MLEobj <- MARSS(dat)

84 SalmonSurvCUI

#state smoothed residuals
state.resids1 <- residuals(MLEobj)$state.residuals
#this is the same as
states <- MLEobj$states
Q <- coef(MLEobj,type="matrix")$Q
state.resids2 <- states[,2:30]-states[,1:29]-matrix(coef(MLEobj,type="matrix")$U,2,29)
#compare the two
cbind(t(state.resids1[,-30]), t(state.resids2))

#normalize to variance of 1
state.resids1 <- residuals(MLEobj, normalize=TRUE)$state.residuals
state.resids2 <- (solve(t(chol(Q))) %*% state.resids2)
cbind(t(state.resids1[,-30]), t(state.resids2))

#one-step-ahead standardized residuals
residuals(MLEobj, conditioning="t-1")$std.residuals

SalmonSurvCUI Salmon Survial Indices

Description

Example data set for use in MARSS vignettes for the DLM chapter in the MARSS-package User
Guide. This is a 42-year time-series of the logit of juvenile salmon survival along with an index of
April coastal upwelling. See the source for details.

Usage

data(SalmonSurvCUI)

Format

The data are provided as a matrix with time running down the rows. Column 1 is year, column 2 is
the logit of the proportion of juveniles that survive to adulthood, column 3 is an index of the April
coastal upwelling index.

Source

Scheuerell, Mark D., and John G. Williams. "Forecasting climate-induced changes in the survival
of Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha)." Fisheries Oceanog-
raphy 14.6 (2005): 448-457.

Examples

str(SalmonSurvCUI)

tidy.marssMLE 85

tidy.marssMLE Return estimated parameters, expected value of X(t) and Y(t) with sum-
mary information

Description

tidy.marssMLE returns summary information about the model parameters and estimated state and
observation processes. In all cases, all the data are used, thus conditioning is on the data from 1 to
T.

For parameters, tidy.marssMLE returns their estimates and their confidence intervals. For states
(X) and observations (Y), it returns the expected values (mean value) and intervals. If you want
to analyze your model residuals or are doing a crossvalidation (leave-one-out or k-fold), you need
the residuals intervals. These are the intervals for model residuals (data - model fitted value). Use
augment.marssMLE for the model residuals and their intervals.

The tidy function is designed to work with the broom package and you will need to load that package
if you want to call tidy(fit) instead of tidy.marssMLE(fit).

Usage

tidy.marssMLE(x, type = c("parameters", "xtT", "fitted.ytT", "ytT"),
conf.int = TRUE,
conf.level = 0.95,
form=attr(x[["model"]], "form")[1], ...)

Arguments

x a marssMLE object

type What you want estimates and intervals for. Parameters, smoothed states (xtT),
the fitted y (Z xtT + A), or observations conditioned on all the data (ytT). If you
want intervals for new data sets, use fitted.ytT. If you are getting estimates for
missing data, use ytT. See details.

conf.int Whether to compute confidence and prediction intervals on the estimates.

conf.level Confidence level. alpha=1-conf.level

form If you want the tidy function to use a different form than that specified in
attr(x$model, "form"). Useful if you have a DFA model that you manually set
up, which does not have the form attribute set. Normally just ignore and let the
function use the "form" set in the attributes.

... Optional arguments. If conf.int=TRUE, then arguments to specify how CIs are
computed can be passed in. See details and MARSSparamCIs. If form="dfa",
rotate=TRUE can be passed in to rotate the trends (only trends not Z matrix).

86 tidy.marssMLE

Details

Below, X and Y refers to the random variable and x and y refer to a specific realization from this
random variable.

type="parameters"

If type="parameters", this returns a data.frame with the estimated parameters of a MARSS model
with, optionally, standard errors and confidence intervals. This assembles information available via
the print.marssMLE and coef.marssMLE functions into a data.frame that summarizes the esti-
mates. If conf.int=TRUE, MARSSparamCIs will be run to add confidence intervals to the model
object if these are not already added. The default CIs are calculated using a analytically computed
Hessian matrix. This can be changed by passing in optional arguments for MARSSparamCIs.

type="xtT"

tidy.marssMLE returns the confidence and prediction intervals of the state at time t conditioned on
all the data and using the estimated model parameters as true values. The prediction intervals (and
.sd.x) are the standard intervals that are shown for the estimated states in state-space models. For
example see, Shumway and Stoffer (2000), edition 4, Figure 6.4. As such, this is probably what
you are looking for if you want to put intervals on the estimated states (the x). However, these
intervals do not include parameter uncertainty. If you want state residiuals (for residuals analysis),
use residuals.marssMLE or augment.marssMLE.

Quantiles The state Xt in a MARSS model has a conditional multivariate normal distribution,
that can be computed from the model parameters and data. In Holmes (2012, Eqn. 11) notation,
its expected value conditioned on all the observed data (1:T) and the model parameters Θ is x̃t.
In MARSSkf, this is xtT[,t]. The variance of Xt conditioned on the observed data and Θ is Ṽt

(VtT[,,t]). Note that VtT[„t] != B VtT[„t-1] t(B) + Q, which you might think by looking at the
MARSS equation for x. That is because the variance of W(t) conditioned on the data (past, current
and FUTURE) is != Q (Q is the unconditional variance).

x̃t (xtT) is an estimate of xt (the true value), and the standard error of that estimate is given by Ṽt

(VtT[,,t]). Let se.xt denote the sqrt of the diagonal of VtT. The equation for the α/2 confidence
interval is (qnorm(alpha/2)*se.xt + xtT). xt is multivariate and this interval is for one of the x’s
in isolation. You could compute the m-dimensional confidence region for the multivariate xt, also,
but tidy.marssMLE returns the univariate confidence intervals.

The variance VtT gives information on the uncertainty of the true location of xt conditioned on the
observed data. As more data are collected (or added to the analysis), this variance will shrink since
the data, especially data at time t, increases the information about the locations of xt. This does
not affect the estimation of the model parameters, those are fixed (we are assuming), but rather our
information about the states at time t.

If you have a DFA model (form=’dfa’), you can pass in rotate=TRUE to return the rotated trends.
If you want the rotated loadings, you will need to compute those yourself:

dfa <- MARSS(t(harborSealWA[,-1]), model=list(m=2), form="dfa")
Z.est <- coef(dfa, type="matrix")$Z
H.inv <- varimax(coef(dfa, type="matrix")$Z)$rotmat
Z.rot <- Z.est %*% H.inv

Intervals for the observation process

tidy.marssMLE 87

For observation process, the expected values and intervals are shown for either new data (type="fitted.ytT")
or the observed data set (type="ytT"). Details on these are below after this discussion of intervals
for the observation process

The types of intervals you want for data (Y part of the MARSS equation) depends on what you are
trying to do.

• Get the model predictions of the expected value of new Y or some underlying mean YUse
type="fitted.ytT". This returns the fitted values (model predictions = Z x(t)+A) for Yt
conditioned on all the data. Confidence intervals and prediction intervals are returned. The
former is the interval for the mean of new data and the latter is the interval for new data (not
the mean but data themselves).

• Get the distribution of new data at time t that would be generated by the processSame as above.

• Compare your data to model predictionsIn this case, you want the distribution of the model
residuals for the data. Use augment.marssMLE with type="observations". You want the
standard errors for the observed data minus the fitted values which is what augment.marssMLE
gives.

• Get estimates and variance of missing data in your data setUse type="ytT". The observed
data will have an expected value equal to the observed data and variance of 0, while the
missing data will have an expected value and variance conditioned on all the observed data.
Note, if R is diagonal then the missing data values (and intervals) will be the same as for
type="fitted.ytT" but if R is non-diagonal and some y at time t are missing and some are
not, then the expected values will be very different.

• Do a leave-one-out cross-validationIn this case, you want the distribution of the model residu-
als for those left-out values. Use augment.marssMLE with type="observations". You want
the standard errors for the left-out data minus the fitted values which is what augment.marssMLE
gives.

• One-step-ahead predictionsUse fitted.marssMLE with type="ytt1" or type="xtt1". Con-
fidence (mean prediction) and prediction intervals (new data) are returned.

• Y prediction conditioned on data up to t-1Same as one-step-ahead.

type="fitted.ytT"
For type="fitted.ytT", tidy.marssMLE returns the analogous information for the Y part of the
MARSS equation for an I.I.D. NEW DATA SET y′. The expected value and variance of y′ is
conditioned on the data you did observe y. It is important to note that y′ is independent and identical
(meaning i.i.d. in a statistical sense) to y except it has no missing values. Do not plot your observed
data on these intervals. You need residuals intervals in that case. See augment.marssMLE for those.

The expected value of a new data set Y′t conditioned on the observed data Y = y(1 : T), is
Enewy = Ztx̂t + Dtdt + at, where x̂t is the expected value of Xt conditioned on the data up
to T. The variance of a new data set Y′t conditioned on the observed data 1:T, is var.newy =
Rt + ZtV̂tZ

>
t , where V̂t is the variance of Xt conditioned on the data up to T. The variance of the

expected value of the new data set Y′t is var.Enewy = ZtV̂tZ
>
t .

We compute the prediction interval for y’, an interval that will cover the new data for alpha/2 percent
of new data sets. The equation for the α/2 confidence interval is (qnorm(alpha/2)*sd.newy +
Enewy), where sd.newy is the square root of the diagonal of var.newy. The confidence interval
for the expected value of y’ is qnorm(alpha/2)*se.Enewy + Enewy, where se.Enewy is the square
root of the diagonal of var.Enewy.

88 tidy.marssMLE

type="ytT" for missing data estimation
This returns the expected value and variance of Yt (the data set you DID observe) conditioned on
Yt = yt. If you have no missing data, this just returns your data set. But you have missing data, this
what you want in order to estimate the values of missing data in your data set. The expected value
of Yt|Y = y(1 : T) is in ytT in MARSShatyt output and the variance is OtT-tcrossprod(ytT)
from the MARSShatyt output.

The intervals reported by tidy.marssMLE for the missing values takes into account all the informa-
tion in the data, specifically the correlation with other data at time t if R is not diagonal. Do not use
type="fitted.ytT" for interpolating missing data as those are for entirely new data sets and thus
will ignore relevant information if yt is multivariate, not all yt are missing, and the R matrix is not
diagonal.

The standard error and confidence interval for the expected value of the missing data along with
the standard deviation and prediction interval for the missing data are reported. The former uses
the variance of E[Y (t)] conditioned on the data while the latter uses variance of Y (t) conditioned
on the data. MARSShatyt returns these variances and expected values. See Holmes (2012) for a
discussion of the derivation of expectation and variance of Y(t) conditioned on the observed data
(in the section ’Computing the expectations in the update equations’).

Parameter uncertainty Currently the intervals calculations for the states and observations use the
point estimates of the model parameters and thus solve the intervals for the ’known’ parameters
case.

Value

A data.frame with estimates, sample standard errors, and confidence (or prediction) intervals.

References

R. H. Shumway and D. S. Stoffer (2000). Time series analysis and its applications. Edition 4.
Springer-Verlag, New York.

Holmes, E. E. (2012). Derivation of the EM algorithm for constrained and unconstrained multivari-
ate autoregressive state-space (MARSS) models. Technical Report. arXiv:1302.3919 [stat.ME]

Examples

dat <- t(harborSeal)
dat <- dat[c(2, 11, 12),]
MLEobj <- MARSS(dat)

library(broom)

A data frame of the estimated parameters
tidy(MLEobj)

Make a plot of the estimated states
library(ggplot2)
d <- tidy(MLEobj, type = "xtT")
ggplot(data = d) +

geom_line(aes(t, estimate)) +
geom_ribbon(aes(x = t, ymin = conf.low, ymax = conf.high), linetype = 2, alpha = 0.3) +

toLatex.marssMODEL 89

facet_grid(~.rownames) +
xlab("Time Step") + ylab("Count")

Make a plot of the estimates for the missing values
library(ggplot2)
d <- tidy(MLEobj, type = "ytT")
ggplot(data = d) +

geom_point(aes(t, estimate)) +
geom_line(aes(t, estimate)) +
geom_point(aes(t, y), color = "blue") +
geom_ribbon(aes(x = t, ymin = conf.low, ymax = conf.high), alpha = 0.3) +
geom_line(aes(t, pred.low), linetype = 2) +
geom_line(aes(t, pred.high), linetype = 2) +
facet_grid(~.rownames) +
xlab("Time Step") + ylab("Count") +
ggtitle("Blue=data, Black=estimate, grey=CI, dash=prediction interval")

Make a plot of the fitted y(t), i.e., to put a line through the points
Intervals are for new data not the blue dots
(which were used to fit the model so are not new)
Use augment() for model residuals (data - fitted values)
library(ggplot2)
d <- tidy(MLEobj, type = "fitted.ytT")
ggplot(data = d) +

geom_line(aes(t, estimate), size=1) +
geom_point(aes(t, y), color = "blue") +
geom_ribbon(aes(x = t, ymin = conf.low, ymax = conf.high), alpha = 0.3) +
geom_line(aes(t, pred.low), linetype = 2) +
geom_line(aes(t, pred.high), linetype = 2) +
facet_grid(~.rownames) +
xlab("Time Step") + ylab("Count") +
ggtitle("Blue=data, Black=estimate, grey=CI, dash=prediction interval") +
geom_text(x=15, y=7, label="The intervals are for \n new data not the blue dots")

toLatex.marssMODEL Create a LaTeX Version of the Model

Description

Creates LaTex and a PDF (if LaTeX compiler available) using the tools in the Hmisc package. The
files are saved in the working directory.

Usage

S3 method for class 'marssMODEL'
toLatex(object, ..., file = NULL, digits = 2, greek = TRUE, orientation = "landscape",
math.sty = "amsmath", output = c("pdf", "tex"), replace = TRUE, simplify = TRUE)
S3 method for class 'marssMLE'
toLatex(object, ..., file = NULL, digits = 2, greek = TRUE, orientation = "landscape",
math.sty = "amsmath", output = c("pdf", "tex"), replace = TRUE, simplify = TRUE)

90 toLatex.marssMODEL

Arguments

object A marssMODEL or marssMLE object.

... Other arguments. Not used.

file Name of file to save to. Optional.

digits Number of digits to display for numerical values (if real).

greek Use greek symbols.

orientation Orientation to use. landscape or portrait.

math.sty LaTeX math styling to use.

output pdf or tex. If blank, both are output.

replace Replace existing file if present.

simplify If TRUE, then if B or Z are identity, they do not appear. Any zero-ed out ele-
ments also do not appear.

Value

A LaTeX and or PDF file of the model.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov

Examples

Example with linear constraints
dat <- t(harborSeal)
dat <- dat[c(2:4),]
Z1 <- matrix(list("1*z1+-1*z2",0,"z2","2*z1","z1",0),3,2)
A1 <- matrix(list("a1",0,0),3,1)
MLEobj <- MARSS(dat, model=list(Z=Z1, A=A1, Q=diag(0.01,2)))
Not run:
toLatex(MLEobj)
toLatex(MLEobj$model)

End(Not run)

zscore 91

zscore z-score a vector or matrix

Description

Removes the mean and standardizes the variance to 1.

Usage

zscore(x)

Arguments

x n x T matrix of numbers

Details

n = number of observation (y) time series. T = number of time steps in the time series.

The z-scored values (z) of a matrix of y values are zi = Σ−1(yi − ȳ) where

Σ

is a diagonal matrix with the standard deviations of each time series (row) along the diagonal, and

ȳ

is a vector of the means.

Value

n x T matrix of z-scored values.

Author(s)

Eli Holmes, NOAA, Seattle, USA.

eli(dot)holmes(at)noaa(dot)gov, eric(dot)ward(at)noaa(dot)gov

Examples

zscore(1:10)
x <- zscore(matrix(c(NA, rnorm(28), NA), 3, 10))
mean is 0 and variance is 1
apply(x, 1, mean, na.rm = TRUE)
apply(x, 1, var, na.rm = TRUE)

Index

∗Topic appendix
MARSS.marss, 28
MARSS.marxss, 30

∗Topic classes
marssMLE-class, 57
marssMODEL-class, 57

∗Topic datasets
datasets, 12
harborSeal, 16
isleRoyal, 20
loggerhead, 20
plankton, 73
population-count-data, 76
SalmonSurvCUI, 84

∗Topic hplot
CSEGriskfigure, 9
CSEGtmufigure, 11

∗Topic package
MARSS-package, 3

augment.marssMLE, 4, 5, 9, 13–15, 25, 27, 57,
85–87

autoplot.marssMLE, 4
autoplot.marssMLE (plot.marssMLE), 74

coef.marssMLE, 4, 8, 26, 27, 78, 86
CSEGriskfigure, 9, 12
CSEGtmufigure, 10, 11

datasets, 12

fdHess, 39, 43–45
fitted.marssMLE, 4, 6, 12, 68, 71

glance.marssMLE, 4, 15
graywhales (population-count-data), 76
grouse (population-count-data), 76

harborSeal, 12, 16
harborSealWA (harborSeal), 16

is.marssMLE, 17, 57
isleRoyal, 12, 20
ivesDataByWeek (plankton), 73
ivesDataLP (plankton), 73

kestrel (population-count-data), 76
KFAS, 25, 53–56
KFS, 53, 54

lakeWAplankton (plankton), 73
lakeWAplanktonRaw (plankton), 73
lakeWAplanktonTrans (plankton), 73
loggerhead, 12, 20
loggerheadNoisy (loggerhead), 20
logLik (logLik.marssMLE), 21
logLik.marssMLE, 4, 21
logLik.SSModel, 53

MARSS, 4, 8, 12, 18, 22, 29, 30, 32, 33, 43, 46,
48, 49, 56, 58–61, 72, 77–79

MARSS-package, 3
MARSS.dfa, 23, 25, 27, 32
MARSS.marss, 5, 8, 13, 25, 28, 34
MARSS.marxss, 8, 23, 25, 27, 29, 30, 34
MARSS.vectorized, 25, 33
MARSSaic, 4, 32, 34, 37
MARSSboot, 10, 32, 35, 36, 48, 49, 63, 73
MARSSFisherI, 4, 37, 38, 43, 44, 62
MARSSharveyobsFI, 40, 40, 44, 45
MARSShatyt, 5, 26, 41, 79, 88
MARSShessian, 4, 37, 38, 40, 41, 43, 44, 45,

62, 63
MARSShessian.numerical, 40, 44, 44
MARSSinfo, 22, 45, 51, 52
MARSSinits, 46, 46
MARSSinnovationsboot, 5, 48, 63
MARSSkem, 5, 18, 19, 23, 26, 27, 29, 33, 38, 40,

43, 45–48, 49, 54, 56, 61
MARSSkf, 4, 6, 13–15, 22, 26, 27, 32, 50–52,

53, 60, 70, 78, 86

92

INDEX 93

MARSSkfas, 4, 25
MARSSkfas (MARSSkf), 53
MARSSkfss, 4, 25
MARSSkfss (MARSSkf), 53
marssMLE, 4, 6, 8, 10, 12, 13, 15, 16, 18, 21,

23–27, 29, 32, 34–40, 42–46, 48–50,
52, 53, 57, 58, 60–64, 69, 72, 73, 75,
77, 78, 81, 85, 90

marssMLE (marssMLE-class), 57
marssMLE-class, 57
marssMODEL, 4, 18, 19, 26, 29, 30, 32–34, 37,

43, 47, 48, 53, 56, 58, 73, 80, 90
marssMODEL (marssMODEL-class), 57
marssMODEL-class, 57
MARSSoptim, 4, 5, 18, 23, 24, 26, 27, 31, 46,

47, 52, 53, 59
MARSSparamCIs, 4, 10, 32, 40, 41, 44, 45, 49,

61, 62, 78, 85, 86
MARSSresiduals.tT, 63, 71, 81–83
MARSSresiduals.tt1, 68, 69, 81, 83
MARSSsimulate, 4, 32, 72

nlme, 39, 43–45

okanaganRedds (population-count-data),
76

optim, 5, 18, 24, 39, 43–45, 53, 59–61

plankton, 12, 73
plot.marssMLE, 4, 25, 32, 68, 71, 74, 83
population-count-data, 12, 76
prairiechicken (population-count-data),

76
print.marssMLE, 4, 9, 25–27, 32, 41, 57, 62,

63, 77, 86
print.marssMODEL, 4, 27, 80

redstart (population-count-data), 76
residuals.marssMLE, 6, 7, 13, 14, 68, 78, 81,

86
rockfish (population-count-data), 76

SalmonSurvCUI, 12, 84
simulate.marssMLE (MARSSsimulate), 72
SSModel, 53, 55
stdInnov, 49
summary.marssMODEL (print.marssMODEL),

80

tidy.marssMLE, 4–6, 9, 12, 14, 15, 25–27, 57,
63, 85

toLatex.marssMLE (toLatex.marssMODEL),
89

toLatex.marssMODEL, 4, 89

wilddogs (population-count-data), 76

zscore, 91

	MARSS-package
	augment.marssMLE
	coef.marssMLE
	CSEGriskfigure
	CSEGtmufigure
	datasets
	fitted.marssMLE
	glance.marssMLE
	harborSeal
	is.marssMLE
	isleRoyal
	loggerhead
	logLik.marssMLE
	MARSS
	MARSS.marss
	MARSS.marxss
	MARSS.vectorized
	MARSSaic
	MARSSboot
	MARSSFisherI
	MARSSharveyobsFI
	MARSShatyt
	MARSShessian
	MARSShessian.numerical
	MARSSinfo
	MARSSinits
	MARSSinnovationsboot
	MARSSkem
	MARSSkf
	marssMLE-class
	marssMODEL-class
	MARSSoptim
	MARSSparamCIs
	MARSSresiduals.tT
	MARSSresiduals.tt1
	MARSSsimulate
	plankton
	plot.marssMLE
	population-count-data
	print.marssMLE
	print.marssMODEL
	residuals.marssMLE
	SalmonSurvCUI
	tidy.marssMLE
	toLatex.marssMODEL
	zscore
	Index

