Package ‘LSAfun’

December 4, 2019
Type Package
Title Applied Latent Semantic Analysis (LSA) Functions
Description Provides functions that allow for convenient workingwith latent semantic analysis (LSA) and other vector space modelsof semantics. For actually building a vector semantic space, usethe package 'lsa' or other specialized software. Downloadablesemantic spaces can be found here: https://sites.google.com/site/fritzgntr/software-resourcesA description of the LSA algorithm can be found in Landauer and Dumais (1997)doi:10.1037/0033-295X.104.2.211 .
Version 0.6.1
Date 2019-12-04
Depends R (>= 3.1.0), lsa, rgl
License GPL (>=2)
LazyData true
NeedsCompilation no
Author Fritz Guenther [aut, cre]
Maintainer Fritz Guenther fritz.guenther@uni-tuebingen.de
Repository CRAN
Date/Publication 2019-12-04 20:20:02 UTC
R topics documented:
LSAfun-package 2
asym 3
breakdown 5
choose.target 6
coherence 7
compose 9
conSIM 11
Cosine 12
costring 13
distance 15
genericSummary 16
multicos 17
multicostring 18
multidocs 20
MultipleChoice 21
neighbors 22
normalize 24
oldbooks 25
pairwise 26
plausibility 27
plot_doclist 29
plot_neighbors 31
plot_wordlist 34
Predication 36
priming 37
syntest 38
wonderland 38
Index 40
LSAfun-package Computations based on Latent Semantic Analysis

Description

Offers methods and functions for working with Vector Space Models of semantics, such as Latent Semantic Analysis (LSA). Such models are created by algorithms working on a corpus of text documents. Those algorithms achieve a high-dimensional vector representation for word (and document) meanings. The exact LSA algorithm is described in Martin \& Berry (2007).
Such a representation allows for the computation of word (and document) similarities, for example by computing cosine values of angles between two vectors.

The focus of this package

This package is not designed to create LSA semantic spaces. In R, this functionality is provided by the package lsa. The focus of the package LSAfun is to provide functions to be applied on existing LSA (or other) semantic spaces, such as

1. Similarity Computations
2. Neighborhood Computations
3. Applied Functions
4. Composition Methods

How to obtain a semantic space

LSAfun comes with one example LSA space, the wonderland space.
This package can also directly use LSA semantic spaces created with the lsa-package. Thus, it allows the user to use own LSA spaces. (Note that the function lsa gives a list of three matrices. Of those, the term matrix U should be used.)

The lsa package works with (very) small corpora, but gets difficulties in scaling up to larger corpora. In this case, it is recommended to use specialized software for creating semantic spaces, such as

- S-Space (Jurgens \& Stevens, 2010), available here
- SemanticVectors (Widdows \& Ferraro, 2008), available here
- gensim (Rehurek \& Sojka, 2010), available here
- DISSECT (Dinu, Pham, \& Baroni, 2013), available here

Downloading semantic spaces: Another possibility is to use one of the semantic spaces provided at https://sites.google.com/site/fritzgntr/software-resources. These are stored in the . rda format. To load one of these spaces into the R workspace, save them into a directory, set the working directory to that directory, and load the space using load().

Author(s)

Fritz Günther

asym Asymmetric Similarity functions

Description

Compute various asymmetric similarities between words

Usage

$\operatorname{asym}(\mathrm{x}, \mathrm{y}, \mathrm{me}$ thod, $\mathrm{t}=0$, $\mathrm{tvectors,breakdown=FALSE)}$

Arguments

x
$y \quad$ A single word, given as a character of length $(y)=1$
method Specifying the formula to use for asymmetric similarity computation
t
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Asymmetric (or directional) similarities can be useful e.g. for examining hypernymy (category inclusion), for example the relation between dog and animal should be asymmetrical. The general idea is that, if one word is a hypernym of another (i.e. it is semantically narrower), then a significant number of dimensions that are salient in this word should also be salient in the semantically broader term (Lenci \& Benotto, 2012).

In the formulas below, $w_{x}(f)$ denotes the value of vector x on dimension f. Furthermore, F_{x} is the set of active dimensions of vector x. A dimension f is considered active if $w_{x}(f)>t$, with t being a pre-defined, free parameter.
The options for method are defined as follows (see Kotlerman et al., 2010) (1)):

- method = "weedsprec"

$$
\operatorname{weedsprec}(u, v)=\frac{\sum_{f \in F_{u} \cap F_{v}} w_{u}(f)}{\sum_{f \in F_{u}} w_{u}(f)}
$$

- method = "cosweeds"

$$
\operatorname{cosweeds}(u, v)=\sqrt{w e e d s p r e c}(u, v) \times \operatorname{cosine}(u, v)
$$

- method = "clarkede"

$$
\operatorname{clarkede}(u, v)=\frac{\sum_{f \in F_{u} \cap F_{v}} \min \left(w_{u}(f), w_{v}(f)\right)}{\sum_{f \in F_{u}} w_{u}(f)}
$$

- method = "invcl"

$$
\operatorname{invcl}(u, v)=\sqrt{\operatorname{clarkede}(u, v) \times(1-\operatorname{clarkede}(u, v)})
$$

- method = "kintsch"

Unlike the other methods, this one is not derived from the logic of hypernymy, but rather from asymmetrical similarities between words due to different amounts of knowledge about them. Here, asymmteric similarities between two words are computed by taking into account the vector length (i.e. the amount of information about those words). This is done by projecting one vector onto the other, and normalizing this resulting vector by dividing its length by the length of the longer of the two vectors (Details in Kintsch, 2014, see References).

Value

A numeric giving the asymmetric similarity between x and y

Author(s)

Fritz Günther

References

Kintsch, W. (2015). Similarity as a Function of Semantic Distance and Amount of Knowledge. Psychological Review, 121, 559-561.
Kotlerman, L., Dagan, I., Szpektor, I., \& Zhitomirsky-Geffet, M (2010). Directional distributional similarity for lexical inference. Natural Language Engineering, 16, 359-389.
Lenci, A., \& Benotto, G. (2012). Identifying hypernyms in distributional semantic spaces. In Proceedings of *SEM (pp. 75-79), Montreal, Canada.

See Also

Cosine conSIM

Examples

```
data(wonderland)
asym("alice","girl",method="cosweeds",t=0, tvectors=wonderland)
asym("alice","rabbit",method="cosweeds",tvectors=wonderland)
```

breakdown Clean up special characters

Description

Replaces special characters in character vectors

Usage

breakdown(x)

Arguments

x
a character vector

Details

Applies the following functions to a character vector

- sets all letters to lower case
- replaces umlauts (for example ä replaced by ae)
- removes accents from letters (for example é replaced by e)
- replaces β by ss

Also removes other special characters, like punctuation signs, numbers and breaks

Value

A character vector

Author(s)

Fritz Günther

See Also
 gsub

Examples

```
breakdown("Märchen")
breakdown("I was visiting Orléans last week.
    It was nice, though!")
```

choose.target

Random Target Selection

Description

Randomly samples words within a given similarity range to the input

Usage

choose.target(x , lower, upper, n , tvectors=tvectors, breakdown=FALSE)

Arguments

$x \quad$ a character vector of length $(x)=1$ specifying a word or a sentence/document
lower the lower bound of the similarity range; a numeric
upper the upper bound of the similarity range; a numeric
$\mathrm{n} \quad$ an integer giving the number of target words to be sampled
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Computes cosine values between the input x and all the word vectors in tvectors. Then only selects words with a cosine similarity between lower and upper to the input, and randomly samples n of these words.
This function is designed for randomly selecting target words with a predefined similarity towards a given prime word (or sentence/document).

Value

A named numeric vector. The names of the vector give the target words, the entries their respective cosine similarity to the input.

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

See Also

cosine, Cosine, neighbors

Examples

```
data(wonderland)
```

choose.target("mad hatter",lower=. 2 , upper=. 3 ,
$\mathrm{n}=20$, tvectors=wonderland)
coherence Coherence of a text

Description

Computes coherence of a given paragraph/document

Usage

coherence(x,split=c(".","!","?"),tvectors=tvectors, breakdown=FALSE)

Arguments

X
split
tvectors
breakdown
a character vector of length $(x)=1$ containing the document a vector of expressions that determine where to split sentences
the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
if TRUE, the function breakdown is applied to the input

Details

This function applies the method described in Landauer \& Dumais (1997): The local coherence is the cosine between two adjacent sentences. The global coherence is then computed as the mean value of these local coherences.
The format of x (or y) should be of the kind $x<-$ "sentence1. sentence2. sentence3" Every sentence can also just consist of one single word.
To import a document Document.txt to from a directory for coherence computation, set your working directory to this directory using setwd(). Then use the following command lines:

```
fileName1 <-"Alice_in_Wonderland.txt"
```

x<-readChar(fileName1,file.info(fileName1)\$size)

Value

A list of two elements; the first element (\$local) contains the local coherences as a numeric vector, the second element ($\$$ global) contains the global coherence as a numeric.

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

See Also

cosine, Cosine, costring

Examples

data(wonderland)
coherence ("There was certainly too much of it in the air. Even the Duchess
sneezed occasionally; and as for the baby, it was sneezing and howling
alternately without a moment's pause. The only things in the kitchen that did not sneeze, were the cook, and a large cat which was sitting on the hearth and grinning from ear to ear.", tvectors=wonderland)

Description

Computes the vector of a complex expression p consisting of two single words u and v , following the methods examined in Mitchell \& Lapata (2008) (see Details).

Usage

```
## Default
compose(x,y,method="Add", a=1,b=1,c=1,m,k,lambda=2,
        tvectors=tvectors,breakdown=FALSE, norm="none")
```


Arguments

x
$y \quad a \operatorname{single}$ word (character vector with length $(y)=1$)
a, b, c
m
$\mathrm{k} \quad$ size of the k -neighborhood; $\mathrm{k} \leq \mathrm{m}$ (see Predication)
lambda dilation parameter for method = "Dilation"
method the composition method to be used (see Details)
norm whether to normalize the single word vectors before applying a composition function. Setting norm = "none" will not perform any normalizations, setting norm = "all" will normalize every involved word vector. Setting norm = "block" is only valid for the Predication method
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Let p be the vector with entries p_{i} for the two-word phrase consisiting of u with entries u_{i} and v with entries v_{i}. The different composition methods as described by Mitchell \& Lapata $(2008,2010)$ are as follows:

- Additive Model (method = "Add")

$$
p_{i}=u_{i}+v_{i}
$$

- Weighted Additive Model (method = "WeightAdd")

$$
p_{i}=a * u_{i}+b * v_{i}
$$

- Multiplicative Model (method = "Multiply")

$$
p_{i}=u_{i} * v_{i}
$$

- Combined Model (method = "Combined")

$$
p_{i}=a * u_{i}+b * v_{i}+c * u_{i} * v_{i}
$$

- Predication (method = "Predication")
(see Predication)
If method="Predication" is used, x will be taken as Predicate and y will be taken as Argument of the phrase (see Examples)
- Circular Convolution (method = "CConv")

$$
p_{i}=\sum_{j} u_{j} * v_{i-j}
$$

where the subscripts of v are interpreted modulo n with $n=$ length $(x)(=$ length $(y))$

- Dilation (method = "Dilation")

$$
p=(u * u) * v+(\lambda-1) *(u * v) * u
$$

with $(u * u)$ being the dot product of u and u (and $(u * v)$ being the dot product of u and v).
The Add, Multiply, and CConv methods are symmetrical composition methods,
i.e. compose ($x=$ "word1", $y=$ "word2") will give the same results as compose ($x=$ "word2", $y=$ "word1")

On the other hand, WeightAdd, Combined, Predication and Dilation are asymmetrical, i.e. compose ($\mathrm{x}=$ "word1" , $\mathrm{y}=$ "worc will give different results than compose ($x=$ "word2", $y=$ "word1")

Value

The phrase vector as a numeric vector

Author(s)

Fritz Günther

References

Kintsch, W. (2001). Predication. Cognitive science, 25, 173-202.
Mitchell, J., \& Lapata, M. (2008). Vector-based Models of Semantic Composition. In Proceedings of ACL-08: HLT (pp. 236-244). Columbus, Ohio.
Mitchell, J., \& Lapata, M. (2010). Composition in Distributional Models of Semantics. Cognitive Science, 34, 1388-1429.

See Also

Predication

Examples

```
data(wonderland)
compose(x="mad",y="hatter",method="Add",tvectors=wonderland)
compose(x="mad", y="hatter",method="Combined",a=1,b=2,c=3,
tvectors=wonderland)
compose(x="mad", y="hatter",method="Predication", m=20,k=3,
tvectors=wonderland)
compose(x="mad", y="hatter",method="Dilation",lambda=3,
tvectors=wonderland)
```

conSIM
Similarity in Context

Description

Compute Similarity of a word with a set of two other test words, given a third context word

Usage

conSIM(x, y, z, c, tvectors=tvectors, breakdown=FALSE)

Arguments

x
y, z
c
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Following the example from Kintsch (2014): If one has to judge the similarity between France one the one hand and the test words Germany and Spain on the other hand, this similarity judgement varies as a function of a fourth context word. If Portugal is given as a context word, France is considered to be more similar to Germany than to Spain, and vice versa for the context word Poland. Kintsch (2014) proposed a context sensitive, asymmetrical similarity measure for cases like this, which is implemented here

Value

A list of two similarity values:
SIM_XY_zc: Similarity of x and y, given the alternative z and the context c
SIM_XZ_yc: Similarity of x and z, given the alternative y and the context c

Author(s)

Fritz Günther

References

Kintsch, W. (2015). Similarity as a Function of Semantic Distance and Amount of Knowledge. Psychological Review, 121, 559-561.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.

See Also

Cosine asym

Examples

data(wonderland)

```
conSIM(x="rabbit",y="alice",z="hatter", c="dormouse",tvectors=wonderland)
```

Cosine Compute cosine similarity

Description

Computes the cosine similarity for two single words

Usage

Cosine(x,y,tvectors=tvectors,breakdown=FALSE)

Arguments

x
$y \quad$ A single word, given as a character of length $(y)=1$
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Instead of using numeric vectors, as the cosine() function from the lsa package does, this function allows for the direct computation of the cosine between two single words (i.e. Characters). which are automatically searched for in the LSA space given in as tvectors.

Value

The cosine similarity as a numeric

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

distance asym

Examples

```
data(wonderland)
```

Cosine("alice", "rabbit", tvectors=wonderland)

```
    costring Sentence Comparison
```


Description

Computes cosine values between sentences and/or documents

Usage

costring (x, y, tvectors=tvectors, breakdown=FALSE)

Arguments

x
$y \quad a \quad$ character vector
tvectors
breakdown if TRUE, the function breakdown is applied to the input

Details

In the traditional LSA approach, the vector D for a document (or a sentence) consisting of the words ($t 1, \ldots, t n$) is computed as

$$
D=\sum_{i=1}^{n} t_{n}
$$

This function computes the cosine between two documents (or sentences) or the cosine between a single word and a document (or sentence).

The format of x (or y) can be of the kind $\mathrm{x}<-$ "word1 word2 word3", but also of the kind x <-c ("word1", "word2", "word3"). This allows for simple copy\&paste-inserting of text, but also for using character vectors, e.g. the output of neighbors().

To import a document Document.txt to from a directory for comparisons, set your working directory to this directory using setwd (). Then use the following command lines:
fileName1 <-"Alice_in_Wonderland.txt"
$x<-r e a d C h a r(f i l e N a m e 1, f i l e . i n f o(f i l e N a m e 1) \$ s i z e)$

Value

A numeric giving the cosine between the input sentences/documents

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

cosine, Cosine, multicos, multicostring

Examples

```
data(wonderland)
costring("Alice was beginning to get very tired.",
    "A white rabbit with a clock ran close to her.",
    tvectors=wonderland)
```

distance Compute distance

Description

Computes distance metrics for two single words

Usage

distance (x, y, method="euclidean", tvectors=tvectors,breakdown=FALSE)

Arguments

$x \quad$ A single word, given as a character of length $(x)=1$
$y \quad$ A single word, given as a character of length $(y)=1$
method Specifies whether to compute euclidean or cityblock metric
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Computes Minkowski metrics, i.e. geometric distances between the vectors for two given words. Possible options are euclidean for the Euclidean Distance, $d(x, y)=\sqrt{\sum(x-y)^{2}}$, and cityblock for the City Block metric, $d(x, y)=\sum|x-y|$

Value

The distance value as a numeric

Author(s)

Fritz Günther

See Also

Cosine asym

Examples

data(wonderland)
distance("alice", "rabbit", method="euclidean", tvectors=wonderland)

```
genericSummary Summarize a text
```


Description

Selects sentences from a text that best describe its topic

Usage

genericSummary(text,k,split=c(".","!",""),min=5,breakdown=FALSE, . . .)

Arguments

text	A character vector of length (text) = 1 specifiying the text to be summarized
k	The number of sentences to be used in the summary
split	A character vector specifying which symbols determine the end of a sentence in the document
min	The minimum amount of words a sentence must have to be included in the com- putations
breakdown	If TRUE, the function breakdown is applied to the input
\ldots	Further arguments to be passed on to textmatrix

Details

Applies the method of Gong \& Liu (2001) for generic text summarization of text document D via Latent Semantic Analysis:

1. Decompose the document D into individual sentences, and use these sentences to form the candidate sentence set S, and set $k=1$.
2. Construct the terms by sentences matrix A for the document D.
3. Perform the SVD on A to obtain the singular value matrix Σ, and the right singular vector matrix V^{t}. In the singular vector space, each sentence i is represented by the column vector $\psi_{i}=\left[v_{i} 1, v_{i} 2, \ldots, v_{i} r\right]^{t}$ of V^{t}.
4. Select the k^{\prime} 'th right singular vector from matrix V^{t}.
5. Select the sentence which has the largest index value with the k 'th right singular vector, and include it in the summary.
6. If k reaches the predefined number, terminate the op- eration; otherwise, increment k by one, and go to Step 4.
(Cited directly from Gong \& Liu, 2001, p. 21)
multicos

Value

A character vector of the length k

Author(s)

Fritz Günther

See Also

textmatrix, lsa, svd

Examples

```
D <- "This is just a test document. It is set up just to throw some random
sentences in this example. So do not expect it to make much sense. Probably, even
the summary won't be very meaningful. But this is mainly due to the document not being
meaningful at all. For test purposes, I will also include a sentence in this
example that is not at all related to the rest of the document. Lions are larger than cats."
genericSummary(D,k=1)
```

```
multicos Vector x Vector Comparison
```


Description

Computes a cosine matrix from given word vectors

Usage

multicos($x, y=x$, tvectors=tvectors, breakdown=FALSE)

Arguments

$x \quad$ a character vector or numeric of length=ncol (tvectors) (vector with same dimensionality as LSA space)
$y \quad$ a character vector; $y=x$ by default
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Submit a character vector consisting of n words to get a $n x n$ cosine matrix of all their pairwise cosines.
Alternatively, submit two different character vectors to get their pairwise cosines. Single words are also possible arguments.
Also allows for computation of cosines between a given numeric vector with the same dimensionality as the LSA space and a vector consisting of n words.

Value

A matrix containing the pairwise cosines of x and y

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

cosine, Cosine, costring, multicostring

Examples

```
data(wonderland)
multicos("mouse rabbit cat","king queen",
    tvectors=wonderland)
```

multicostring Sentence x Vector Comparison

Description

Computes cosines between a sentence/ document and multiple words

Usage

multicostring(x, y, tvectors=tvectors, breakdown=FALSE)

Arguments

x
$y \quad$ a character vector specifying multiple single words
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

The format of x (or y) can be of the kind $x<-$ "word1 word2 word3", but also of the kind x <-c ("word1", "word2", "word3"). This allows for simple copy\&paste-inserting of text, but also for using character vectors, e.g. the output of neighbors.
Both x and y can also just consist of one single word. For computing the vector for the document/ sentence specified in x, the simple Addition model is used (see costring).

Value

A numeric giving the cosine between the input sentences/documents

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

```
cosine, Cosine, multicos, multicostring
```


Examples

```
data(wonderland)
multicostring("Alice was beginning to get very tired.",
    "A white rabbit with a clock ran close to her.",
    tvectors=wonderland)
multicostring("Suddenly, a cat appeared in the woods",
names(neighbors("cheshire",n=20,tvectors=wonderland)),
tvectors=wonderland)
```

```
multidocs Comparison of sentence sets
```


Description

Computes cosine values between sets of sentences and/or documents

Usage

multidocs ($\mathrm{x}, \mathrm{y}=\mathrm{x}$, chars=10, tvectors=tvectors, breakdown=FALSE)

Arguments

x	a character vector containing different sentences/documents
y	a character vector containing different sentences/documents ($y=x$ by default)
chars	an integer specifying how many letters (starting from the first) of each sen- tence/document are to be printed in the row.names and col.names of the output matrix
tvectors	the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown	if TRUE, the function breakdown is applied to the input

Details

In the traditional LSA approach, the vector D for a document (or a sentence) consisting of the words $(t 1, ., t n)$ is computed as

$$
D=\sum_{i=1}^{n} t_{n}
$$

This function computes the cosines between two sets of documents (or sentences).
The format of x (or y) should be of the kind $x<-c$ ("this is the first text", "here is another text")

Value

A list of three elements:

cosmat	A numeric matrix giving the cosines between the input sentences/documents
xdocs	A legend for the row.names of cosmat
ydocs	A legend for the col.names of cosmat

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

```
cosine, Cosine, multicos, costring
```


Examples

```
data(wonderland)
multidocs(x = c("Alice was beginning to get very tired.",
    "The red queen greeted Alice."),
    y = c("The mad hatter and the mare hare are having a party.",
            "The hatter sliced the cup of tea in half."),
        tvectors=wonderland)
```

 MultipleChoice Answers Multiple Choice Questions

Description

Selects the nearest word to an input out of a set of options

Usage

MultipleChoice(x,y,tvectors=tvectors,breakdown=FALSE)

Arguments

x
y a character vector specifying multiple answer options
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Computes all the cosines between a given sentence/document or word and multiple answer options. Then selects the nearest option to the input (the option with the highest cosine). This function relies entirely on the costring function.
A warning message will be displayed if all words of one answer alternative are not found in the semantic space.

Value

The nearest option to x as a character

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

See Also

cosine, Cosine, costring

Examples

```
data(wonderland)
LSAfun:::MultipleChoice("Who does the march hare celebrate his unbirthday with?",
    c("Mad Hatter","Red Queen","Caterpillar","Cheshire Cat"),
    tvectors=wonderland,breakdown=TRUE)
```

 neighbors Find nearest neighbors

Description

Returns the n nearest words to a given word or sentence/document

Usage

neighbors(x, n, tvectors=tvectors, breakdown=FALSE)
neighbors

Arguments

x a character vector of length $(x)=1$ or a numeric of length=ncol (tvectors) vector with same dimensionality as LSA space
n the number of neighbors to be computed
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

The format of x should be of the kind $x<-$ "word1 word2 word3" instead of x <-c ("word1", "word2", "word3") if sentences/documents are used as input. This allows for simple copy\&paste-inserting of text.

To import a document Document.txt to from a directory for comparisons, set your working directory to this directory using setwd(). Then use the following command lines:
fileName1 <-"Alice_in_Wonderland.txt"
$x<-r e a d C h a r(f i l e N a m e 1, f i l e . i n f o(f i l e N a m e 1) \$ s i z e)$.
Since x can also be chosen to be any vector of the active LSA Space, this function can be combined with compose() to compute neighbors of complex expressions (see examples)

Value

A named numeric vector. The neighbors are given as names of the vector, and their respective cosines to the input as vector entries.

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

cosine, plot_neighbors, compose

Examples

```
data(wonderland)
neighbors("cheshire",n=20,tvectors=wonderland)
neighbors(compose("mad", "hatter",method="Add",tvectors=wonderland),
n=20,tvectors=wonderland)
```

 normalize Normalize a vector

Description

Normalizes a character vector to a unit vector

Usage

normalize(x)

Arguments

x
a numeric or integer vector

Details

The (euclidean) norm of a vector x is defined as

$$
\|x\|=\sqrt{\Sigma\left(x^{2}\right)}
$$

To normalize a vector to a unit vector u with $\|u\|=1$, the following equation is applied:

$$
x^{\prime}=x /\|x\|
$$

Value

The normalized vector as a numeric

Author(s)

Fritz Günther

Examples

```
normalize(1:2)
## check vector norms:
x<- 1:2
sqrt(sum(x^2)) ## vector norm
sqrt(sum(normalize(x)^2)) ## norm = 1
```

oldbooks A collection of five classic books

Description

This object is a list containing five classical books:

- Around the World in Eighty Days by Jules Verne
- The Three Musketeers by Alexandre Dumas
- Frankenstein by Mary Shelley
- Dracula by Bram Stoker
- The Strange Case of Dr Jekyll and Mr Hyde by Robert Stevenson
as single-element character vectors. All five books were taken from the Project Gutenberg homepage and contain formatting symbols, such as $\backslash n$ for breaks.

Usage

data(oldbooks)

Format

A named list containing five character vectors as elements

Source

Project Gutenberg

References

Dumas, A. (1844). The Three Musketeers. Retrieved from
http://www.gutenberg.org/ebooks/1257
Shelley, M. W. (1818). Frankenstein; Or, The Modern Prometheus. Retrieved from http://www.gutenberg.org/ebooks/84

Stevenson, R. L. (1886). The Strange Case of Dr. Jekyll and Mr. Hyde. Retrieved from http://www.gutenberg.org/ebooks/42
Stoker, B. (1897). Dracula. Retrieved from
http://www.gutenberg.org/ebooks/345
Verne, J.(1873). Around the World in Eighty Days. Retrieved from
http://www.gutenberg.org/ebooks/103

```
pairwise Pairwise cosine computation
```


Description

Computes pairwise cosine similarities

Usage

pairwise (x, y, tvectors=tvectors, breakdown=FALSE)

Arguments

X
$y \quad$ a character vector
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

Computes pairwise cosine similarities for two vectors of words. These vectors need to have the same length.

Value

A vector of the same length as x and y containing the pairwise cosine similarities. Returns NA if at least one word in a pair is not found in the semantic space.

Author(s)

Fritz Günther

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Dennis, S. (2007). How to use the LSA Web Site. In T. K. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 35-56). Mahwah, NJ: Erlbaum.
http://lsa.colorado.edu/

See Also

cosine, Cosine, multicos,

Examples

```
data(wonderland)
pairwise("mouse rabbit cat","king queen hearts",
        tvectors=wonderland)
```

 plausibility Compute word (or compound) plausibility

Description

Gives measures of semantic transparency (plausibility) for words or compounds

Usage

plausibility(x, method, $n=10$, stem,tvectors=tvectors, breakdown=FALSE)

Arguments

X
method the measure of semantic transparency, can be one of $n _d e n s i t y, l e n g t h$, proximity, or entropy (see Details)
n
stem the stem (or word) of comparison for the proximity method
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input

Details

The format of x should be of the kind $x<-$ "word1 word2 word3" instead of
$x<-c$ ("word1", "word2", "word3") if phrases of more than one word are used as input. Simple vector addition of the constituent vectors is then used to compute the phrase vector.
Since x can also be chosen to be any vector of the active LSA Space, this function can be combined with compose() to compute semantic transparency measures of complex expressions (see examples). Since semantic transparency methods were developed as measures for composed vectors, applying them makes most sense for those.

The methods are defined as follows:

- method = "n_density" The average cosine between a (word or phrase) vector and its n nearest neighbors (see neighbors)
- method = "length" The length of a vector (as computed by the standard Euclidean norm)
- method = "proximity" The cosine similarity between a compound vector and its stem word (for example between mad hatter and hatter or between objectify and object)
- method = "entropy" The entropy of the K-dimensional vector with the vector components t_{1}, \ldots, t_{K}, as computed by

$$
\text { entropy }=\log K-\sum t_{i} * \log t_{i}
$$

Value

The semantic transparency as a numeric

Author(s)

Fritz Günther

References

Lazaridou, A., Vecchi, E., \& Baroni, M. (2013). Fish transporters and miracle homes: How compositional distributional semantics can help NP parsing. In Proceedings of EMNLP 2013 (pp. 1908 - 1913). Seattle, WA.

Marelli, M., \& Baroni, M. (in press). Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics. Psychological Review.

Vecchi, E. M., Baroni, M., \& Zamparelli, R. (2011). (Linear) maps of the impossible: Capturing semantic anomalies in distributional space. In Proceedings of the ACL Workshop on Distributional Semantics and Compositionality (pp. 1-9). Portland, OR.

See Also

Cosine, neighbors, compose

Examples

```
data(wonderland)
plausibility("cheshire cat", method="n_density", \(n=10\), tvectors=wonderland)
plausibility (compose("mad", "hatter", method="Multiply", tvectors=wonderland),
method="proximity", stem="hatter", tvectors=wonderland)
```

```
plot_doclist 2D- or 3D-Plot of a list of sentences/documents
```


Description

2D or 3D-Plot of mutual word similarities to a given list of sentences/documents

Usage

plot_doclist(x, connect.lines="all", method="PCA", dims=3,
axes $=F$, box $=F$, cex $=1$, chars $=10$, legend=T, size $=c(800,800)$,
alpha="graded", alpha.grade=1, col="rainbow",
tvectors=tvectors,breakdown=FALSE, ...)

Arguments

x
dims the dimensionality of the plot; set either dims $=2$ or dims $=3$
method the method to be applied; either a Principal Component Analysis (method="PCA") or a Multidimensional Scaling (method="MDS")
connect.lines (3d plot only) the number of closest associate words each word is connected with via line. Setting connect.lines="all" (default) will draw all connecting lines and will automatically apply alpha="graded"
axes (3d plot only) whether axes shall be included in the plot
box (3d plot only) whether a box shall be drawn around the plot
cex (2d Plot only) A numerical value giving the amount by which plotting text should be magnified relative to the default.
chars an integer specifying how many letters (starting from the first) of each sentence/document are to be printed in the plot
legend (3d plot only) whether a legend shall be drawn illustrating the color scheme of the connect.lines. The legend is inserted as a background bitmap to the plot using bgplot 3 d . Therefore, they do not resize very gracefully (see the bgplot3d documentation for more information).
size (3d plot only) A numeric vector with two elements, the first specifying the width and the second specifying the height of the plot device.

tvectors	the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown	if TRUE, the function breakdown is applied to the input
alpha	(3d plot only) A numeric vector specifying the luminance of the connect. lines. By setting alpha="graded", the luminance of every line will be adjusted to the cosine between the two words it connects.
alpha.grade	(3d plot only) Only relevant if alpha="graded". Specify a numeric value for alpha.grade to scale the luminance of all connect. lines up (alpha.grade > 1) or down (alpha.grade <1) by that factor.
col	(3d plot only) A vector specifying the color of the connect.lines. With setting col ="rainbow" (default), the color of every line will be adjusted to the cosine between the two words it connects, according to the rainbow palette. Other available color palettes for this purpose are heat.colors, terrain.colors, topo. colors, and cm. colors (see rainbow). Additionally, you can customize any color scale of your choice by providing an input specifying more than one color (for example col = c("black", "blue", "red")).
	additional arguments which will be passed to plot3d (in a three-dimensional plot only)

Details

Computes all pairwise similarities within a given list of sentences/documents. On this similarity matrix, a Principal Component Analysis (PCA) or a Multidimensional Sclaing (MDS) is applied to get a two- or three-dimensional solution that best captures the similarity structure. This solution is then plotted.
In the traditional LSA approach, the vector D for a document (or a sentence) consisting of the words $(t 1, \ldots, t n)$ is computed as

$$
D=\sum_{i=1}^{n} t_{n}
$$

This function then computes the the cosines between two sets of documents (or sentences).
The format of x should be of the kind $x<-c$ ("this is the first text", "here is another text") For creating pretty plots showing the similarity structure within this list of words best, set connect.lines="all" and col="rainbow"

Value

see plot3d: this function is called for the side effect of drawing the plot; a vector of object IDs is returned.
plot_doclist further prints a list with two elements:
coordinates the coordinate vectors of the sentences/documents in the plot as a data frame
xdocs A legend for the sentence/document labels in the plot and in the coordinates

Author(s)

Fritz Günther, Taylor Fedechko

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Mardia, K.V., Kent, J.T., \& Bibby, J.M. (1979). Multivariate Analysis, London: Academic Press.

See Also

cosine, multidocs, plot_neighbors, plot_wordlist, plot3d, princomp, rainbow

Examples

```
data(wonderland)
## Standard Plot
docs <- c("Alice was beginning to get very tired.",
    "The red queen greeted Alice.",
    "The mad hatter and the mare hare are having a party.",
    "The hatter sliced the cup of tea in half.")
plot_doclist(docs,tvectors=wonderland,method="MDS",dims=2)
```

plot_neighbors 2D- or 3D-Plot of neighbors

Description

2D- or 3D-Approximation of the neighborhood of a given word/sentence

Usage

plot_neighbors(x, n, connect.lines="all", start.lines=T, method="PCA", dims=3, axes=F, box=F, cex=1,legend=T, size $=c(800,800)$, alpha="graded", alpha.grade = 1, col="rainbow", tvectors=tvectors,breakdown=FALSE, ...)

Arguments

$x \quad$ a character vector of length $(x)=1$ or a numeric of length=ncol (tvectors) vector with same dimensionality as LSA space
n
dims
the number of neighbors to be computed
the dimensionality of the plot; set either dims $=2$ or dims $=3$
method the method to be applied; either a Principal Component Analysis (method="PCA")
or a Multidimensional Scaling (method="MDS")
$\left.\begin{array}{ll}\text { connect.lines } & \begin{array}{l}\text { (3d plot only) the number of closest associate words each word is connected with } \\ \text { via line. Setting connect.lines="all" (default) will draw all connecting lines } \\ \text { and will automatically apply alpha="graded"; it will furthermore override the } \\ \text { start.lines argument }\end{array} \\ \text { start.lines } \\ \text { axes } \\ \text { (3d plot only) whether lines shall be drawn between x and all the neighbors } \\ \text { box } & \text { (3d plot only) whether axes shall be included in the plot } \\ \text { cex } & \text { (3d plot only) whether a box shall be drawn around the plot } \\ & \text { (2d Plot only) A numerical value giving the amount by which plotting text } \\ \text { should be magnified relative to the default. } \\ \text { legend } & \text { (3d plot only) whether a legend shall be drawn illustrating the color scheme of } \\ \text { the connect.lines. The legend is inserted as a background bitmap to the plot }\end{array}\right\}$
additional arguments which will be passed to plot3d (in a three-dimensional plot only)

Details

Attempts to create an image of the semantic neighborhood (based on cosine similarity) to a given word, sentence/ document, or vector. An attempt is made to depict this subpart of the LSA space in a two- or three-dimensional plot.
To achieve this, either a Principal Component Analysis (PCA) or a Multidimensional Scaling (MDS) is computed to preserve the interconnections between all the words in this neighborhod
as good as possible. Therefore, it is important to note that the image created from this function is only the best two- or three-dimensional approximation to the true LSA space subpart.

For creating pretty plots showing the similarity structure within this neighborhood best, set connect.lines="all" and col="rainbow"

Value

For three-dimensional plots:see plot3d: this function is called for the side effect of drawing the plot; a vector of object IDs is returned
plot_neighbors also gives the coordinate vectors of the words in the plot as a data frame

Author(s)

Fritz Günther, Taylor Fedechko

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Mardia, K.V., Kent, J.T., \& Bibby, J.M. (1979). Multivariate Analysis, London: Academic Press.

See Also

cosine, neighbors, multicos, plot_wordlist, plot3d, princomp

Examples

```
data(wonderland)
## Standard Plot
plot_neighbors("cheshire",n=20,tvectors=wonderland)
## Pretty Plot
plot_neighbors("cheshire",n=20,tvectors=wonderland,
    connect.lines="all",col="rainbow")
plot_neighbors(compose("mad","hatter",tvectors=wonderland),
    n=20, connect.lines=2,tvectors=wonderland)
```


Description

2D or 3D-Plot of mutual word similarities to a given list of words

Usage

plot_wordlist(x, connect.lines="all", method="PCA", dims=3, axes $=F$, box $=F$, cex $=1$, legend $=T$, size $=c(800,800)$, alpha="graded", alpha.grade=1, col="rainbow", tvectors=tvectors,breakdown=FALSE, ...)

Arguments

$\left.\begin{array}{ll}\mathrm{x} \\ \text { dims } \\ \text { method } & \begin{array}{l}\text { a character vector of length }(x)>1 \text { that contains multiple sentences/documents } \\ \text { the dimensionality of the plot; set either dims }=2 \text { or dims }=3 \\ \text { the method to be applied; either a Principal Component Analysis (method="PCA") } \\ \text { or a Multidimensional Scaling (method="MDS") }\end{array} \\ \text { connect.lines } \\ \text { (3d plot only) the number of closest associate words each word is connected } \\ \text { with via line. Setting connect.lines="all" (default) will draw all connecting } \\ \text { lines and will automatically apply alpha="graded". } \\ \text { (3d plot only) whether axes shall be included in the plot } \\ \text { (3d plot only) whether a box shall be drawn around the plot }\end{array}\right\}$
col (3d plot only) A vector specifying the color of the connect.lines. With setting col ="rainbow" (default), the color of every line will be adjusted to the cosine between the two words it connects, according to the rainbow palette. Other available color palettes for this purpose are heat.colors, terrain.colors, topo.colors, and cm. colors (see rainbow). Additionally, you can customize any color scale of your choice by providing an input specifying more than one color (for example col = c("black", "blue", "red")).
$\ldots \quad$ additional arguments which will be passed to plot3d (in a three-dimensional plot only)

Details

Computes all pairwise similarities within a given list of words. On this similarity matrix, a Principal Component Analysis (PCA) or a Multidimensional Sclaing (MDS) is applied to get a two- or three-dimensional solution that best captures the similarity structure. This solution is then plotted. For creating pretty plots showing the similarity structure within this list of words best, set connect.lines="all" and col="rainbow"

Value

see plot3d: this function is called for the side effect of drawing the plot; a vector of object IDs is returned.
plot_wordlist also gives the coordinate vectors of the words in the plot as a data frame

Author(s)

Fritz Günther, Taylor Fedechko

References

Landauer, T.K., \& Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.

Mardia, K.V., Kent, J.T., \& Bibby, J.M. (1979). Multivariate Analysis, London: Academic Press.

See Also

cosine, neighbors, multicos, plot_neighbors, plot3d, princomp, rainbow

Examples

```
data(wonderland)
## Standard Plot
words <- c("alice","hatter", "queen","knight","hare", "cheshire")
```


Description

Computes vectors for complex expressions of type PREDICATE[ARGUMENT] by applying the method of Kintsch (2001) (see Details).

Usage

Predication(P, A, m, k, tvectors=tvectors, breakdown=FALSE, norm="none")

Arguments

P Predicate of the expression, a single word (character vector)
A Argument of the expression, a single word (character vector)
m number of nearest words to the Predicate that are initially activated
$k \quad$ size of the k-neighborhood; $k \leq m$
tvectors the semantic space in which the computation is to be done (a numeric matrix where every row is a word vector)
breakdown if TRUE, the function breakdown is applied to the input
norm whether to normalize the single word vectors before applying a composition function. Setting norm = "none" will not perform any normalizations, setting norm = "all" will normalize every involved word vector (Predicate, Argument, and every single activated neighbor). Setting norm = "block" will normalize the Argument vector and will normalize the [Predicate + neighbors] vector, to weight the Argument and the "Predicate in context" equally.

Details

The vector for the expression is computed following the Predication Process by Kintsch (2001): The m nearest neighbors to the Predicate are computed. Of those, the k nearest neighbors to the Argument are selected. The vector for the expression is then computed as the sum of Predicate vector, Argument vector, and the vectors of those k neighbors (the k -neighborhood).

Value

An object of class Pred: This object is a list consisting of:
\$PA The vector for the complex expression as described above
\$P.Pred The vector for Predicate plus the k-neighborhoodvectors without the Argument vector

\$neighbors	The words in the k-neighborhood.
$\$ P$	The Predicate given as input
$\$ A$	The Argument given as input

Author(s)

Fritz Günther

References

Kintsch, W. (2001). Predication. Cognitive science, 25, 173-202.

See Also

cosine, neighbors, multicos, compose

Examples

data(wonderland)
Predication($\mathrm{P}=$ "mad", $\mathrm{A}=$ "hatter", $\mathrm{m}=20, \mathrm{k}=3$, tvectors=wonderland)
priming \quad Simulated data for a Semantic Priming Experiment

Description

A data frame containing simulated data for a Semantic Priming Experiment. This data contains 514 prime-target pairs, which are taken from the Hutchison, Balota, Cortese and Watson (2008) study. These pairs are generated by pairing each of 257 target words with one semantically related and one semantically unrelated prime.
The data frame contains four columns:

- First column: Prime Words
- Second column: Target Words
- Third column: Simulated Reaction Times
- Fourth column: Specifies whether a prime-target pair is considered semantically related or unrelated

Usage

data(priming)

Format

A data frame with 514 rows and 4 columns

References

Hutchison, K. A., Balota, D. A., Cortese, M. \& Watson, J. M. (2008). Predicting semantic priming at the item level. Quarterly Journal of Experimental Psychology, 61, 1036-1066.

```
syntest A multiple choice test for synonyms and antonyms
```


Description

This object multiple choice test for synonyms and antonyms, consisting of seven columns.

1. The first column defines the question, i.e. the word a synonym or an antonym has to be found for.
2. The second up to the fifth column show the possible answer alternatives.
3. The sixth column defines the correct answer.
4. The seventh column indicates whether a synonym or an antonym has to be found for the word in question.

The test consists of twenty questions, which are given in the twenty rows of the data frame.

Usage

data(syntest)

Format

A data frame with 20 rows and 7 columns

```
wonderland
LSA Space: Alice's Adventures in Wonderland
```


Description

This data set is a 50-dimensional LSA space derived from Lewis Carrol's book "Alice's Adventures in Wonderland". The book was split into 791 paragraphs which served as documents for the LSA algorithm (Landauer, Foltz \& Laham, 1998). Only words that appeared in at least two documents were used for building the LSA space.
This LSA space contains 1123 different terms, all in lower case letters, and was created using the lsa-package. It can be used as tvectors for all the functions in the LSAfun-package.

Usage

data(wonderland)

Format

A 1123×50 matrix with terms as rownames.

Source

Alice in Wonderland from Project Gutenberg

References

Landauer, T., Foltz, P., and Laham, D. (1998) Introduction to Latent Semantic Analysis. In: Discourse Processes 25, pp. 259-284.
Carroll, L. (1865). Alice's Adventures in Wonderland. New York: MacMillan.

Index

```
*Topic Books
    oldbooks, 25
*Topic LSA space
    wonderland, }3
*Topic Synonym Test
    priming, 37
    syntest,38
asym, 3, 12, 13, 15
bgplot3d, 29, 32, 34
breakdown, 3, 5, 6, 7, 9, 11, 12, 14-18, 20, 21,
    23,26,27,30,32,34,36
choose.target, }
coherence, }
compose, 9, 23, 28, 37
conSIM, 5, 11
Cosine, 5, 7, 8, 12, 12, 15,18, 19, 21, 22, 27,
        28
cosine, 7, 8, 15,18,19,21-23, 27, 31, 33,35,
        37
costring, 8, 13,18,19, 21, 22
distance, 13,15
genericSummary,16
gsub, 6
lsa, 2, 3, 17, 38
LSAfun-package, 2
multicos, 15, 17, 19, 21, 27, 33, 35, 37
multicostring, 15, 18, 18, 19
multidocs, 20,31
MultipleChoice, 21
neighbors, 7, 19, 22, 28, 33, 35, 37
normalize, 9, 24,36
oldbooks, 25
```

*Topic Books

oldbooks, 25
*Topic LSA space
wonderland, 38
*Topic Synonym Test
priming, 37
syntest, 38
asym, $3,12,13,15$
bgplot3d, 29, 32, 34
breakdown, 3, 5, 6, 7, 9, 11, 12, 14-18, 20, 21, $23,26,27,30,32,34,36$
choose.target, 6
coherence, 7
compose, 9, 23, 28, 37
conSIM, 5, 11
Cosine, $5,7,8,12,12,15,18,19,21,22,27$, 28
cosine, $7,8,15,18,19,21-23,27,31,33,35$, 37
costring, $8,13,18,19,21,22$
distance, 13, 15
genericSummary, 16
gsub, 6
1sa, 2, 3, 17, 38
LSAfun-package, 2
multicos, $15,17,19,21,27,33,35,37$
multicostring, 15, 18, 18, 19
mulidocs, 20, 31
MultipleChoice, 21
neighbors, 7, 19, 22, 28, 33, 35, 37
normalize, 9, 24, 36
oldbooks, 25
pairwise, 26
plausibility, 27
plot3d, 30-33, 35
plot_doclist, 29
plot_neighbors, 23, 31, 31, 35
plot_wordlist, 31, 33, 34
Predication, 9, 10, 36
priming, 37
princomp, 31, 33, 35
rainbow, 30-32, 35
svd, 17
syntest, 38
textmatrix, 16, 17
wonderland, 3, 38

