
Package ‘LPStimeSeries’
March 27, 2015

Version 1.0-5

Date 2015-03-27

Title Learned Pattern Similarity and Representation for Time Series

Author Learned Pattern Similarity (LPS) for time series by Mustafa Gokce Baydogan

Depends R (>= 2.5.0)

Imports RColorBrewer

Maintainer Mustafa Gokce Baydogan <baydoganmustafa@gmail.com>

Description Learned Pattern Similarity (LPS) for time series.
Implements a novel approach to model the dependency structure
in time series that generalizes the concept of autoregression to local
auto-patterns. Generates a pattern-based representation of time series
along with a similarity measure called Learned Pattern Similarity (LPS).
Introduces a generalized autoregressive kernel.This package is based on the
'randomForest' package by Andy Liaw.

License GPL (>= 2)

URL http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-03-27 18:54:54

R topics documented:
computeSimilarity . 2
getTreeInfo . 3
GunPoint . 5
learnPattern . 6
LPSNews . 10
plot.learnPattern . 10
plotMDS . 11
predict.learnPattern . 12
tunelearnPattern . 14
visualizePattern . 16

1

http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

2 computeSimilarity

Index 18

computeSimilarity Compute similarity between time series based on learned patterns

Description

Compute similarity between time series. Raw time series can be provided together with learnPattern
object so that the representation for the time series are generated internally and similarity is com-
puted based on these representations. The other option is to provide the representations (instead of
raw time series) and to compute the similarity without a need for learnPattern object.

Usage

computeSimilarity(object=NULL,testseries=NULL,refseries=NULL,
maxdepth=NULL,which.tree=NULL,sim.type=0, terminal=TRUE,
testrepresentation,refrepresentation)

Arguments

object an object of class learnPattern.

refseries reference time series.

testseries test time series.

maxdepth maximum depth level to be used to generate representations for similarity com-
putations.

which.tree array of trees to be used for similarity computation.

sim.type type of the similarity to compute. If set to zero, dissimilarity (absolute differ-
ences of the number of patterns) is computed. If set to one, similarity (minimum
number of the matching patterns) is computed.

terminal TRUE if similarity is computed over the learned representations.
testrepresentation

learned representation for test time series.
refrepresentation

learned representation for reference time series.

Value

A similarity matrix of size “the number of test series“ by “the number of reference series“ is re-
turned. Similarity between test series and reference series is defined as the number of mismatching
patterns based on the representation generated by the trees. See LPS paper for details.

Note

Similarity matrix can also be computed over representations if it is generated using predict.learnPattern.
This will probably take longer time compared to computing the similarity directly using the en-
semble. However, if you are using LPS for retrieval purposes, bounding schemes (such as early
abondon) can be used (requires further implementation) with the learned representations.

getTreeInfo 3

Author(s)

Mustafa Gokce Baydogan

References

Baydogan, M. G. (2013), “Learned Pattern Similarity“, Homepage: http://www.mustafabaydogan.
com/learned-pattern-similarity-lps.html.

See Also

learnPattern, predict.learnPattern

Examples

data(GunPoint)
set.seed(71)
Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)

Find the similarity between test and training series
sim=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)

Find similarity using representations,
First generate representations
trainRep=predict(ensemble, GunPoint$trainseries, nodes=TRUE)
testRep=predict(ensemble, GunPoint$testseries, nodes=TRUE)

Then compute the similarity (city-block distance),
takes longer but we keep the representation
sim2=computeSimilarity(testrepresentation=testRep,refrepresentation=trainRep)

Find the similarity based on first 100 trees
sim=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries,which.tree=c(1:100))

getTreeInfo Extract a single tree from the ensemble.

Description

This function extracts the structure of a tree from a learnPattern object.

Usage

getTreeInfo(object, which.tree=1)

http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html
http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

4 getTreeInfo

Arguments

object a learnPattern object.

which.tree which tree to extract?

Value

is a list with the following components:

segment.length the proportion of the time series length used for both predictors and targets.

target starting time of the target segment.

target.type type of the target segment; 1 if observed series, 2 if difference series.

tree Tree structure matrix with seven columns and number of rows equal to total
number of nodes in the tree.

The seven columns of the tree structure matrix are:

left daughter the row where the left daughter node is; 0 if the node is terminal

right daughter the row where the right daughter node is; 0 if the node is terminal

split segment start time of the segment used to split the node

split type type of the predictor segment used to split the node; 1 if observed series, 2 if the
different series are used. 0 if the node is terminal

split point where the best split is

status is the node terminal (-1) or not (-3)

depth the depth of the node

prediction the prediction for the node

Note

For numerical predictors, data with values of the variable less than or equal to the splitting point go
to the left daughter node.

Author(s)

Mustafa Gokce Baydogan

See Also

learnPattern

Examples

data(GunPoint)
set.seed(71)

Learn patterns on GunPoint training series with 50 trees
ensemble=learnPattern(GunPoint$trainseries,ntree=50)
getTreeInfo(ensemble, 3)

GunPoint 5

GunPoint The Gun-Point Data

Description

This is the Gun-Point data from The UCR Time Series Database.

Usage

data(GunPoint)

Format

GunPoint is a list with one training time series dataset and one test time series dataset provided
as separate matrices. There are 50 cases (rows) for training dataset with 150 variables (columns).
Similarly there are 150 cases for test dataset with 150 variables. Variables are representing the
observations over time. In other words, they are ordered so that a row is a univariate time series.
Originally, this is a classification problem where there are two classes. Therefore, list stores the
class information for both training and test time series. This information is stored in arrays of
length 50 and 150 for training and test time series respectively (so each time series is associated
with a class).

Description by Chotirat Ann Ratanamahatana and Eamonn Keogh in their publication “Everything
you know about Dynamic Time Warping is Wrong“ is as follows:

“...This dataset comes from the video surveillance domain. The dataset has two classes, each con-
taining 100 instances. All instances were created using one female actor and one male actor in a
single session. The two classes are: Gun-Draw: The actors have their hands by their sides. They
draw a replicate gun from a hip-mounted holster, point it at a target for approximately one second,
then return the gun to the holster, and their hands to their sides. Point: The actors have their gun by
their sides. They point with their index fingers to a target for approximately one second, and then
return their hands to their sides. For both classes, we tracked the centroid of the actor’s right hands
in both X- and Y-axes, which appear to be highly correlated; therefore, in this experiment, we only
consider the X-axis for simplicity...“

Author(s)

Mustafa Gokce Baydogan

Source

The original data is at http://www.cs.ucr.edu/~eamonn/time_series_data/.

References

Ratanamahatana, C. A. and Keogh. E. (2004). Everything you know about Dynamic Time Warping
is Wrong. In proceedings of SIAM International Conference on Data Mining (SDM05), pp.506-510
Newport Beach, CA, April 21-23

http://www.cs.ucr.edu/~eamonn/time_series_data/

6 learnPattern

See Also

learnPattern, computeSimilarity

Examples

data(GunPoint)
set.seed(71)

Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)
print(ensemble)

Find the similarity between test and training series based on the learned model
similarity=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)

Find the index of 1 nearest neighbor (1NN) training series for each test series
NearestNeighbor=apply(similarity,1,which.min)

Predicted class for each test series
predicted=GunPoint$trainclass[NearestNeighbor]
print(predicted)

learnPattern Learn Local Auto-Patterns for Time Series Representation and Simi-
larity

Description

learnPattern implements ensemble of regression trees (based on Breiman and Cutler’s original
Fortran code) to learn local auto-patterns for time series representation. Ensemble of regression
trees are used to learn an autoregressive model. A local time-varying autoregressive behavior is
learned by the ensemble.

Usage

Default S3 method:
learnPattern(x,

segment.factor=c(0.05,0.95),
random.seg=TRUE, target.diff=TRUE, segment.diff=TRUE,
random.split=0,
ntree=200,
mtry=1,
replace=FALSE,
sampsize=if (replace) ceiling(0.632*nrow(x)) else nrow(x),
maxdepth=6,
nodesize=5,
do.trace=FALSE,
keep.forest=TRUE,

learnPattern 7

oob.pred=FALSE,
keep.errors=FALSE,
keep.inbag=FALSE, ...)

S3 method for class 'learnPattern'
print(x, ...)

Arguments

x time series database as a matrix in UCR format. Rows are univariate time series,
columns are observations (for the print method, a learnPattern object).

segment.factor The proportion of the time series length to be used for both predictors and tar-
gets, if random.seg is TRUE (default), minimum and maximum factor should be
provided as array of length two.

random.seg TRUE if segment length is random between thresholds defined by segment.factor

target.diff Can target segment be a difference feature?

segment.diff Can predictor segments be difference feature?

random.split Type of the split. If set to zero (0), splits are generated based on decrease in SSE
in target segment Setting of one (1) generates the split value randomly between
max and min values. Setting of two (2) generates a kd-tree type of split (i.e.
median of the values at each node is chosen as the split).

ntree Number of trees to grow. Larger number of trees are preferred if there is no
concern regarding the computation time.

mtry Number of predictor segments randomly sampled as candidates at each split.
Note that it is preset to 1 for now.

replace Should bagging of time series be done with replacement? All training time series
are used if FALSE (default).

sampsize Size(s) of sample to draw with replacement if replace is set to TRUE

maxdepth The maximum depth of the trees in the ensemble.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time).

do.trace If set to TRUE, give a more verbose output as learnPattern is run. If set to
some integer, then running output is printed for every do.trace trees.

keep.forest If set to FALSE, the forest will not be retained in the output object.

oob.pred if replace is set to TRUE, predictions for the time series observations are returned.

keep.errors If set to TRUE, the mean square error (MSE) of target prediction over target
segments is evaluated for each tree. If oob.pred=TRUE, this information is eval-
uated on “out-of-bag” samples at each tree.

keep.inbag Should an n by ntree matrix be returned that keeps track of which samples are
“in-bag” in which trees

... optional parameters to be passed to the low level function learnPattern.

8 learnPattern

Value

An object of class learnPattern, which is a list with the following components:

call the original call to learnPattern.

type regression

segment.factor the proportion of the time series length to be used for both predictors and targets.

segment.length used segment length settings by the trees of ensemble

nobs number of observations in a segment

ntree number of trees grown

maxdepth maximum depth level for each tree

mtry number of predictor segments sampled for spliting at each node.

target starting time of the target segment for each tree.

target.type type of the target segment; 1 if observed series, 2 if difference series.

forest a list that contains the entire forest; NULL if keep.forest=FALSE.

oobprediction predicted observations based on “out-of-bag” time series are returned if oob.pred=TRUE

ooberrors Mean square error (MSE) over the trees evaluated using the predicted observa-
tions on “out-of-bag” time series is returned if oob.pred=TRUE.

inbag n by ntree matrix be returned that keeps track of which samples are “in-bag” in
which trees if keep.inbag=TRUE

errors Mean square error (MSE) of target prediction over target segments for each tree.
If oob.pred=TRUE, Mean square error (MSE) is reported based on “out-of-bag”
samples at each tree.

Note

OOB predictions may have missing values (i.e. NA) if time series is not left out-of-bag during
computations. Even, it is left out-of-bag, there is a potential of some observations (i.e. time frames)
not being selected as the target. In such cases, there will no OOB predictions.

Author(s)

Mustafa Gokce Baydogan <baydoganmustafa@gmail.com>, based on original Fortran code by Leo
Breiman and Adele Cutler, R port by Andy Liaw and Matthew Wiener.

References

Baydogan, M. G. (2013), “Learned Pattern Similarity“, Homepage: http://www.mustafabaydogan.
com/learned-pattern-similarity-lps.html.

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

predict.learnPattern, computeSimilarity, tunelearnPattern

http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html
http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

learnPattern 9

Examples

data(GunPoint)
set.seed(71)

Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)
print(ensemble)

Find the similarity between test and training series based on the learned model
similarity=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)

Find the index of 1 nearest neighbor (1NN) training series for each test series
NearestNeighbor=apply(similarity,1,which.min)

Predicted class for each test series
predicted=GunPoint$trainclass[NearestNeighbor]

Compute the percentage of accurate predictions
accuracy=sum(predicted==GunPoint$testclass)/nrow(GunPoint$testseries)
print(100*accuracy)

Learn patterns randomly on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries, random.split=1)

Find the similarity between test and training series and classify test series
similarity=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)
NearestNeighbor=apply(similarity,1,which.min)
predicted=GunPoint$trainclass[NearestNeighbor]
accuracy=sum(predicted==GunPoint$testclass)/nrow(GunPoint$testseries)
print(100*accuracy)

Learn patterns by training each tree on a random subsample
and classify test time series
ensemble=learnPattern(GunPoint$trainseries,replace=TRUE)
similarity=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)
NearestNeighbor=apply(similarity,1,which.min)
predicted=GunPoint$trainclass[NearestNeighbor]
print(predicted)

Learn patterns and do predictions on OOB time series
ensemble=learnPattern(GunPoint$trainseries,replace=TRUE,target.diff=FALSE,oob.pred=TRUE)
Plot first series and its OOB approximation
plot(GunPoint$trainseries[1,],xlab='Time',ylab='Observation',
type='l',lty=1,lwd=2)
points(c(1:ncol(GunPoint$trainseries)),ensemble$oobpredictions[1,],
type='l',col=2,lty=2,lwd=2)
legend('topleft',c('Original series','Approximation'),
col=c(1,2),lty=c(1,2),lwd=2)

10 plot.learnPattern

LPSNews Show the NEWS file

Description

Show the NEWS file of the LPStimeSeries package.

Usage

LPSNews()

Value

None.

plot.learnPattern Plot method for learnPattern objects

Description

Plot the MSE of a learnPattern object over trees based on out-of-bag predictions

Usage

S3 method for class 'learnPattern'
plot(x, type="l", main=deparse(substitute(x)), ...)

Arguments

x an object of class learnPattern.

type type of plot.

main main title of the plot.

... other graphical parameters.

Value

Invisibly, MSE of the learnPattern object.

Note

This function does not work for learnPattern if oob.predict=FALSE during training.

Author(s)

Mustafa Gokce Baydogan

plotMDS 11

See Also

learnPattern

Examples

data(GunPoint)
ensemble=learnPattern(GunPoint$trainseries,oob.pred=TRUE,replace=TRUE)
plot(ensemble)

plotMDS Multi-dimensional Scaling Plot of Learned Pattern Similarity

Description

Plot the scaling coordinates of the Learned Pattern Similarity.

Usage

plotMDS(object, newdata, classinfo, k=2, palette=NULL, pch=20, ...)

Arguments

object an object of class learnPattern, as that created by the function learnPattern.

newdata a data frame or matrix containing the data for similarity computation.

classinfo labels for the time series for color-coding.

k number of dimensions for the scaling coordinates.

palette colors to use to distinguish the classes; length must be the equal to the number
of levels.

pch plotting symbols to use.

... other graphical parameters.

Value

The output of cmdscale on scaled Learned Pattern similarity is returned invisibly.

Note

If k > 2, pairs is used to produce the scatterplot matrix of the coordinates.

The entries of the similarity matrix is divided by the maximum possible similarity which is 2*sum(object$nobs)

Author(s)

Mustafa Gokce Baydogan

12 predict.learnPattern

See Also

learnPattern

Examples

set.seed(1)
data(GunPoint)
Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)
plotMDS(ensemble, GunPoint$trainseries,GunPoint$trainclass)

Using different symbols for the classes:
plotMDS(ensemble, GunPoint$trainseries,GunPoint$trainclass,

palette=rep(1, 2), pch=as.numeric(GunPoint$trainclass))

Learn patterns on GunPoint training series with random splits
ensemble=learnPattern(GunPoint$trainseries,random.split=1)
plotMDS(ensemble, GunPoint$trainseries,GunPoint$trainclass,main='Random Splits')

predict.learnPattern predict method for learnPattern objects

Description

Representation generation for test data using learnPattern.

Usage

S3 method for class 'learnPattern'
predict(object, newdata, which.tree=NULL,

nodes=TRUE, maxdepth=NULL, ...)

Arguments

object an object of class learnPattern, as that created by the function learnPattern.

newdata a data frame or matrix containing new data.

which.tree NULL if the representation is needed to be generated over all trees of ensemble.
Set to an integer value if the representation is required to be generated for one
tree specified by the value set.

nodes TRUE generates the representation based on the trees. . FALSE generates a real-
valued prediction for each time point.

maxdepth The maximum depth level to generate the representation

... not used currently.

predict.learnPattern 13

Value

Returns the learned pattern representation for the time series in the dataset if nodes is set TRUE.
Basically, it is the count of observed patterns at each terminal node. Otherwise predicted values for
each time series in newdata are returned.

Author(s)

Mustafa Gokce Baydogan

References

Baydogan, M. G. (2013), “Learned Pattern Similarity“, Homepage: http://www.mustafabaydogan.
com/learned-pattern-similarity-lps.html.

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

learnPattern

Examples

data(GunPoint)
set.seed(71)
Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)

Find representations
trainRep=predict(ensemble, GunPoint$trainseries, nodes=TRUE)
testRep=predict(ensemble, GunPoint$testseries, nodes=TRUE)

Check size of the representation for training data
print(dim(trainRep))

Learn patterns on GunPoint training series (target cannot be difference series)
ensemble=learnPattern(GunPoint$trainseries,target.diff=FALSE)

Predict observations for test time series
predicted=predict(ensemble,GunPoint$testseries,nodes=FALSE)

Plot an example test time series
plot(GunPoint$testseries[5,],type='l',lty=1,xlab='Time',ylab='Observation',lwd=2)
points(c(1:ncol(GunPoint$testseries)),predicted$predictions[5,],type='l',col=2,lty=2,lwd=2)
legend('topleft',c('Original series','Approximation'),col=c(1,2),lty=c(1,2),lwd=2)

http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html
http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

14 tunelearnPattern

tunelearnPattern Tune Parameters of LPS for Time Series Classification

Description

tunelearnPattern implements parameter selection for LPS in time series classification problems.
LPS requires the setting of segment length (if segment length is not random) and depth parame-
ter. Given training time series and alternative parameter settings, the best set of parameters that
minimizes the cross-validation error rate is returned.

Usage

tunelearnPattern(x, y, unlabeledx=NULL, nfolds=5,
segmentlevels=c(0.25,0.5,0.75), random.split=0,
mindepth=4, maxdepth=8, depthstep=2,
ntreeTry=25, target.diff=TRUE, segment.diff=TRUE, ...)

Arguments

x time series database as a matrix in UCR format. Rows are univariate time series,
columns are observations (for the print method, a learnPattern object).

y labels for the time series given by x

unlabeledx unlabeled time series dataset. Introduced for future purposes as LPS can benefit
from unlabeled data.

nfolds number of cross-validation folds for parameter evaluation.

segmentlevels alternative segment level settings to be evaluated. Settings are provided as an
array.

random.split Type of the split. If set to zero (0), splits are generated based on decrease in SSE
in target segment Setting of one (1) generates the split value randomly between
max and min values. Setting of two (2) generates a kd-tree type of split (i.e.
median of the values at each node is chosen as the split).

mindepth minimum depth level to be evaluated.

maxdepth maximum depth level to be evaluated.

depthstep step size to determine the depth levels between mindepth and maxdepth to be
evaluated.

ntreeTry number of trees to be train for each fold.

target.diff Can target segment be a difference feature?

segment.diff Can predictor segments be difference feature?

... optional parameters to be passed to the low level function tunelearnPattern.

tunelearnPattern 15

Value

A list with the following components:

params evaluated parameter combinations as a matrix where rows are parameter com-
binations and columns represent the settings. First and seconds columns are the
evaluated segment length level and depth respectively.

errors cross-validation error rate for each parameter combinations

best.error the minimum cross-validation error rate obtained.

best.seg the segment length level that provides the minimum cross-validation error.

best.depth the depth level that provides the minimum cross-validation error.

random.split split type used for learning patterns.

Author(s)

Mustafa Gokce Baydogan <baydoganmustafa@gmail.com>, based on original Fortran code by Leo
Breiman and Adele Cutler, R port by Andy Liaw and Matthew Wiener.

References

Baydogan, M. G. (2013), “Learned Pattern Similarity“, Homepage: http://www.mustafabaydogan.
com/learned-pattern-similarity-lps.html.

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

learnPattern, computeSimilarity

Examples

data(GunPoint)
set.seed(71)

Tune segment length level and depth on GunPoint training series
tuned=tunelearnPattern(GunPoint$trainseries,GunPoint$trainclass)
print(tuned$best.error)
print(tuned$best.seg)
print(tuned$best.depth)

Use tuned parameters to learn patterns
ensemble=learnPattern(GunPoint$trainseries,segment.factor=tuned$best.seg,

maxdepth=tuned$best.depth)

Find the similarity between test and training series based on the learned model
similarity=computeSimilarity(ensemble,GunPoint$testseries,GunPoint$trainseries)

Find the index of 1 nearest neighbor (1NN) training series for each test series
NearestNeighbor=apply(similarity,1,which.min)

Predicted class for each test series

http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html
http://www.mustafabaydogan.com/learned-pattern-similarity-lps.html

16 visualizePattern

predicted=GunPoint$trainclass[NearestNeighbor]

Compute the percentage of accurate predictions
accuracy=sum(predicted==GunPoint$testclass)/nrow(GunPoint$testseries)
print(100*accuracy)

visualizePattern Plot of the patterns learned by the ensemble of the regression trees

Description

visualizePattern visualizes the patterns implied by the terminal nodes of the trees from learnPattern
object.

Usage

visualizePattern(object, x, which.terminal, orient=c(2,2))

Arguments

object an object of class learnPattern, as that created by the function learnPattern.

x a data frame or matrix containing the data for pattern visualization.

which.terminal id of the terminal node determining the decision rules to be used for identifying
patterns

orient orientation of the plot (determines the grid structure and how many patterns to
be visualized).

Value

A list with the following components are returned invisibly.

predictor predictor segments residing in the which.terminal.

target target segments implied by the which.terminal.

tree the tree id corresponding to the which.terminal.

terminal the id of the terminal node for the tree.

Note

Patterns are visualized for the time series for which the frequency of the observations in the pattern
is the largest. If more than one plot is requested through the setting of orient, the patterns are
plotted for the time series based on the descending order of the frequency.

Currently, patterns are visualized based on the first predictor segment (sampled at the root node).
This visualization can be done based on the predictor segment sampled at each level of the tree.

predictor and target are of size x where the patterns are numerical values and the rest of the
entries are NAs.

visualizePattern 17

Author(s)

Mustafa Gokce Baydogan

See Also

learnPattern,predict.learnPattern

Examples

set.seed(71)
data(GunPoint)
Learn patterns on GunPoint training series with default parameters
ensemble=learnPattern(GunPoint$trainseries)

Find representations
trainRep=predict(ensemble, GunPoint$trainseries, nodes=TRUE)

Find the average frequency over the terminal nodes
avgFreq=apply(trainRep,2,mean)

Find the terminal node that has the maximum average and visualize
termid=which.max(avgFreq)
visualizePattern(ensemble,GunPoint$trainseries,termid,c(2,1))

Index

∗Topic classification
learnPattern, 6
LPSNews, 10
tunelearnPattern, 14

∗Topic datasets
GunPoint, 5

∗Topic regression
learnPattern, 6
plot.learnPattern, 10
tunelearnPattern, 14

∗Topic similarity
computeSimilarity, 2
learnPattern, 6
plotMDS, 11
predict.learnPattern, 12
visualizePattern, 16

∗Topic tree
computeSimilarity, 2
getTreeInfo, 3
learnPattern, 6
plot.learnPattern, 10
tunelearnPattern, 14

cmdscale, 11
computeSimilarity, 2, 6, 8, 15

getTreeInfo, 3
GunPoint, 5

learnPattern, 3, 4, 6, 6, 11–13, 15, 17
LPSNews, 10

pairs, 11
plot.learnPattern, 10
plotMDS, 11
predict.learnPattern, 2, 3, 8, 12, 17
print.learnPattern (learnPattern), 6

tunelearnPattern, 8, 14

visualizePattern, 16

18

	computeSimilarity
	getTreeInfo
	GunPoint
	learnPattern
	LPSNews
	plot.learnPattern
	plotMDS
	predict.learnPattern
	tunelearnPattern
	visualizePattern
	Index

