Package 'LipidMS'

October 21, 2019

Type Package

Title Lipid Annotation for LC-MS/MS DIA Data
Version 1.1.0
Author M Isabel Alcoriza-Balaguer, J Carlos Garcia-Canaveras
Maintainer M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es></maialba@alumni.uv.es>
Description Lipid annotation in untargeted liquid chromatography-data independent acquisition-mass spectrometry lipidomics based on fragmentation and intensity rules. Alcoriza-Balaguer MI, Garcia-Canaveras JC, Lopez A, Conde I, Juan O, Carretero J, Lahoz A (2019) <doi:10.1021 acs.analchem.8b03409="">.</doi:10.1021>
Depends R (>= 3.1), enviPick, methods, purrr, CHNOSZ, stats, LipidMSdata
License GPL (>= 2)
LazyData TRUE
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-21 13:30:08 UTC
R topics documented:
adductsTable 3 assignDB 4 baconjdb 4 badb 5 carnitinesdb 5 CEdb 6
cerdh

checkClass	. 8
checkIntensityRules	. 10
eldb	. 12
coelutingFrags	. 12
coelutionScore	13
combineChains	. 14
confLevels	15
reateLipidDB	16
crossTables	. 17
lataProcessing	18
lgdb	20
adb	20
ahfadb	21
indCandidates	21
getInclusionList	23
nfadb	23
dBAneg	24
dCarpos	26
dCEpos	28
dCerneg	30
dCerpos	32
dCLneg	35
dDGpos	37
dFAHFAneg	40
dFAneg	42
dLPCneg	44
dLPCpos	46
dLPEneg	48
•	50
•	53
· ·	55
dLPSneg	
dMGpos	
dNEG	
dPCneg	62
dPCpos	65
•	67
dPEneg	70
dPCrog	
dPGneg	72
dPIneg	75
dPOS	77
dPSneg	. 79
dSMpos	81
dSphneg	83
dSphPneg	85
dSphpos	87
dSphPpos	
dTGpos	91

adductsTable 3

Index				100
	tgdb	 	 	103
	sphPdb			
	sphdb			
	smdb			
	sepByCE	 	 	103
	searchIsotopes	 	 	102
	psdb	 	 	102
	pidb	 	 	10
	pgdb	 	 	10
	pedb	 	 	100
	pcdb	 	 	100
	padb	 	 	99
	organizeResults .	 	 	98
	nlsphdb	 	 	98
	mgdb	 	 	9'
	lysopsdb	 	 	9'
	lysopidb			
	lysopgdb	 	 	90
	lysopedb			
	lysopedb			
	lysopadb	 	 	94

adductsTable Adducts table

Description

Table of possible adducts to be employed by LipidMS and related information.

Usage

```
data("adductsTable")
```

Format

Data frame with 18 observations and the following 4 variables.

adduct character vector with the adducts names.

mdiff numeric vector indicating the mass differences.

charge numeric vector indicating the charge.

n numeric vector. It indicates if the ion is a monomer (1), a dimer (2), etc.

4 baconjdb

assignDB

load LipidMS default data bases

Description

load all LipidMS default data bases required to run identification functions.

Usage

```
assignDB()
```

Value

list of data frames

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
dbs <- assignDB()</pre>
```

baconjdb

Bile acids conjugates database

Description

Common bile acids conjugates. It can be modified to look for other BA species.

Usage

```
data("baconjdb")
```

Format

Data frame with 2 observations and the following 2 variables.

total character vector indicating the names of the conjugates.

Mass numeric vector with the neutral masses of the conjugates fragments.

badb 5

badb

Bile acids database

Description

In silico generated database for common bile acids.

Usage

```
data("badb")
```

Format

Data frame with 9 observations and the following 5 variables.

formula character vector with the molecular formulas.

total character vector containing the names of the BAs (i.e. CA, TDCA, GLCA...).

Mass numeric vector with the neutral masses.

conjugate character vector containing the conjugate of each BA.

base character vector containing the core of each BA.

carnitinesdb

Carnitines database

Description

In silico generated database for common carnitines.

Usage

```
data("carnitinesdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

6 cerdb

CEdb

CEs database

Description

In silico generated database for common CEs.

Usage

```
data("CEdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

cerdb

ceramides database

Description

In silico generated database for common ceramides.

Usage

```
data("cerdb")
```

Format

Data frame with 52 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

chainFrags 7

chainFrags	Search of chain specific fragments	

Description

Search of specific fragments that inform about the chains structure.

Usage

```
chainFrags(coelfrags, chainfrags, ppm = 10, candidates, f = NULL, dbs)
```

Arguments

8	
coelfrags	coeluting fragments for each candidate. Output of coelutingFrags.
chainfrags	character vector containing the fragmentation rules for the chain fragments. If it is an empty vector, chains will be calculated based on the difference between the precursor and the other chain. See details.
ppm	m/z tolerance in ppm.
candidates	candidates data frame. If any chain needs to be calculated based on the difference between the precursor and the other chain, this argument will be required. Output of chainFrags.
f	known chains. If any chain needs to be calculated based on the difference between the precursor and the other chain, this argument will be required. Output of chainFrags.
dbs	list of data bases required for the annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be changed. If data bases have been customized using createLipidDB, they also have to be modified here.

Details

The chainfrags argument must contain the fragmentation rules which inform about the chains structure. For example, in the case of PG subclass, the chain in sn1 position is identified by the lysoPG as M-H resulting from the loss of the FA chain of sn2; and the chain in sn2 position is identified as the free FA chain as M-H. These two fragments need to be searched in two different steps: in the first step we will look for lysoPGs coeluting with the precursor using chainfrags = $c("lysopg_M-H")$; then, we will look for FA chains using chainfrags = $c("fa_M-H")$. This information can be combined later using combineChains function.

To indicate the fragments to be searched, the class of lipid is writen using the same names as the LipidMS databases without the "db" at the end (i.e. pa, dg, lysopa, mg, CE, etc.), and the adduct has to be indicated as it appears in the adductsTable, both parts separated by "_". In case some chain needs to be searched based on a neutral loss, this can be defined using "NL-" prefix, followed by the database and adduct. If this neutral loss is employed to find the remaining chain, "cbdiff-" prefix allows to calculate the difference in carbons and doubles bounds between the precursor and the building block found. For example, "cbdiff-dg_M+H-H2O" will look for DG as M+H-H2O and

8 checkClass

then, it will return the difference between their number of carbons and double bounds and the ones from the precursor. Otherwise, "NL-mg_M+H-H2O" will look for fragments coming from the loss of MGs.

In case these fragments identified as losses from the precursors are going to be employed for the intensity rules, this same prefix has to be added.

If a chain is calculated based on the difference of total number of carbons and double bounds between the precursor and a previously searched chain, chainfrags argument must be a character vector c("") and candidates data frame and chain fragments list must be provided.

Value

List of data frames with the chain fragments found.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
dbs <- assignDB()

candidates <- findCandidates(MS1 = MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)

MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans, MSMS2_neg$rawScans)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,
coelCutoff = 0.8)

sn1 <- chainFrags(coelfrags, chainfrags = c("lysopg_M-H"), ppm = 10,
dbs = dbs)
sn2 <- chainFrags(coelfrags, chainfrags = c("fa_M-H"), ppm = 10, dbs = dbs)</pre>
```

checkClass

Search of class fragments to confirm the lipid class.

Description

Search of characteristic fragments that confirm a given lipid class.

Usage

```
checkClass(candidates, coelfrags, clfrags, ftype, clrequisites, ppm = 10,
   dbs)
```

checkClass 9

Arguments

candidates output of findCandidates function.

coelfrags list of peaks coeluting with each candidate. Output of coelutingFrags.

clfrags vector containing the expected fragments for a given lipid class. See details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See details.

clrequisites logical vector indicating if each class fragment is required or not. If none of the

fragment is required, at least one of them must be present within the coeluting fragments. If the presence of any fragment excludes the class, it can be specified

by using "excluding".

ppm m/z tolerance in ppm.

dbs list of data bases required for the annotation. By default, dbs contains the re-

quired data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be changed. If data bases have been customized using createLipidDB, they also have to be modified here. It is employed when some

fragment belongs to "BB" ftype.

Details

clfrags, ftype and clrequisites will indicate the rules to confirm a lipid class. All three arguments must have the same length.

This function allows three different types of fragments: fragments with a specific m/z as for example 227.0326 for PG in negative mode, which needs to be defined as clfrags = c(227.0326) and ftype = c("F"); neutral losses such as the head group of some PL (i.e. NL of 74.0359 in PG in negative mode), which will be defined as clfrags = c(74.0359) and ftype = c("NL"); or building blocks resulting from the loss of some groups, as for example, PA as M-H resulting from the loss of the head group (glycerol) in PG in ESI-, which will be defined as clfrags = $c("pa_M-H")$ and ftype = c("BB"). The last two options could define the same fragments. In this case just one of them would be necessary.

When using the third type of fragment ("BB"), the building block will be specified in lower case (i.e. pa, dg, lysopa, mg, etc.) and the adduct will be given as it appears in the adducts Table, both separated by "_". Names for the building blocks are the ones used for the LipidMS databases without the "db" at the end.

In case the presence of a fragment indicates that the candidate does not belong to the lipid class (i.e. loss of CH3 in PE, which corresponds to a PC actually), this will be specified by using clrequisites = c("excluding").

Value

List with 2 elements: a matrix with logical values (presence/absense) of each expected fragment (columns) for each candidate (rows), and a logical vector with the confirmation of the lipid class for each candidate.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

checkIntensityRules

Examples

```
library(LipidMSdata)
dbs <- assignDB()</pre>
candidates <- findCandidates(MS1 = MS1_neg$peaklist,</pre>
db = dbs pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)
MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)</pre>
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans,</pre>
MSMS2_neg$rawScans)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,</pre>
coelCutoff = 0.8)
classConf <- checkClass(candidates, coelfrags,</pre>
clfrags = c(227.0326, 209.022, 74.0359), clrequisites = c(F, F, F, F),
ftype = c("F", "F", "NL"), ppm = 10, dbs = dbs)
library(LipidMSdata)
dbs <- assignDB()</pre>
candidates <- findCandidates(MS1 = MS1_neg$peaktable,</pre>
db = dbs pgdb,
ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1$rawData, coelCutoff = 0.8)
MSMS <- rbind(MSMS1_neg$peaktable, MSMS2_neg$peaktable)</pre>
rawData <- rbind(MS1_neg$rawData, MSMS1_neg$rawData,</pre>
MSMS2_neg$rawData)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,</pre>
coelCutoff = 0.8)
classConf <- checkClass(candidates, coelfrags,</pre>
clfrags = c(227.0326, 209.022, 74.0359), clrequisites = c(F, F, F, F),
ftype = c("F", "F", "NL"), ppm = 10, dbs = dbs)
```

checkIntensityRules Check intensity rules

Description

Check intensity rules to confirm chains position.

Usage

checkIntensityRules(intrules, rates, intrequired, nchains, combinations)

checkIntensityRules 11

Arguments

intrules character vector specifying the fragments to compare. See details.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See details.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

nchains number of chains of the targeted lipid class.

combinations output of combineChains.

Details

This function will be employed when the targeted lipid class has more than one chain.

Taking PG subclass as an example, intensities of lysoPG fragments (informative for sn1) can be employed to confirm the chains structure (intrules = $c("lysopg_sn1/lysopg_sn1")$). In this case, the intensity of the lysoPG resulting from the loss of the FA chain in sn2 is at least 3 times greater (rates = c("3/1")) than the lysoPG resulting from the loss of the FA chain in sn1.

For the intrules argument, "/" will be use to separate the fragments related to each chain (sn1/sn2/etc), and "_" will be use to indicate the list in which they'll be searched. This will depend on the chain fragments rules defined previously. Following the example, as we use lysoPG to define the sn1 position, both fragments will be searched in this list (sn1).

For classes with more than one FA chain, if some intensity rule should be employed to identify their position but they are no defined yet, use "Unknown". If it is not necessary because the fragmentation rules are informative enough to define the position (i.e. sphingolipid species), just leave an empty vector.

Value

List of logical vectors with the confirmation for each combination.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
dbs <- assignDB()

candidates <- findCandidates(MS1 = MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)

MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans,
MSMS2_neg$rawScans)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,
coelCutoff = 0.8)</pre>
```

12 coelutingFrags

```
sn1 <- chainFrags(coelfrags, chainfrags = c("lysopg_M-H"), ppm = 10,
dbs = dbs)
sn2 <- chainFrags(coelfrags, chainfrags = c("fa_M-H"), ppm = 10, dbs = dbs)
chainsComb <- combineChains(candidates, nchains=2, sn1, sn2)
intConf <- checkIntensityRules(intrules = c("lysopg_sn1/lysopg_sn1"),
rates = c("2/1"), intrequired = c(T), nchains=2, chainsComb, sn1, sn2)</pre>
```

cldb

Cardiolipins database

Description

In silico generated database for commo CLs.

Usage

```
data("cldb")
```

Format

Data frame with 714 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

coelutingFrags

Coeluting fragments extraction

Description

Given a RT and a list of peaks, this function subsets all coeluting fragments within a rt windows. It is used by identification functions to extract coeluting fragments from high energy functions for candidate precursor ions.

Usage

```
coelutingFrags(precursors, products, rttol, rawData = data.frame(),
  coelCutoff = 0)
```

coelutionScore 13

Arguments

precursors candidates data frame. Output of findCandidates.

products peaklist for MS2 function (MSMS).

rttol rt window in seconds.

rawData raw scans data. Output of dataProcessing function (MSMS\$rawData).

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied.

Value

List of data frames with the coeluting fragments for each candidate.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
dbs <- assignDB()

candidates <- findCandidates(MS1 = MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)

MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans, MSMS2_neg$rawScans)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,
coelCutoff = 0.8)</pre>
```

coelutionScore

calculate coelution score between two peaks

Description

Calculate coelution score between two peaks.

Usage

```
coelutionScore(peak1, peak2, rawData)
```

14 combineChains

Arguments

peak1 character vector specifying the peakID of the first peak.
peak2 character vector specifying the peakID of the second peak.

rawData data frame with raw data for each scan. it need to have at least 5 columns: m.z,

RT, int, Scan (ordinal number for a given MS function) and peakID (peakID to

which it has been assigned).

#' @keywords internal

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

combineChains Combine chain fragments that could belong to the same precursor.	combineChains	Combine chain fragments that could belong to the same precursor.
--	---------------	--

Description

It calculates combinations of chain fragments that sum up the same number of carbons and double bounds as the precursor.

Usage

```
combineChains(candidates, nchains, sn1, sn2, sn3, sn4)
```

Arguments

candidates	candidates data frame. Output of findCandidates.
nchains	number of chains of the targeted lipid class.
sn1	list of chain fragments identified for sn1 position. Output of chainFrags.
sn2	list of chain fragments identified for sn2 position. Output of chainFrags. If required.
sn3	list of chain fragments identified for sn3 position. Output of chainFrags. If required.
sn4	list of chain fragments identified for sn4 position. Output of chainFrags. If required.

Value

List of data frames with candidate chains structures.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

confLevels 15

Examples

```
library(LipidMSdata)
dbs <- assignDB()

candidates <- findCandidates(MS1 = MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)

MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans, MSMS2_neg$rawScans)
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,
coelCutoff = 0.8)

sn1 <- chainFrags(coelfrags, chainfrags = c("lysopg_M-H"), ppm = 10,
dbs = dbs)
sn2 <- chainFrags(coelfrags, chainfrags = c("fa_M-H"), ppm = 10, dbs = dbs)

chainsComb <- combineChains(candidates, nchains=2, sn1, sn2)

intConf <- checkIntensityRules(intrules = c("lysopg_sn1/lysopg_sn1"),
rates = c("2/1"), intrequired = c(T), nchains=2, chainsComb, sn1, sn2)</pre>
```

confLevels

Confidence Annotation Levels

Description

Confidence annotation levels and their hierarchy.

Usage

```
data("confLevels")
```

Format

Data frame with 5 observations and 2 variables.

level character vector with the names of the annotation levels.

order numeric vector that indicates the hierarchichal order.

16 createLipidDB

			100	_
create	1	nı	UI)F	⊰
CICALC		DT	uvi	_

Customizable lipid DBs creator

Description

It allows to create easy-customizable lipid DBs for annotation with LipidMS package.

Usage

```
createLipidDB(lipid, chains, chains2)
```

Arguments

lipid	character value indicating the class of lipid. See Details.
chains	character vector indicating the FA chains to be employed
chains2	character vector containing the sphingoid bases to be employed if required.

Details

```
lipidClass argument needs to be one of the following character values: "Cer", "CerP", "GlcCer", "SM", "Carnitine", "CE", "FA", "HFA", "Sph" (sphingoid bases), "SphP", "MG", "LPA", , "LPC", "LPE", "LPG", "LPI", "LPS", "FAHFA", "DG", "PC", "PE", "PG", "PI", "PS", "PA", "TG", "CL" or "all".
```

Value

List with the requested dbs (data frames)

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
fas <- c("8:0", "10:0", "12:0", "14:0", "14:1", "15:0", "16:0", "16:1", "17:0", "18:0", "18:1", "18:2", "18:3", "18:4", "20:0", "20:1", "20:2", "20:3", "20:4", "20:5", "22:0", "22:1", "22:2", "22:3", "22:4", "22:5", "22:6", "24:0", "24:1", "26:0")

sph <- c("16:0", "16:1", "18:0", "18:1")

newdb <- createLipidDB(lipid = "PC", chains = fas, chains2 = sph)
```

crossTables 17

crossTables	Cross the original MS1 peaklist with the annotation results

Description

Cross the original MS1 peaklist with the annotation results.

Usage

```
crossTables(MS1, results, ppm = 10, rttol = 10, dbs)
```

Arguments

MS1 data frame cointaining all peaks from the full MS function. It must have three

columns: m.z, RT (in seconds) and int (intensity).

results data frame. Output of identification functions.

ppm mass tolerance in ppm.

rttol rt tolerance to match peaks in seconds.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Value

Data frame with 6 columns: m.z, RT, int, LipidMS_id, adduct and confidence level for the annotation. When multiple IDs are proposed for the same feature, they are sorted based on the annotation level.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
results <- idNEG(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
crossTables(MS1_neg$peaklist, results = results$results,
ppm = 10, rttol = 10)</pre>
```

18 dataProcessing

dataProcessing	Process mzXML files: peakpicking and deisotoping

Description

Process mzXML files: peak-picking using enviPick and deisotoping using an adaptation of the CAMERA algorithm.

Usage

```
dataProcessing(file, mslevel, polarity, dmzgap = 50, drtgap = 25,
    ppm = TRUE, minpeak, maxint = 1e+09, dmzdens, drtdens = 20,
    merged = FALSE, drtsmall, drtfill = 5, drttotal = 100,
    recurs = 4, weight, SB, SN = 2, minint, ended = 2,
    removeIsotopes = TRUE, rttolIso = 2, ppmIso = 20)
```

Arguments

file	path of the mzXML input file.
mslevel	numeric value indicating if data belongs to level 1 (fullMS) or level 2 (MS/MS).
polarity	character value: negative or positive.
dmzgap	enviPick parameter. 50 by default.
drtgap	enviPick parameter. 25 by default.
ppm	logical value. TRUE if dmzdens was set in ppm and FALSE if it was in as an absolute value. TRUE by default.
minpeak	minimum number of measurements required within the RT window of drtsmall. Optional. By default, 5 when $mslevel = 1$ and 4 when $mslevel = 2$.
maxint	EIC cluster with measurements above this intensity are kept, even if they do not fulfill minpeak. 1E9 by default.
dmzdens	maximum measurement deviation $(+/-)$ of m/z from its mean within each EIC. Optional. By default, 15 when mslevel = 1 and 30 when mslevel = 2.
drtdens	RT tolerance for clustering. Optional. 20 by default.
merged	merge EIC cluster of comparable m/z. Logical. FALSE by default.
drtsmall	peak definition - RT window of a peak. Optional. By default, 100 when mslevel = 1 and 30 when mslevel = 2 .
drtfill	maximum RT gap length to be filled. 5 by default.
drttotal	maximum RT length of a single peak. 100 by default.
recurs	maximum number of peaks within one EIC. 3 by default.
weight	weight for assigning measurements to a peak. Optional. By default, 1 when $mslevel = 1$ and 2 when $mslevel = 2$.
SB	signal-to-base ratio. Optional. By default, 3 when $mslevel = 1$ and 2 when $mslevel = 2$.

dataProcessing 19

SN signal-to-noise ratio. 2 by default.

minint minimum intensity of a peakr. Optional. By default, 1000 when mslevel = 1 and

100 when mslevel = 2.

ended within the peak detection recursion set by argument recurs, how often can a peak

detection fail to end the recursion?. 2 by default.

removeIsotopes logical. If TRUE, only isotopes identified as M+0, are kept when mslevel =

1, and M+0 or unknown when mslevel = 2. TRUE by default. If FALSE, an

additional column is added to the peak list to inform about isotopes.

rttolIso numeric. Time windows for isotope matching.

ppmIso numeric. Mass tolerance for isotope matching.

Details

This function executes 2 steps: 1) peak-picking using enviPick package and 2) it searches isotopes using an adaptation of the CAMERA algorithm. If mslevel = 1 and remove isotopes is set as TRUE, only ions with more than 1 isotope are kept.

Value

List with two data frames: peaklist, with 4 columns (m.z, RT, int, and peakID) and rawScan, with all the scans information in 5 columns (m.z, RT, int, peakID and Scan). PeakID columns links both data frames: extracted peaks and raw data. The Scan column indicates the scan number (order) to which each row of the rawScans data frame belong.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

References

https://cran.r-project.org/web/packages/enviPick/index.html

Kuhl C, Tautenhahn R, Boettcher C, Larson TR ans Neumann S (2012). "CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography-mass spectrometry data sets." Analytical Chemistry, 84, pp. 283-289. http://pubs.acs.org/doi/abs/10.1021/ac202450g.

Examples

```
dataProcessing("input_file.mzXML", mslevel = 1, polarity = "positive")
```

20 fadb

dgdb

DGs database

Description

In silico generated database for common DGs.

Usage

```
data("dgdb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

fadb

FAs database

Description

In silico generated database for common FAs.

Usage

```
data("fadb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

fahfadb 21

fahfadb	FAHFAs database	
---------	-----------------	--

Description

In silico generated database for common FAHFAs.

Usage

```
data("fahfadb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

findCandidates	Search of lipid candidates of a certain class.
----------------	--

Description

Search of lipid candidates from a peaklist based on a set of expected adducts.

Usage

```
findCandidates(MS1, db, ppm, rt, adducts, rttol = 3, dbs,
  rawData = data.frame(), coelCutoff = 0)
```

Arguments

MS1	peaklist of the MS function. Data frame with 3 columns: m.z, RT (in seconds) and int (intensity).
db	database (i.e. pcdb, dgdb, etc.). Data frame with at least 2 columns: Mass (exact mass) and total (total number of carbons and double bound of the FA chains, i.e. "34:1").
ppm	m/z tolerance in ppm.
rt	rt range where the function will look for candidates. By default, it will search within all RT range in MS1.
adducts	character vector containing the expected adducts to search for (i.e. "M+H", "M+Na", "M-H", etc.). See details.
rttol	rt tolerance in seconds to match adducts.

22 findCandidates

dbs	list of data bases required for the annotation. By default, dbs contains the re-
	quired data frames based on the default fragmentation rules. If these rules are
	modified, dbs may need to be changed. If data bases have been customized using
	createLipidDB, they also have to be modified here.

raw scans data. Output of dataProcessing function (MS1\$rawData).

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied.

Details

findCandidates looks for matches between the m/z of the MS1 peaklist and the expected m/z of the candidates in the database for each adduct. If several adducts are expected, results are combined.

Adducts allowed are contained in adducts Table data frame, which can be modified if required (see adducts Table).

Value

Data frame with the found candidates. It contains 6 columns: m.z, RT, int (from the peaklist data.frame), ppms, cb (total number of carbons and double bounds of the FA chains) and adducts.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
dbs <- assignDB()

candidates <- findCandidates(MS1 =MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)

# If any adduct is not in the adductsTable, it can be added:
adductsTable2 <- rbind(adductsTable,
c(adduct = "M+HCOO", mdiff = 44.9982, n = 1, charge = -1))
dbs <- assignDB()
dbs$adductsTable <- adductsTable2

candidates <- findCandidates(MS1 = MS1_neg$peaklist,
db = dbs$pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H", "M+HCOO"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)</pre>
```

getInclusionList 23

 ${\tt getInclusionList}$

Obtain an inclusion list from the annotation results

Description

Obtain an inclusion list from the annotation results.

Usage

```
getInclusionList(results, adductsTable = LipidMS::adductsTable)
```

Arguments

results data frame. Output of identification functions.

adductsTable data frame with the adducts allowed and their mass difference.

Value

Data frame with 6 columns: formula, RT, neutral mass, m/z, adduct and the compound name.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
results <- idPOS(MS1_neg, MSMS1_neg, MSMS2_neg)
getInclusionList(results$results)</pre>
```

hfadb

HFAs database

Description

In silico generated database for common HFAs.

Usage

```
data("hfadb")
```

24 idBAneg

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

idBAneg

Bile Acids (BA) annotation for ESI-

Description

BA identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idBAneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), conjfrag = c("baconj_M-H"),
  bafrag = c("ba_M-H-H20", "ba_M-H-2H20"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor

mass tolerance for precursor ions. By default, 5 ppm.

idBAneg 25

mass tolerance for product ions. By default, 10 ppm. ppm_products rttol total rt window for coelution between precursor and product ions. By default, 3 seconds. rt rt range where the function will look for candidates. By default, it will search within all RT range in MS1. adducts expected adducts for BA in ESI-. Adducts allowed can be modified in the adducsTable (dbs argument). character vector containing the fragmentation rules for the BA-conjugates. By conjfrag default just taurine and glycine are considered, but baconjdb can be modified to add more possible conjugates. See chainFrags for details. It can also be an empty vector. bafrag character vector containing the fragmentation rules for other BA fragments. See chainFrags for details. It can be an empty vector. coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idBAneg function involves 3 steps. 1) FullMS-based identification of candidate BA as M-H. 2) Search of BA-conjugate fragments if required. 3) Search of fragments coming from the loss of H2O.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (MS-only if no rules are defined, or Subclass level if they are supported by fragments) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with BA annotations (results) and some additional information (fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

26 idCarpos

Examples

```
library(LipidMSdata)
idBAneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idCarpos

Carnitine annotation for ESI+

Description

Carnitines identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idCarpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10, rttol = 3, rt, adducts = c("M+H", "M+Na"), clfrags = c(60.0807, 85.0295, "fa_M+H-H20"), clrequired = c(F, F, F), ftype = c("F", "F" "BB"), chainfrags_sn1 = c("fa_M+H-H20"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor

mass tolerance for precursor ions. By default, 5 ppm.

27 idCarpos

ppm_products	mass tolerance for product ions. By default, 10 ppm.
rttol	total rt window for coelution between precursor and product ions. By default, 3 seconds.
rt	rt range where the function will look for candidates. By default, it will search within all RT range in MS1.
adducts	expected adducts for Carnitines in ESI+. Adducts allowed can be modified in adductsTable (dbs argument).
clfrags	vector containing the expected fragments for a given lipid class. See checkClass for details.
clrequired	logical vector indicating if each class fragment is required or not. If any of them is required, at least one of them must be present within the coeluting fragments. See checkClass for details.
ftype	character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.
chainfrags_sn1	character vector containing the fragmentation rules for the chain fragments. See chainFrags for details.
coelCutoff	coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8.
dbs	list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idCarpos function involves 3 steps. 1) FullMS-based identification of candidate carnitines as M+H and M+Na. 2) Search of carnitine class fragments: 60.0807 and 85.0295 or its loss (FA as M+H-H20) coeluting with the precursor ion. 3) Search of specific fragments coming from the FA chain (FA as M+H-H2O).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as Carnitines only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with Carnitine annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

28 idCEpos

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idCarpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idCEpos

Cholesterol Esthers (CE) annotation for ESI+

Description

CE identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idCEpos(MS1, MSMS1, MSMS2, ppm\_precursor = 5, ppm\_products = 10, \\ rttol = 3, rt, adducts = c("2M+NH4", "2M+Na", "M+NH4", "M+Na"), \\ clfrags = c(369.3516, "fa\_M+H-H20"), clrequired = c(F, F), \\ ftype = c("F", "BB"), chainfrags\_sn1 = c("fa\_M+H-H20"), \\ coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.
ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for CE in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idCEpos function involves 3 steps. 1) FullMS-based identification of candidate CE as 2M+NH4, 2M+Na, M+NH4 and M+Na. 2) Search of CE class fragments: 369.3516 or its loss (FA as M+H-H20) coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (FA as M+H-H2O).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as CE only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with CE annotations (results) and some additional information (class fragments and chain fragments).

30 idCerneg

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
idCEpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idCerneg

Ceramides (Cer) annotation for ESI-

Description

Cer identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idCerneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H", "M+CH3COO"), clfrags = c(),
  clrequired = c(), ftype = c(), chainfrags_sn1 = c("NL-nlsph_M-H",
  "sph_M-H-2H2O", "sph_M-H-H2O"), chainfrags_sn2 = c("fa_Mn-1.9918"),
  intrules = c(), rates = c(), intrequired = c(), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

idCerneg 31

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for Cer in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

32 idCerpos

Details

idCerneg function involves 5 steps. 1) FullMS-based identification of candidate Cer as M-H and M+CH3COO. 2) Search of Cer class fragments: there are no class fragment by default. 3) Search of specific fragments that inform about the sphingoid base (Sph as M-H-2H2O resulting from the loss of the FA chain or loss of part of the sphingoid base) and the FA chain (FA as M-H but with a N intead of an O, what means a mass difference of 1.9918 from the exact mass of the FA). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, there are no intensity rules by default.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with Cer annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idCerneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idCerpos

Ceramides (Cer) annotation for ESI+

Description

Cer identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

idCerpos 33

Usage

```
idCerpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H-H20", "M+Na", "M+H"),
  clfrags = c(), clrequired = c(), ftype = c(),
  chainfrags_sn1 = c("sph_M+H-2H20"), chainfrags_sn2 = c(""),
  intrules = c(), rates = c(), intrequired = c(), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for Cer in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

34 idCerpos

character vector containing the fragmentation rules for the chain fragments in chainfrags_sn1 sn1 position. See chainFrags for details. chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. intrules character vector specifying the fragments to compare. See checkIntensityRules. rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. logical vector indicating if any of the rules is required. If not, at least one must intrequired be verified to confirm the structure. coelution score threshold between parent and fragment ions. Only applied if coelCutoff rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified,

Details

idCerpos function involves 5 steps. 1) FullMS-based identification of candidate Cer as M+H, M+H-H2O and M+Na. 2) Search of Cer class fragments: there isn't any class fragment by default. 3) Search of specific fragments that inform about the sphingoid base (Sph as M+H-2H2O resulting from the loss of the FA chain) and the FA chain (by default it is calculated using the difference between precursor and sph fragments). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, there are no intensity rules by default.

dbs may need to be supplied. See createLipidDB and assignDB.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with Cer annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

idCLneg 35

Examples

```
library(LipidMSdata)
idCerpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idCLneg

Cardiolipines (CL) annotation for ESI-

Description

CL identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idCLneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 5, rt, adducts = c("M-H", "M+Na-2H"), clfrags = c(),
  clrequired = c(), ftype = c(),
  chainfrags_sn1 = c("lysopa_M-H-H2O"),
  chainfrags_sn2 = c("lysopa_M-H-H2O"),
  chainfrags_sn3 = c("lysopa_M-H-H2O"),
  chainfrags_sn4 = c("lysopa_M-H-H2O"), intrules = c("Unknown"),
  rates = c(), intrequired = c(), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

36 idCLneg

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for CL in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details.

chainfrags_sn3 character vector containing the fragmentation rules for the chain fragments in

sn3 position. See chainFrags for details.

chainfrags_sn4 character vector containing the fragmentation rules for the chain fragments in

sn4 position. See chainFrags for details.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

If some intensity rules should be employed to identify the chains position but they are't known yet, use "Unknown". If it isn't required, leave an empty vector.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idCLneg function involves 5 steps. 1) FullMS-based identification of candidate CL as M-H or M-2H. 2) Search of CL class fragments: no class fragments are searched by defaults as they use to

idDGpos 37

have bad coelution scores. 3) Search of specific fragments that inform about chain composition at sn1 (lysoPA as M-H-H2O), sn2 (lysoPA as M-H-H2O), sn3 (lysoPA as M-H-H2O) and sn4 (lysoPA as M-H-H2O). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. For CL there are no intensity rules by default. Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with CL annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idCL(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg, coelCutoff = 0)
```

idDGpos

Diacylglycerols (DG) annotation for ESI+

Description

DG identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idDGpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H-H20", "M+NH4", "M+Na"),
  clfrags = c(), clrequired = c(), ftype = c(),
  chainfrags_sn1 = c("mg_M+H-H20"), chainfrags_sn2 = c("mg_M+H-H20"),
  intrules = c("mg_sn1/mg_sn2"), rates = c("1"), intrequired = c(T),
  coelCutoff = 0.8, dbs)
```

38 idDGpos

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for DG in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

idDGpos 39

character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idDGpos function involves 5 steps. 1) FullMS-based identification of candidate DG as M+H-H2O, M+NH4 and M+Na. 2) Search of DG class fragments: there are no class fragment by default. 3) Search of specific fragments that inform about the FA chains (MGs as M+H-H2O resulting from the loss of the FA chains). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position: MG coming from the loss of the sn2 chain is more intense than the one coming from the loss of sn1.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with DG annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idDGpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

40 idFAHFAneg

idFAHFAneg

FAHFA annotation for ESI-

Description

FAHFA identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idFAHFAneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(),
  clrequired = c(), ftype = c(), chainfrags_sn1 = c("hfa_M-H"),
  chainfrags_sn2 = c("fa_M-H"), intrules = c("hfa_sn1/fa_sn2"),
  rates = c("3/1"), intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolera ppm_products mass tolera

mass tolerance for precursor ions. By default, 5 ppm. mass tolerance for product ions. By default, 10 ppm.

rttol

total rt window for coelution between precursor and product ions. By default, 3

seconds

rt

rt range where the function will look for candidates. By default, it will search within all RT range in MS1.

idFAHFAneg 41

adducts	expected adducts for FAHFA in ESI Adducts allowed can be modified in adducts Table (dbs $$ argument).
clfrags	vector containing the expected fragments for a given lipid class. See checkClass for details.
clrequired	logical vector indicating if each class fragment is required or not. If any of them is required, at least one of them must be present within the coeluting fragments. See checkClass for details.
ftype	character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.
chainfrags_sn1	character vector containing the fragmentation rules for the chain fragments in ${\rm sn1}$ position. See chainFrags for details.
chainfrags_sn2	character vector containing the fragmentation rules for the chain fragments in sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains.
intrules	$character\ vector\ specifying\ the\ fragments\ to\ compare.\ See\ check Intensity Rules.$
rates	character vector with the expected rates between fragments given as a string (i.e. " $3/1$ "). See checkIntensityRules.
intrequired	logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure.
coelCutoff	coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8 .
dbs	list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idFAHFAneg function involves 5 steps. 1) FullMS-based identification of candidate FAHFA as M-H. 2) Search of FAHFA class fragments: there is't any class fragment by default. 3) Search of specific fragments that inform about chain composition in sn1 (HFA as M-H resulting from the loss of the FA chain) and sn2 (FA chain as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, HFA intensity has to be higher than FA.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with FAHFA annotations (results) and some additional information (class fragments and chain fragments).

42 idFAneg

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
idFAHFAneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idFAneg

Fatty Acids (FA) annotation for ESI-

Description

FA identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idFAneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H", "2M-H"), clfrags = c("fa_M-H",
  "fa_M-H-H2O"), clrequired = c(F, F), ftype = c("BB", "BB"),
  coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

idFAneg 43

Ist with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for FA in ESI-. Adducts allowed can be modified in addutc-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idFAneg function involves 2 steps. 1) FullMS-based identification of candidate FA as M-H or 2M-H. 2) Search of FA class fragments: neutral loss of H2O coeluting with the precursor ion or the molecular ion.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, just MS-only or Subclass level (if any class fragment is defined) are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with FA annotations (results) and some additional information (class fragments and chain fragments).

44 idLPCneg

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idFAneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idLPCneg

Lysophosphocholines (LPC) annotation for ESI-

Description

LPC identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idLPCneg(MS1, MSMS1, MSMS2, ppm\_precursor = 5, ppm\_products = 10, \\ rttol = 3, rt, adducts = c("M+CH3COO", "M-CH3", "M+CH3COO-CH3"), \\ clfrags = c(168.0426, 224.0688, "lysopa\_M-H", "lysopc\_M-CH3"), \\ clrequired = c(F, F, F, F), ftype = c("F", "F", "BB", "BB"), \\ chainfrags\_sn1 = c("fa\_M-H"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

idLPCneg 45

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for LPC in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPCneg function involves 3 steps. 1) FullMS-based identification of candidate LPC as M+CH3COO, M-CH3 and M+CH3COO-CH3. To avoid incorrect annotations of PE as PC, candidates which are present just as M-CH3 will be ignored. 2) Search of LPC class fragments: 168.0426, 224.0688, lysoPA as M-H or lysoPC as M-CH3 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (FA as M-H).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPC only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

46 idLPCpos

Value

list with LPC annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPCneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idLPCpos

Lysophosphocholines (LPC) annotation for ESI+

Description

LPC identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idLPCpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H", "M+Na"), clfrags = c(104.1075,
  184.0739), clrequired = c(F, F), ftype = c("F", "F"),
  chainfrags_sn1 = c("mg_M+H-H20"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

idLPCpos 47

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for LPC in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPCpos function involves 3 steps. 1) FullMS-based identification of candidate LPC as M+H and M+Na. 2) Search of LPC class fragments: 104.1075 and 184.0739 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (MG as M+H-H2O).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as

48 idLPEneg

LPC only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with LPC annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPCpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idLPEneg

Lysophosphoethanolamines (LPE) annotation for ESI-

Description

LPE identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idLPEneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(140.0115, 196.038,
  214.048, "lysope_M-CH3"), clrequired = c(F, F, F, "excluding"),
  ftype = c("F", "F", "F", "BB"), chainfrags_sn1 = c("fa_M-H"),
  coelCutoff = 0.8, dbs)
```

idLPEneg 49

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for LPE in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

50 idLPEpos

Details

idLPEneg function involves 3 steps. 1) FullMS-based identification of candidate LPE as M-H. 2) Search of LPE class fragments: 140.0115, 196.038 and 214.048 coeluting with the precursor ion. If a loss of CH3 group is found coeluting with any candidate, this will be excluded as it is a characteristic fragment of LPC.3) Search of specific fragments that confirm chain composition (FA as M-H).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPE only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with LPE annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPEneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idLPEpos

Lysophosphoethanolamines (LPE) annotation for ESI+

Description

LPE identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

idLPEpos 51

Usage

```
idLPEpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H", "M+Na"), clfrags = c(141.01909),
  clrequired = c(F), ftype = c("NL"),
  chainfrags_sn1 = c("mg_M+H-H2O"), coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for LPE in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

52 idLPEpos

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPEpos function involves 3 steps. 1) FullMS-based identification of candidate LPE as M+H and M+Na. 2) Search of LPE class fragments: neutral loss of 141.01909 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition in sn1 (MG as M+H-H2O).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPE only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with LPE annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPEpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idLPGneg 53

idLPGneg	Lysophosphoglycerols (LPG) annotation for ESI-
----------	--

Description

LPG identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idLPGneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(152.9958, 227.0326,
  209.022, 74.0359), clrequired = c(F, F, F, F), ftype = c("F", "F",
  "F", "NL"), chainfrags_sn1 = c("fa_M-H"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor

mass tolerance for precursor ions. By default, 5 ppm. mass tolerance for product ions. By default, 10 ppm.

ppm_products

total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt

rttol

rt range where the function will look for candidates. By default, it will search within all RT range in MS1.

54 idLPGneg

adducts expected adducts for LPG in ESI-. Adducts allowed can be modified in adductsTable (dbs argument). vector containing the expected fragments for a given lipid class. See checkClass clfrags for details. logical vector indicating if each class fragment is required or not. If any of them clrequired is required, at least one of them must be present within the coeluting fragments. See checkClass for details. character vector indicating the type of fragments in clfrags. It can be: "F" (fragftype ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. character vector containing the fragmentation rules for the chain fragments. See chainfrags_sn1 chainFrags for details. coelution score threshold between parent and fragment ions. Only applied if coelCutoff rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPGneg function involves 3 steps. 1) FullMS-based identification of candidate LPG as M-H. 2) Search of LPG class fragments: 152.9958, 227.0326, 209.022 and neutral loss of 74.0359 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (FA as M-H).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPG only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with LPG annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

idLPIneg 55

Examples

```
library(LipidMSdata)
idLPGneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idLPIneg

Lysophosphoinositols (LPI) annotation for ESI-

Description

LPI identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idLPIneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(241.0115, 223.0008,
  259.0219, 297.0375), clrequired = c(F, F, F, F), ftype = c("F", "F",
  "F", "F"), chainfrags_sn1 = c("fa_M-H"), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor

mass tolerance for precursor ions. By default, 5 ppm.

56 idLPIneg

ppm_products	mass tolerance for product ions. By default, 10 ppm.
rttol	total rt window for coelution between precursor and product ions. By default, 3 seconds.
rt	rt range where the function will look for candidates. By default, it will search within all RT range in MS1.
adducts	expected adducts for LPI in ESI Adducts allowed can be modified in adduct-sTable (dbs argument).
clfrags	vector containing the expected fragments for a given lipid class. See checkClass for details.
clrequired	logical vector indicating if each class fragment is required or not. If any of them is required, at least one of them must be present within the coeluting fragments. See checkClass for details.
ftype	character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.
chainfrags_sn1	character vector containing the fragmentation rules for the chain fragments. See chainFrags for details.
coelCutoff	coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8.
dbs	list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPIneg function involves 3 steps. 1) FullMS-based identification of candidate LPI as M-H. 2) Search of LPI class fragments: 241.0115, 223.0008, 259.0219 and 297.0375 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (FA as M-H).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPI only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with LPI annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

idLPSneg 57

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPIneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idLPSneg

Lysophosphoserines (LPS) annotation for ESI-

Description

LPS identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idLPSneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H", "M+Na-2H"), clfrags = c(87.032),
  clrequired = c(F), ftype = c("NL"), chainfrags_sn1 = c("fa_M-H"),
  coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

58 idLPSneg

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for LPS in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments. See

chainFrags for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idLPSneg function involves 3 steps. 1) FullMS-based identification of candidate LPS as M-H and M+Na-2H. 2) Search of LPS class fragments: neutral loss of 87.032 coeluting with the precursor ion. 3) Search of specific fragments that confirm chain composition (FA as M-H).

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as LPS only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with LPS annotations (results) and some additional information (class fragments and chain fragments).

idMGpos 59

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idLPSneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idMGpos

Monoacylglycerol (MG) annotation for ESI+

Description

MG identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idMGpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H-H20", "M+NH4", "M+Na"),
  clfrags = c(), clrequired = c(), ftype = c(), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

idMGpos

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for MG in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idMGpos function involves 2 steps. 1) FullMS-based identification of candidate MG as M+H-H2O, M+NH4 and M+Na. 2) Search of MG class fragments if any is assigned.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, just MS-only or Subclass level (if any class fragment is defined) are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with MG annotations (results) and some additional information (class fragments and chain fragments).

idNEG 61

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idMGpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idNEG

Lipids annotation for ESI-

Description

Lipids annotation based on fragmentation patterns for LC-MS/MS all-ions data acquired in negative mode. This function compiles all functions writen for ESI- annotations.

Usage

```
idNEG(MS1, MSMS1, MSMS2, ppm_precursor = 10, ppm_products = 10,
  rttol = 10, coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

62 idPCneg

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.
ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Value

The output is a list with 2 elements: 1) a data frame that shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification); and 2) the original MS1 peaklist with the annotations on it.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idNEG(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idPCneg

Phosphocholines (PC) annotation for ESI-

Description

PC identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

idPCneg 63

Usage

```
idPCneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+CH3COO", "M-CH3", "M+CH3COO-CH3"),
  clfrags = c(168.0426, 224.0688, "pc_M-CH3"), clrequired = <math>c(F, F, F),
  ftype = c("F", "F", "BB"), chainfrags_sn1 = c("lysopc_M-CH3"),
  chainfrags_sn2 = c("fa_M-H", "lysopc_M-CH3"),
  intrules = c("lysopc_sn1/lysopc_sn2"), rates = c("3/1"),
  intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

> tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

mass tolerance for precursor ions. By default, 5 ppm. ppm_precursor mass tolerance for product ions. By default, 10 ppm.

total rt window for coelution between precursor and product ions. By default, 3 rttol

seconds.

ppm_products

rt range where the function will look for candidates. By default, it will search rt.

within all RT range in MS1.

adducts expected adducts for PC in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

64 idPCneg

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in sn1 position. See chainFrags for details. chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. intrules character vector specifying the fragments to compare. See checkIntensityRules. rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. intrequired logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure. coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPCneg function involves 5 steps. 1) FullMS-based identification of candidate PC as M+CH3COO, M-CH3 or M+CH3COO-CH3. To avoid incorrect annotations of PE as PC, candidates which are present just as M-CH3 will be ignored. 2) Search of PC class fragments: 168.0426, 224.0688 or loss of CH3 coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition in sn1 (lysoPC as M-CH3 resulting from the loss of the FA chain at sn2) and sn2 (lysoPC as M-CH3 resulting from the loss of sn1 or FA as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, lysoPC from sn1 is at least 3 times more intense than lysoPC from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PC annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

idPCpos 65

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPCneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idPCpos

Phosphocholines (PC) annotation for ESI+

Description

PC identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode

Usage

```
idPCpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H", "M+Na"), clfrags = c(104.1075,
  184.0739, 183.06604), clrequired = c(F, F, F), ftype = c("F", "F",
  "NL"), chainfrags_sn1 = c("lysopc_M+H", "lysopc_M+H-H2O"),
  chainfrags_sn2 = c("lysopc_M+H", "lysopc_M+H-H2O", ""),
  intrules = c("lysopc_sn1/lysopc_sn2"), rates = c("2/1"),
  intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

idPCpos

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.
ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for PC in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPCpos function involves 5 steps. 1) FullMS-based identification of candidate PC as M+H and M+Na. 2) Search of PC class fragments: 104.1075, 184.0739 and neutral loss of 183.06604 coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition in sn1 (lysoPC as M+H or M+H-H2O resulting from the loss of the FA chain at sn2) and sn2 (lysoPC

idPEneg 67

as M+H or M+H-H2O resulting from the loss of the FA chain at sn1 or the difference between precursor and sn1 chain fragments). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, lysoPC from sn1 is at least twice more intense than lysoPC from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PC annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPCpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idPEneg

Phosphoethanolamines (PE) annotation for ESI-

Description

PE identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

68 idPEneg

Usage

```
idPEneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 5, rt, adducts = c("M-H"), clfrags = c(140.0118, 196.038,
  214.048, "pe_M-CH3"), clrequired = c(F, F, F, "excluding"),
  ftype = c("F", "F", "F", "BB"), chainfrags_sn1 = c("lysope_M-H"),
  chainfrags_sn2 = c("lysope_M-H", "fa_M-H"),
  intrules = c("lysope_sn1/lysope_sn2"), rates = c("3/1"),
  intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for PE in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

idPEneg 69

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in sn1 position. See chainFrags for details. chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. intrules character vector specifying the fragments to compare. See checkIntensityRules. rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. intrequired logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure. coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPEneg function involves 5 steps. 1) FullMS-based identification of candidate PE as M-H. 2) Search of PE class fragments: 140.0115, 196.038, 214.048 ion coeluting with the precursor ion. If a loss of CH3 group is found coeluting with any candidate, this will be excluded as it is a characteristic fragment of PC. 3) Search of specific fragments that inform about chain composition in sn1 (lysoPE as M-H resulting from the loss of the FA chain at sn2) and sn2 (lysoPE as M-H resulting from the loss of the FA chain at sn1 or FA chain as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, lysoPE from sn1 is at least 3 times more intense than lysoPE from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PE annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

70 idPEpos

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPEneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idPEpos

Phosphoethanolamines (PE) annotation for ESI+

Description

PE identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idPEpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H", "M+Na"),
  clfrags = c("dg_M+H-H20"), clrequired = c(F), ftype = c("BB"),
  chainfrags_sn1 = c("lysope_M+H-H20", "mg_M+H-H20"),
  chainfrags_sn2 = c("mg_M+H-H20"),
  intrules = c("lysope_sn1/lysope_sn1", "mg_sn1/mg_sn2"),
  rates = c("3/1", "1/2"), intrequired = c(F, F), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

idPEpos 71

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.
ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for PE in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPEpos function involves 5 steps. 1) FullMS-based identification of candidate PE as M+H and M+Na. 2) Search of PE class fragments: loss of head group (DG as M+H-H2O) coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition at sn1 (MG as M+H-H2O resulting from the loss of the FA chain at sn2 and the head group or LPE as M+H-H2O

72 idPGneg

resulting just from the loss of the FA chain) and sn2 (FA or MG chain from sn2as M+H-H2O or the difference between precursor and sn1 chain fragments). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. LPE or MG from sn1 is at least 3 times more intense than the ones from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PE annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPEpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idPGneg

Phosphoglycerols (PG) annotation for ESI-

Description

PG identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

73 idPGneg

Usage

```
idPGneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
 rttol = 3, rt, adducts = c("M-H"), clfrags = c(152.9958, 227.0326,
 209.022, 74.0359), clrequired = c(F, F, F, F), ftype = c("F", "F",
 "F", "NL"), chainfrags_sn1 = c("lysopg_M-H"),
 chainfrags_sn2 = c("lysopg_M-H", "fa_M-H"),
 intrules = c("lysopg_sn1/lysopg_sn2"), rates = c("2/1"),
 intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

> tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

mass tolerance for precursor ions. By default, 5 ppm. ppm_precursor mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

ppm_products

rt range where the function will look for candidates. By default, it will search rt.

within all RT range in MS1.

adducts expected adducts for PG in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

74 idPGneg

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. character vector containing the fragmentation rules for the chain fragments in chainfrags_sn1 sn1 position. See chainFrags for details. character vector containing the fragmentation rules for the chain fragments in chainfrags_sn2 sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. intrules character vector specifying the fragments to compare. See checkIntensityRules. rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. intrequired logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure. coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPGneg function involves 5 steps. 1) FullMS-based identification of candidate PG as M-H. 2) Search of PG class fragments: 152.9958, 227.0326, 209.022 and neutral loss of 74.0359 coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition at sn1 (lysoPG as M-H resulting from the loss of the FA chain at sn2) and sn2 (lysoPG as M-H resulting from the loss of the FA chain at sn1 or FA chain as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, lysoPG from sn1 is at least 3 times more intense than lysoPG from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PG annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

idPIneg 75

Examples

```
library(LipidMSdata)
idPGneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idPIneg

Phosphoinositols (PI) annotation for ESI-

Description

PI identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idPIneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(241.0115, 223.0008,
  259.0219, 297.0375), clrequired = c(F, F, F, F), ftype = c("F", "F",
  "F", "F"), chainfrags_sn1 = c("lysopi_M-H", "lysopa_M-H"),
  chainfrags_sn2 = c("lysopi_M-H", "lysopa_M-H", "fa_M-H"),
  intrules = c("lysopi_sn1/lysopi_sn2", "lysopa_sn1/lysopa_sn2"),
  rates = c("3/1", "3/1"), intrequired = c(F, F), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peak-list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID

76 idPIneg

(link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.
ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for PI in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPIneg function involves 5 steps. 1) FullMS-based identification of candidate PI as M-H. 2) Search of PI class fragments: 241.0115, 223.0008, 259.0219 and 297.0375 coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition at sn1 (lysoPI as M-H resulting from the loss of the FA chain at sn2 or lysoPA as M-H if it also losses the head group) and sn2 (lysoPI or lysoPA as M-H resulting from the loss of the FA chain at sn1 or FA chain as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5)

idPOS 77

Check intensity rules to confirm chains position. In this case, lysoPI or lysoPA from sn1 is at least 3 times more intense than lysoPI or lysoPA from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with PI annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPIneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idPOS

Lipids annotation for ESI+

Description

Lipids annotation based on fragmentation patterns for LC-MS/MS all-ions data acquired in positive mode. This function compiles all functions writen for ESI+ annotations.

Usage

```
idPOS(MS1, MSMS1, MSMS2, ppm_precursor = 10, ppm_products = 10,
  rttol = 10, coelCutoff = 0.8, dbs)
```

78 idPOS

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data

frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data

frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm. ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Value

The output is a list with 2 elements: 1) a data frame that shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).; and 2) the original MS1 peaklist with the annotations on it.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPOS(MS1_pos, MSMS1_pos, MSMS2_pos)
```

79 idPSneg

idPSneg

Phosphoserines (PS) annotation for ESI-

Description

PS identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

Usage

```
idPSneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H", "M+Na-2H"), clfrags = c(87.032,
  152.9958), clrequired = c(F, F), ftype = c("NL", "F"),
  chainfrags_sn1 = c("lysopa_M-H", "lysopa_M-H-H20"),
 \label{eq:chainfrags_sn2} chainfrags\_sn2 = c("lysopa\_M-H", "lysopa\_M-H-H2O", "fa\_M-H"),
  intrules = c("lysopa_sn1/lysopa_sn2"), rates = c("3/1"),
  intrequired = c(T), coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

ppm_precursor ppm_products

mass tolerance for precursor ions. By default, 5 ppm. mass tolerance for product ions. By default, 10 ppm.

total rt window for coelution between precursor and product ions. By default, 3 seconds.

rttol

80 idPSneg

rt range where the function will look for candidates. By default, it will search rt within all RT range in MS1. expected adducts for PS in ESI-. Adducts allowed can be modified in adductadducts sTable (dbs argument). clfrags vector containing the expected fragments for a given lipid class. See checkClass for details. clrequired logical vector indicating if each class fragment is required or not. If any of them is required, at least one of them must be present within the coeluting fragments. See checkClass for details. character vector indicating the type of fragments in clfrags. It can be: "F" (fragftype ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. character vector containing the fragmentation rules for the chain fragments in chainfrags_sn1 sn1 position. See chainFrags for details. character vector containing the fragmentation rules for the chain fragments in chainfrags_sn2 sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. character vector specifying the fragments to compare. See checkIntensityRules. intrules rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. logical vector indicating if any of the rules is required. If not, at least one must intrequired be verified to confirm the structure. coelution score threshold between parent and fragment ions. Only applied if coelCutoff rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idPSneg function involves 5 steps. 1) FullMS-based identification of candidate PS as M-H or M+Na-2H. 2) Search of PS class fragments: neutral loss of 87.032 (serine) coeluting with the precursor ion. 3) Search of specific fragments that inform about chain composition at sn1 (lysoPA as M-H or M-H-H2O resulting from the loss of the FA chain at sn2 and the head group) and sn2 (lysoPA as M-H or M-H-H2O resulting from the loss of the FA chain at sn1 and the head group or FA chain as M-H). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, lysoPA from sn1 is at least 3 times more intense than lysoPA from sn2.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with PS annotations (results) and some additional information (class fragments and chain fragments).

idSMpos 81

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idPSneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idSMpos

Sphyngomyelines (SM) annotation for ESI+

Description

SM identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

Usage

```
idSMpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H", "M+Na"), clfrags = c(104.1075,
  184.0739, 183.06604), clrequired = c(F, F, F), ftype = c("F", "F",
  "NL"), chainfrags_sn1 = c("sph_M+H-2H20"), chainfrags_sn2 = c(""),
  intrules = c(), rates = c(), intrequired = c(), coelCutoff = 0.8,
  dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

82 idSMpos

MSMS1 list with two data frames cointaining all peaks from the high energy function

> ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

mass tolerance for precursor ions. By default, 5 ppm. ppm_precursor mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for SM in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

vector containing the expected fragments for a given lipid class. See checkClass clfrags

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in

sn1 position. See chainFrags for details.

chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in

sn2 position. See chainFrags for details. If empty, it will be estimated based on

the difference between precursors and sn1 chains.

intrules character vector specifying the fragments to compare. See checkIntensityRules.

rates character vector with the expected rates between fragments given as a string (i.e.

"3/1"). See checkIntensityRules.

intrequired logical vector indicating if any of the rules is required. If not, at least one must

be verified to confirm the structure.

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

ppm_products

idSphneg 83

Details

idSMpos function involves 5 steps. 1) FullMS-based identification of candidate SM as M+H and M+Na. 2) Search of SM class fragments: 104.1075, 184.0739 and neutral loss of 183.06604 coeluting with the precursor ion. 3) Search of specific fragments that inform about the composition of the sphingoid base (Sph as M+H-2H2O resulting from the loss of the FA chain) and the FA chain (by default it is calculated using the difference between precursor and sph chain fragments). 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In this case, there are no intensity rules by default as FA chain is unlikely to be detected.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with SM annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idSMpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idSphneg

Sphingoid bases (Sph) annotation for ESI-

Description

Sph identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

84 idSphneg

Usage

```
idSphneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c("sph_M-H-H20",
  "sph_M-H-2H20"), clrequired = c(F, F), ftype = c("BB", "BB"),
  coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for Sph in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

idSphPneg 85

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idSphneg function involves 2 steps. 1) FullMS-based identification of candidate Sph as M-H. 2) Search of Sph class fragments: neutral loss of 1 or 2 H2O molecules.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as Sph only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

List with Sph annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idSphneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idSphPneg

Sphingoid bases phosphate (SphP) annotation for ESI-

Description

SphP identification based on fragmentation patterns for LC-MS/MS AIF data acquired in negative mode.

86 idSphPneg

Usage

```
idSphPneg(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M-H"), clfrags = c(78.9585, 96.9691,
  "sphP_M-H-H2O"), clrequired = c(F, F, F), ftype = c("F", "F", "BB"),
  coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for SphP in ESI-. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

idSphpos 87

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idSphpos function involves 2 steps. 1) FullMS-based identification of candidate SphP as M-H. 2) Search of SphP class fragments: 78.9585, 96.969 or neutral loss of 1 H2O molecule.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as SphP only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with SphP annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idSphPneg(MS1 = MS1_neg, MSMS1 = MSMS1_neg, MSMS2 = MSMS2_neg)
```

idSphpos

Sphingoid bases (Sph) annotation for ESI-

Description

Sph identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

88 idSphpos

Usage

```
idSphpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H"), clfrags = c("sph_M+H-H20",
  "sph_M+H-2H20"), clrequired = c(F, F), ftype = c("BB", "BB"),
  coelCutoff = 0.8, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

rttol total rt window for coelution between precursors and product ions. By default,

mass tolerance for product ions. By default, 10 ppm.

3 seconds.

ppm_products

rt window where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for Sph in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

idSphPpos 89

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idSphpos function involves 2 steps. 1) FullMS-based identification of candidate Sph as M+H. 2) Search of Sph class fragments: neutral loss of 1 or 2 H2O molecules.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as Sph only have one chain, only Subclass and FA level are possible) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with Sph annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for a Q-TOF 6550 from Agilent.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idSphpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idSphPpos

Sphingoid bases phosphate (SphP) annotation for ESI+

Description

SphP identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

90 idSphPpos

Usage

```
idSphPpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
  rttol = 3, rt, adducts = c("M+H"), clfrags = c("sphP_M+H-H2O",
  "sphP_M+H-2H2O", "sphP_M+H-H2O-NH4"), clrequired = c(F, F, F),
  ftype = c("BB", "BB", "BB"), coelCutoff = 0.7, dbs)
```

Arguments

MS1 list with two data frames cointaining all peaks from the full MS function ("peak-

list" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can

be just the peaklist data frame.

MSMS1 list with two data frames cointaining all peaks from the high energy function

("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame.

MSMS2 list with two data frames cointaining all peaks from a second high energy func-

tion ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument

can be just the peaklist data frame. Optional.

ppm_precursor mass tolerance for precursor ions. By default, 5 ppm.

ppm_products mass tolerance for product ions. By default, 10 ppm.

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search

within all RT range in MS1.

adducts expected adducts for SphP in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them

is required, at least one of them must be present within the coeluting fragments.

See checkClass for details.

ftype character vector indicating the type of fragments in clfrags. It can be: "F" (frag-

ment), "NL" (neutral loss) or "BB" (building block). See checkClass for details.

idTGpos 91

coelCutoff coelution score threshold between parent and fragment ions. Only applied if

rawData info is supplied. By default, 0.8.

dbs list of data bases required for annotation. By default, dbs contains the required

data frames based on the default fragmentation rules. If these rules are modified,

dbs may need to be supplied. See createLipidDB and assignDB.

Details

idSphpos function involves 2 steps. 1) FullMS-based identification of candidate SphP as M+H. 2) Search of SphP class fragments: neutral loss of 1 or 2 H2O molecules, or H2O and NH4.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (in this case, as SphP only have one chain, only Subclass and FA level are possible). and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with SphP annotations (results) and some additional information (class fragments and chain fragments).

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idSphPpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

idTGpos

Triacylglycerols (TG) annotation for ESI+

Description

TG identification based on fragmentation patterns for LC-MS/MS AIF data acquired in positive mode.

92 idTGpos

Usage

```
idTGpos(MS1, MSMS1, MSMS2, ppm_precursor = 5, ppm_products = 10,
 rttol = 3, rt, adducts = c("M+NH4", "M+Na"), clfrags = c(),
 clrequired = c(), ftype = c(),
 chainfrags_sn1 = c("cbdiff-dg_M+H-H20"),
 chainfrags_sn2 = c("cbdiff-dg_M+H-H20"),
 chainfrags_sn3 = c("cbdiff-dg_M+H-H20"),
 intrules = c("cbdiff-dg_sn2/cbdiff-dg_sn1",
 "cbdiff-dg_sn2/cbdiff-dg_sn3", "cbdiff-dg_sn1/cbdiff-dg_sn3"),
 rates = c("1", "1", "1"), intrequired = c(T, T, T),
 coelCutoff = 0.8, dbs)
```

Arguments

MS1

list with two data frames cointaining all peaks from the full MS function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS1

list with two data frames cointaining all peaks from the high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame.

MSMS2

list with two data frames cointaining all peaks from a second high energy function ("peaklist" data frame) and the raw MS scans data ("rawScans" data frame). They must have four columns: m.z, RT (in seconds), int (intensity) and peakID (link between both data frames). "rawScans" data frame also needs a extra column named "Scan", which indicates the scan order number. Output of dataProcessing function. In case no coelution score needs to be applied, this argument can be just the peaklist data frame. Optional.

mass tolerance for precursor ions. By default, 5 ppm. ppm_precursor mass tolerance for product ions. By default, 10 ppm. ppm_products

rttol total rt window for coelution between precursor and product ions. By default, 3

seconds.

rt range where the function will look for candidates. By default, it will search rt

within all RT range in MS1.

adducts expected adducts for TG in ESI+. Adducts allowed can be modified in adduct-

sTable (dbs argument).

clfrags vector containing the expected fragments for a given lipid class. See checkClass

for details.

clrequired logical vector indicating if each class fragment is required or not. If any of them is required, at least one of them must be present within the coeluting fragments. See checkClass for details. ftype character vector indicating the type of fragments in clfrags. It can be: "F" (fragment), "NL" (neutral loss) or "BB" (building block). See checkClass for details. chainfrags_sn1 character vector containing the fragmentation rules for the chain fragments in sn1 position. See chainFrags for details. chainfrags_sn2 character vector containing the fragmentation rules for the chain fragments in sn2 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn1 chains. chainfrags_sn3 character vector containing the fragmentation rules for the chain fragments in sn3 position. See chainFrags for details. If empty, it will be estimated based on the difference between precursors and sn2 chains. intrules character vector specifying the fragments to compare. See checkIntensityRules. If some intensity rules should be employed to identify the chains position but they are't known yet, use "Unknown". If it isn't required, leave an empty vector. rates character vector with the expected rates between fragments given as a string (i.e. "3/1"). See checkIntensityRules. intrequired logical vector indicating if any of the rules is required. If not, at least one must be verified to confirm the structure. coelCutoff coelution score threshold between parent and fragment ions. Only applied if rawData info is supplied. By default, 0.8. dbs list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB.

Details

idTGpos function involves 5 steps. 1) FullMS-based identification of candidate TG as M+NH4 and M+Na. 2) Search of TG class fragments: there are no class fragment by default. 3) Search of specific fragments that inform about the FA chains: DGs resulting from the loss of FA chains as M+H-H2O. 4) Look for possible chains structure based on the combination of chain fragments. 5) Check intensity rules to confirm chains position. In the case of TG, DG resulting from the loss of sn2 if the most intense, followed by the loss of sn1 and sn3, but this FA position level still needs to be improved due to the high level of coelution for TG.

Results data frame shows: ID, class of lipid, CDB (total number of carbons and double bounds), FA composition (specific chains composition if it has been confirmed), mz, RT (in seconds), I (intensity, which comes directly from de input), Adducts, ppm (m.z error), confidenceLevel (Subclass, FA level, where chains are known but not their positions, or FA position level) and PFCS (parent-fragment coelution score mean of all fragments used for the identification).

Value

list with TG annotations (results) and some additional information (class fragments and chain fragments).

94 lysopadb

Note

Isotopes should be removed before identification to avoid false positives. This function has been writen based on fragmentation patterns observed for two different platforms (QTOF 6550 from Agilent and Sinapt G2-Si from Waters), but it may need to be customized for other platforms or acquisition settings.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
idTGpos(MS1 = MS1_pos, MSMS1 = MSMS1_pos, MSMS2 = MSMS2_pos)
```

lysopadb

LPAs database

Description

In silico generated database for common LPAs.

Usage

```
data("lysopadb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

lysopcdb 95

lysopcdb

LPCs database

Description

In silico generated database for common LPCs.

Usage

```
data("lysopcdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

lysopedb

LPEs database

Description

In silico generated database for common LPEs.

Usage

```
data("lysopedb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

96 lysopidb

lysopgdb

LPGs database

Description

In silico generated database for common LPGs.

Usage

```
data("lysopgdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

lysopidb

LPIs database

Description

In silico generated database for common LPIs.

Usage

```
data("lysopidb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

lysopsdb 97

lysopsdb

LPSs database

Description

In silico generated database for common LPSs

Usage

```
data("lysopsdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

 ${\sf mgdb}$

MGs database

Description

In silico generated database for common MGs.

Usage

```
data("mgdb")
```

Format

Data frame with 30 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

98 organizeResults

nlsphdb	Neutral losses db for sphingoid bases. function.	It is employed by idCerneg
	J	

Description

In silico generated database for neutral losses of sphingoid bases in ESI-.

Usage

```
data("nlsphdb")
```

Format

Data frame with 4 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

organizeResults Prepare output for LipidMS annotation functions

Description

Prepare a readable output for LipidMS identification functions.

Usage

```
organizeResults(candidates, clfrags, classConf, chainsComb, intrules,
  intConf, nchains, class)
```

Arguments

candidates candidates data frame. Output of findCandidates.

clfrags vector containing the expected fragments for a given lipid class.

classConf output of checkClass
chainsComb output of combineChains

intrules character vector specifying the fragments to compare. See checkIntensityRules.

intConf output of checkIntensityRules

nchains number of chains of the targeted lipid class.

class character value. Lipid class (i.e. PC, PE, DG, TG, etc.).

padb 99

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

Examples

```
library(LipidMSdata)
dbs <- assignDB()</pre>
candidates <- findCandidates(MS1 = MS1_neg$peaklist,</pre>
db = dbs pgdb, ppm = 10, rt = c(0, 2000), adducts = c("M-H"),
rttol = 10, rawData = MS1_neg$rawScans, coelCutoff = 0.8)
MSMS <- rbind(MSMS1_neg$peaklist, MSMS2_neg$peaklist)</pre>
rawData <- rbind(MS1_neg$rawScans, MSMS1_neg$rawScans, MSMS2_neg$rawScans)</pre>
coelfrags <- coelutingFrags(candidates$RT, MSMS, rttol = 10, rawData = rawData,</pre>
coelCutoff = 0.8)
classConf <- checkClass(candidates, coelfrags,</pre>
clfrags = c(227.0326, 209.022, 74.0359), clrequisites = c(F, F, F, F),
ftype = c("F", "F", "NL"), ppm = 10, dbs = dbs)
sn1 <- chainFrags(coelfrags, chainfrags = c("lysopg_M-H"), ppm = 10,</pre>
dbs = dbs)
sn2 <- chainFrags(coelfrags, chainfrags = c("fa_M-H"), ppm = 10, dbs = dbs)</pre>
chainsComb <- combineChains(candidates, nchains=2, sn1, sn2)</pre>
intConf <- checkIntensityRules(intrules = c("lysopg_sn1/lysopg_sn1"),</pre>
rates = c("2/1"), intrequired = c(T), nchains=2, chainsComb, sn1, sn2)
res <- organizeResults(candidates, clfrags = c(227.0326, 209.022, 74.0359),
classConf, chainsComb, intrules = c("lysopg_sn1/lysopg_sn1"), intConf,
nchains = 2, class="PG")
```

padb

PAs database

Description

In silico generated database for common PAs.

Usage

```
data("padb")
```

100 pedb

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

pcdb

PCs database

Description

In silico generated database for common PCs.

Usage

```
data("pcdb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

pedb

PEs database

Description

In silico generated database for common PEs.

Usage

```
data("pedb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

pgdb 101

pgdb

PGs database

Description

In silico generated database for common PGs.

Usage

```
data("pgdb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

pidb

PIs database

Description

In silico generated database for common PIs.

Usage

```
data("pidb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

102 searchIsotopes

psdb	PSs database
psub	1 55 aatabas

Description

In silico generated database for common PSs.

Usage

```
data("psdb")
```

Format

Data frame with 147 observations and the following 3 variables.

formula character vector containing molecular formulas.

mass error tolerance.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

hIsotopes Target isotopes search

Description

This function uses annotation results of an unlabelled sample to search for labelled compounds in a labelled sample.

Usage

```
searchIsotopes(results, MS1, label, adductsTable = LipidMS::adductsTable,
  rttol = 10, ppm = 10)
```

Arguments

ppm

results	annotation results for an unlabelled sample. Output of identification functions (i.e. idPOS\$results).
MS1	Data frame with at least three columns: m.z, RT, int. Peak list for the labelled sample. Output of dataProcessing function (MS\$peaklist).
label	isotope employed for the experiment. It can be "13C" or "D".
adductsTable	adducts table employed for lipids annotation.
rttol	rt window in seconds.

sepByCE 103

Value

List with the isotopes for each compound in the results data frame.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

sepByCE

Separate .mzXML files by CE

Description

Separation of .mzXML files from all-ions data by collision energy to work with them separately.

Usage

```
sepByCE(file, output)
```

Arguments

file path of the input .mzXML file

output a unique character value indicating the name of the output files. The energy

employed and .mzXML will be added automatically to each file.

Details

This function has been designed based on mzXML files obtained from .d files (Agilent) using msConvert tool, in which we can find the collision energy information. In addition to separate files by collision energies, this function also changes the MS level of the high energy scans from 2 to 1 allowing their treatment (peak-picking for each collision energy, alignment, i.e) with common software (xcms, mzMine2, enviPick, etc).

Value

As many .mzXML files as different collision energies employed.

Note

Be careful with input and output arguments. For example, "file.mzXML" would be the input argument and "file_sep" could be the output.

Author(s)

M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>

104 sphdb

Examples

```
## Not run:
sepByCE("input_file.mzXML", "output_file")
## End(Not run)
```

smdb

SMs database

Description

In silico generated database for common SMs.

Usage

```
data("smdb")
```

Format

Data frame with 52 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

sphdb

Sphingoid bases database

Description

In silico generated database for common sphingoid bases.

Usage

```
data("sphdb")
```

Format

Data frame with 4 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

sphPdb

sphPdb

Sphingoid bases phosphate database

Description

In silico generated database for common sphingoid bases phosphate.

Usage

```
data("sphPdb")
```

Format

Data frame with 4 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Mass numeric vector with the neutral masses.

tgdb TGs database

Description

In silico generated database for common TGs.

Usage

```
data("tgdb")
```

Format

Data frame with 376 observations and the following 3 variables.

formula character vector containing molecular formulas.

total character vector indicating the total number of carbons and double bounds of the chains.

Index

*Topic datasets adductsTable, 3 baconjdb, 4 badb, 5 carnitinesdb, 5 CEdb, 6 cerdb, 6 cldb, 12 confLevels, 15 dgdb, 20 fadb, 21 hfadb, 23 lysopadb, 94 lysopedb, 95 lysopedb, 95 lysopsdb, 96 lysopsdb, 97 mgdb, 97 nlsphdb, 98 padb, 99 pcdb, 100 pedb, 100 pedb, 101 pidb, 101 psdb, 102 smdb, 104 sphPdb, 105 tgdb, 105 adductsTable, 3, 22 assignDB, 4, 17, 25, 27, 29, 31, 34, 36, 39, 41,	carnitinesdb, 5 CEdb, 6 cerdb, 6 chainFrags, 7, 7, 14, 25, 27, 29, 31, 34, 36,
64, 66, 69, 71, 74, 76, 78, 80, 82, 83, 87, 89, 91, 93	hfadb, 23
baconjdb, 4 badb, 5	idBAneg, 24 idCarpos, 26

INDEX 107

idCEpos, 28	psdb, 102
idCerneg, 30	
idCerpos, 32	searchIsotopes, 102
idCLneg, 35	sepByCE, 103
idDGpos, 37	smdb, 104
idFAHFAneg, 40	sphdb, 104
idFAneg, 42	sphPdb, 105
idLPCneg, 44	
idLPCpos, 46	tgdb, 105
idLPEneg, 48	
idLPEpos, 50	
idLPGneg, 53	
idLPIneg, 55	
idLPSneg, 57	
idMGpos, 59	
idNEG, 61	
idPCneg, 62	
idPCpos, 65	
idPEneg, 67	
idPEpos, 70	
idPGneg, 72	
idPIneg, 75	
idPOS, 77	
idPSneg, 79	
idSMpos, 81	
idSphneg, 83	
idSphPneg, 85	
idSphpos, 87	
idSphPpos, 89	
idTGpos, 91	
lysopadb, 94	
lysopcdb, 95	
lysopedb, 95	
lysopgdb, 96	
lysopidb, 96	
lysopsdb, 97	
db 07	
mgdb, 97	
nlsphdb, 98	
,	
organizeResults, 98	
padb, 99	
pcdb, 100	
pedb, 100	
pgdb, 101	
pidb, 101	
P100, 101	