Long non-coding RNAs identification and analysis. Default models are trained with human, mouse and wheat datasets by employing SVM. Features are based on intrinsic composition of sequence, EIIP value (electron-ion interaction pseudopotential), and secondary structure. This package can also extract other classic features and build new classifiers. Reference: Han SY., Liang YC., Li Y., et al. (2018) <doi:10.1093/bib/bby065>.
| Version: | 1.1.4 |
| Depends: | R (≥ 2.10) |
| Imports: | seqinr (≥ 2.1-3), e1071 (≥ 1.0), parallel (≥ 2.1.0), caret (≥ 6.0-71) |
| Published: | 2020-07-01 |
| Author: | Siyu HAN [aut, cre], Ying LI [aut], Yanchun LIANG [aut] |
| Maintainer: | Siyu HAN <hansy15 at mails.jlu.edu.cn> |
| License: | GPL-3 |
| URL: | http://bmbl.sdstate.edu/lncfinder/ |
| NeedsCompilation: | no |
| Citation: | LncFinder citation info |
| Materials: | README NEWS |
| CRAN checks: | LncFinder results |
| Reference manual: | LncFinder.pdf |
| Package source: | LncFinder_1.1.4.tar.gz |
| Windows binaries: | r-devel: LncFinder_1.1.4.zip, r-release: LncFinder_1.1.4.zip, r-oldrel: LncFinder_1.1.4.zip |
| macOS binaries: | r-release: LncFinder_1.1.4.tgz, r-oldrel: LncFinder_1.1.4.tgz |
| Old sources: | LncFinder archive |
Please use the canonical form https://CRAN.R-project.org/package=LncFinder to link to this page.