Package 'LIM'

February 19, 2015
4.6
ar Inverse Model examples and solution methods.
arline Soetaert <karline.soetaert@nioz.nl>, van Oevelen<dick.vanoevelen@nioz.nl></dick.vanoevelen@nioz.nl></karline.soetaert@nioz.nl>
r Karline Soetaert <karline.soetaert@nioz.nl></karline.soetaert@nioz.nl>
R (>= 2.10), limSolve, diagram
In Functions that read and solve linear inverse problems (food web problems, linear proming problems). The problems find solutions to linear or quadratic functions: For max $(f(x))$, where $f(x) = \ Ax - b\ ^2$ or $f(x) = \sup(ai^*xi)$ and the problems find solutions to linear or quadratic functions: For max $(f(x))$, where $f(x) = \ Ax - b\ ^2$ or $f(x) = \sup(ai^*xi)$ and the problems of the problems o
PL (>= 2)
yes
CRAN
/R-Forge/Project lim
//R-Forge/Revision 57
/ R-Forge/DateTimeStamp 2014-12-24 13:23:18
cation 2014-12-26 11:07:11
pilation no
s documented:
IM-package ILERigaAutumn lowmatrix dei IMBlending IMBrouageMudflat IMCaliforniaSediment

2 LIM-package

LIMEverglades	16
LIMRigaAutumn	18
LIMRigaSpring	19
LIMRigaSummer	20
LIMScheldtIntertidal	21
LIMTakapoto	23
Linp	24
Lsei	26
Plotranges	28
PrintMat	30
Read	31
Setup	33
Variables	35
Varranges	36
Xranges	37
Xsample	38
	40

LIM-package

Linear Inverse Model examples and solution methods

Description

Index

functions that read and solve linear inverse problems (food web problems, linear programming problems, flux balance analysis).

These problems find solutions to linear or quadratic functions: min or max (f(x)), where f(x) = $||Ax - b||^2$ or f(x) = sum(ai * xi)

subject to equality constraints Ex = f and inequality constraints Gx >= h.

Uses package limSolve.

Details

Package: LIM Type: Package Version: 1.4.3 2011-09-05 Date:

License: GNU Public License 2 or above

The model problem is formulated in text files in a way that is natural and comprehensible. Functions in LIM then converts this input into the required linear equality and inequality conditions, which can be solved either by least squares or by linear programming techniques. By letting an algorithm formulate the mathematics, it is simple to reformulate the model in case a parameter value changes, or a component is added or removed.

Three different types of problems are supported:

LIM-package 3

flow networks,

reaction networks (e.g. flux balance analysis).

and other (operations research) problems.

The first two cases are based on mass balances of the components.

The package includes many examples

Author(s)

Karline Soetaert (Maintainer),

Dick van Oevelen

References

Description of the software:

van Oevelen D, Van den Meersche K, Meysman FJR Soetaert K, Middelburg JJ, Vezina AF., 2009. Quantifying Food Web Flows Using Linear Inverse Models. Ecosystems 13: 32-45 DOI: 10.1007/s10021-009-9297-6. http://www.springerlink.com/content/4q6h4011511731m5/fulltext.pdf

(please use the above citation when using the software)

About food web modelling:

Soetaert, K., van Oevelen, D., 2009. Modeling food web interactions in benthic deep-sea ecosystems: a practical guide. Oceanography (22) 1: 130-145.

Application of deep-water food web:

van Oevelen, Dick, Gerard Duineveld, Marc Lavaleye, Furu Mienis, Karline Soetaert, and Carlo H. R. Heip, 2009. The cold-water coral community as hotspot of carbon cycling on continental margins: A food web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceangraphy 54:1829-1844.

```
http://www.aslo.org/lo/toc/vol_54/issue_6/1829.pdf
```

A flux balance analysis application:

Karline Soetaert. Escherichia coli Core Metabolism Model in LIM. LIM package vignette (see also below).

See Also

```
Read, Setup for reading files and creating the model Ldei, Lsei, Linp,
```

Flowmatrix, Plotranges, Variables,

Varranges, Xranges, Xsample.

4 FILERigaAutumn

Examples

```
## Not run:
## show examples (see respective help pages for details)
example(Lsei)
example(LIMRigaSpring)
example(Ldei)
example(Xsample)
example(Varranges)
## run demos
demo("LIMexamples")
## open the directory with R sourcecode examples
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb", sep=""))
browseURL(paste(system.file(package="LIM"), "/doc/examples/LinearProg", sep=""))
browseURL(paste(system.file(package="LIM"), "/doc/examples/Reactions", sep=""))
## the deep-water coral food -web
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/coral", sep=""))
## show package vignette with tutorial about how to create input files
vignette("LIM")
## E.coli example vignette - flux balance analysis
vignette("LIMecoli")
browseURL(paste(system.file(package="LIM"), "/doc", sep=""))
## End(Not run)
```

FILERigaAutumn

Input text "file" for gulf of Riga autumn planktonic food web

Description

Input text "file" for the Carbon flux Gulf of Riga planktonic food web in autumn as described in Donali et al. (1999).

The Gulf of Riga is a highly eutrophic system in the Baltic Sea

The foodweb comprises 7 functional compartments and two external compartments, connected with 26 flows.

Units of the flows are mg C/m3/day

The "dataset" RigaAutumnFile is included to demonstrate the use of a text input file for food web models.

The original file, RigaAutumn.input can be found in subdirectory 'web' of the packages directory In this subdirectory you will find many foodweb example input files

- They can be read using Read(file)
- Or they can be directly solved using Setup(file)

Flowmatrix 5

Usage

```
data(FILERigaAutumn)
```

Format

vector of character strings as present in the original file

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

References

Donali, E., Olli, K., Heiskanen, A.S., Andersen, T., 1999. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method. Journal of Marine Systems 23, 251..268.

See Also

LIMRigaAutumn a list containing the linear inverse model specification, generated from file 'RigaAutumn.input'

Examples

```
print(FILERigaAutumn)

# RigaAutumnInput is a vector of text strings -
# here it is first converted to a "File"

# When using the example files in the LIM directory,
# this first statement is not necessary

## Not run:
File <- textConnection(FILERigaAutumn)
RigaAutumn.input <- Read(File)

## End(Not run)</pre>
```

Flowmatrix

Generates a flow matrix for an inverse (foodweb) problem

Description

Given a linear inverse model food web input list, generates a flow matrix, that contains the values of flows

Usage

```
Flowmatrix(lim, web = NULL)
```

6 Ldei

Arguments

lim a list that contains the linear inverse model specification, as generated by func-

tion setup.limfile.

web the solved (food) web problem, i.e. the values of the unknowns; if not specified,

the model is solved first, using Ldei

Value

the flow matrix, containing the magnitude of the flows.

The value on row i and column j is the flow *from* i and *to* j

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

See Also

plotweb from package diagram, which takes as input the flow matrix and plots the food web

Examples

Flowmatrix(LIMRigaAutumn)

Ldei

Solves a linear inverse model using least distance programming

Description

Solves a linear inverse model using least distance programming, i.e. minimizes the sum of squared unknowns.

Input presented either:

- as matrices E, F, A, B, G, H (Ldei.double)
- as a list (Ldei.lim) or
- as a lim input file (Ldei.limfile)

Usage

```
Ldei(...)
## S3 method for class 'lim'
Ldei(lim, ...)
## S3 method for class 'limfile'
Ldei(file, verbose = TRUE, ...)
## S3 method for class 'character'
Ldei(...)
## S3 method for class 'double'
Ldei(...)
```

Ldei 7

Arguments

lim a list that contains the linear inverse model specification, as generated by func-

tion setup.limfile.

file name of the inverse input file.

verbose if TRUE: prints warnings and messages to the screen.

... other arguments passed to function ldei from packagelimSolve.

Details

Solves the following inverse problem:

 $\min(\sum Cost_i * x_i^2)$

subject to

Ax = B

Gx >= H

Value

a list containing:

X vector containing the solution of the least distance problem.

unconstrained.Solution

vector containing the unconstrained solution of the least distance problem.

residualNorm scalar, the sum of residuals of equalities and violated inequalities.

solutionNorm scalar, the value of the quadratic function at the solution.

IsError logical, TRUE, if an error occurred.

Error ldei error text.

type ldei.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Lawson C.L.and Hanson R.J. 1974. SOLVING LEAST SQUARES PROBLEMS, Prentice-Hall Lawson C.L.and Hanson R.J. 1995. Solving Least Squares Problems. SIAM classics in applied mathematics, Philadelphia. (reprint of book)

See Also

ldei, the more general function from package limSolve.

Linp, to solve the linear inverse problem by linear programming.

Lsei, to solve the linear inverse problem by lsei (least squares with equality and inequality constraints).

function ldei from packagelimSolve.

Examples

Ldei(LIMRigaAutumn)

LIMBlending

A blending problem specification

Description

A manufacturer produces a feeding mix for pet animals.

The feed mix contains two nutritive ingredients and one ingredient (filler) to provide bulk.

One kg of feed mix must contain a minimum quantity of each of four nutrients as below:

The ingredients have the following nutrient values and cost

(gram/kg)	A	В	C	D	Cost/kg
Ingredient 1	100	50	40	10	40
Ingredient 2	200	150	10	-	60
Filler	-	-	-	-	0

The linear inverse models LIMBlending and LIMinputBlending are generated from the file Blending.input which can be found in subdirectory /examples/LinearProg of the package directory

LIMBlending is generated by function Setup

LIMinputBlending is generated by function Read

The problem is to find the composition of the feeding mix that minimises the production costs subject to the constraints above.

Stated otherwise: what is the optimal amount of ingredients in one kg of feeding mix?

Mathematically this can be estimated by solving a linear programming problem:

$$\min(\sum Cost_i*x_i)$$

subject to

$$x_i >= 0$$

$$Ex = f$$

$$Gx >= h$$

Where the Cost (to be minimised) is given by:

$$x_1 * 40 + x_2 * 60$$

LIMBlending 9

The equality ensures that the sum of the three fractions equals 1:

$$1 = x_1 + x_2 + x_3$$

And the inequalities enforce the nutritional constraints:

$$100 * x_1 + 200 * x_2 > 80$$

$$50 * x_1 + 150 * x_2 > 50$$

and so on

The solution is Ingredient1 (x1) = 0.5909, Ingredient2 (x2)=0.1364 and Filler (x3)=0.2727.

Usage

LIMBlending LIMinputBlending

Format

LIMBlending is of type lim, which is a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

LIMinputBlending is of type liminput, see the return value of Read for more information.

A more complete description of these structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/LinearProg/", sep="")) contains "blending.input", the input file; read this with Setup LIMTakapoto, LIMEcoli and many others
```

```
# 1. Solve the model with linear programming
res <- Linp(LIMBlending, ispos = TRUE)

# show results
print(c(res$X, Cost = res$solutionNorm))

# 2. Possible ranges of the three ingredients
(xr <- Xranges(LIMBlending, ispos = TRUE))
Nx <- LIMBlending$NUnknowns</pre>
```

10 LIMBrouageMudflat

LIMBrouageMudflat

Linear inverse model specification for the Intertidal mudflat food web on the Atlantic coast of France

Description

Linear inverse model specification for the Intertidal mudflat food web on the Atlantic coast of France as in Leguerrier et al., 2003.

The foodweb comprises 16 functional compartments and 3 external compartments, connected with 95 flows.

Units of the flows are g C/m2/year

The linear inverse model LIMBrouageMudflat is generated from the file BrouageMudflat.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMBrouageMudflat

Usage

```
data(LIMBrouageMudflat)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

LIMCaliforniaSediment 11

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl> Dick van Oevelen <dick.vanoevelen@nioz.nl>

References

Leguerrier, D., Niquil, N., Boileau, N., Rzeznik, J., Sauriau, P.G., Le Moine, O., Bacher, C., 2003. Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Marine Ecology Progress Series 246, 17-37.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep="")) contains "BrouageMudflat.input", the input file; read this with Setup LIMTakapoto, LIMRigaSummer and many others
```

Examples

LIMCaliforniaSediment Linear inverse model specification for the Santa Monica Basin sediment food web

Description

Linear inverse model specification for the Santa Monica Basin (California) sediment food web as in Eldridge and Jackson (1993).

The Santa Monica Basin is a hypoxic-anoxic basin located near California.

The model contains both chemical and biological species.

The foodweb comprises 7 functional compartments and five external compartments, connected with 32 flows.

Units of the flows are mg/m2/day

The linear inverse model LIMCaliforniaSediment is generated from the file 'CaliforniaSediment.input' which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMCaliforniaSediment

12 LIMCaliforniaSediment

Usage

```
data(LIMCaliforniaSediment)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl> Dick van Oevelen <dick.vanoevelen@nioz.nl>

References

Eldridge, P.M., Jackson, G.A., 1993. Benthic trophic dynamics in California coastal basin and continental slope communities inferred using inverse analysis. Marine Ecology Progress Series 99, 115-135.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep=""))
contains "CaliforniaSediment.input", the input file; read this with Setup
LIMTakapoto, LIMRigaSummer and many others
```

LIMCoralRockall 13

LIMCoralRockall	Linear inverse model specification for the Deep-water Coral food web at Rockall Bank

Description

Linear inverse model specification for the deep-water coral ecosystem at Rockall Bank, North-East Atlantic. See van Oevelen et al. (2009)

Units of the flows are mmol C/m2/day

The linear inverse model LIMCoralRockall is generated from the file 'CWCRockall.input' which can be found in subdirectory /examples/FoodWeb of the package directory

Usage

```
data(LIMCoralRockall)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structure is in vignette("LIM")

Author(s)

Dick van Oevelen < dick.vanoevelen@nioz.nl>

Karline Soetaert <karline.soetaert@nioz.nl>

References

van Oevelen, Dick, Gerard Duineveld, Marc Lavaleye, Furu Mienis, Karline Soetaert, and Carlo H. R. Heip, 2009.

The cold-water coral community as hotspot of carbon cycling on continental margins: A food web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceangraphy 54: 1829 – 1844.

```
http://www.aslo.org/lo/toc/vol_54/issue_6/1829.pdf
```

See Also

```
browseURL(paste(system.file(package="LIM"), "/examples/Foodweb/", sep="")) contains "CWCRockall.input", the input file; read this with Setup LIMTakapoto, LIMRigaSummer and many others
```

14 LIMEcoli

Examples

```
Coral <- Flowmatrix(LIMCoralRockall)</pre>
plotweb(Coral, main = "Deep Water Coral Foodweb, Rockall Bank",
        sub = "mmolC/m2/day", lab.size = 0.8)
## Not run:
xr <- LIMCoralRockall$NUnknowns
i1 < -1:(xr/2)
i2 <- (xr/2+1):xr
pm \leftarrow par(mfrow = c(1, 1))
Simplest <- Ldei(LIMCoralRockall)$X</pre>
Ranges <- Xranges(LIMCoralRockall)</pre>
Plotranges(Ranges[i1, 1], Ranges[i1, 2], Simplest[i1], lab.cex = 0.7,
        main = "Deep Water Coral - ranges part 1")
Plotranges(Ranges[i2, 1], Ranges[i2, 2], Simplest[i2], lab.cex = 0.7,
        main = "Deep Water Coral - ranges part 2")
par(mfrow = pm)
## End(Not run)
```

LIMEcoli

The Escherichia Coli Core Metabolism: Reaction network model specificiation

Description

Linear inverse model specification for performing Flux Balance Analysis of the E.coli metabolism (as from http://gcrg.ucsd.edu/Downloads/Flux_Balance_Analysis).

The original input file can be found in the package subdirectory /examples/Reactions/E_coli.lim There are 53 substances:

GLC, G6P, F6P, FDP, T3P2, T3P1, 13PDG, 3PG, 2PG, PEP, PYR, ACCOA, CIT, ICIT, AKG, SUCCOA, SUCC, FUM, MAL, OA, ACTP, ETH, AC, LAC, FOR, D6PGL, D6PGC, RL5P, X5P, R5P, S7P, E4P, RIB, GLX, NAD, NADH, NADP, NADPH, HEXT, Q, FAD, FADH, AMP, ADP, ATP, GL3P, CO2, PI, PPI, O2, COA, GL, QH2

and 13 externals:

Biomass, GLCxt, GLxt, RIBxt, ACxt, LACxt, FORxt, ETHxt, SUCCxt, PYRxt, PIxt, O2xt, CO2xt There are 70 unknown reactions (named by the gene encoding for it):

GLK1, PGI1, PFKA, FBP, FBA, TPIA, GAPA, PGK, GPMA, ENO, PPSA, PYKA, ACEE, ZWF, PGL, GND, RPIA, RPE, TKTA1, TKTA2, TALA, GLTA, ACNA, ICDA, SUCA, SUCC1, SDHA1, FRDA, FUMA, MDH, DLD1, ADHE2, PFLA, PTA, ACKA, ACS, PCKA, PPC, MAEB, SFCA, ACEA, ACEB, PPA, GLPK, GPSA1, RBSK, NUOA, FDOH, GLPD, CYOA, SDHA2, PNT1A,

LIMEcoli 15

PNT2A, ATPA, GLCUP, GLCPTS, GLUP, RIBUP, ACUP, LACUP, FORUP, ETHUP, SUCCUP, PYRUP, PIUP, O2TX, CO2TX, ATPM, ADK, Growth

The model contains:

- 54 equalities (Ax=B): the 53 mass balances (one for each substance) and one equation that sets the ATP drain flux for constant maintenance requirements to a fixed value (5.87)
- 70 unknowns (x), the reaction rates
- 62 inequalities (Gx>h). The first 28 inequalities impose bounds on some reactions. The last 34 inequalities impose that the reaction rates have to be positive (for unidirectional reactions only).
- 2 functions that have to be maximised, the biomass production (growth).

Usage

LIMEcoli

Format

LIMEcoli is of type 1im, which is a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

```
http://gcrg.ucsd.edu/Downloads/Flux_Balance_Analysis
```

Edwards, J.S., Covert, M., and Palsson, B., (2002) Metabolic Modeling of Microbes: the Flux Balance Approach, Environmental Microbiology, 4(3): pp. 133-140.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Reactions/", sep="")) contains "E\_coli.lim", the input file; read this with Setup
```

```
# 1. parsimonious (simplest) solution
pars <- Ldei(LIMEcoli)

# 2. the ranges of each reaction
xr <- Xranges(LIMEcoli, central = TRUE, full = TRUE)</pre>
```

16 LIMEverglades

```
# 3. the optimal solution - solved with linear programming
LP <- Linp(LIMEcoli)</pre>
Optimal <- t(LP$X)
# show the results
data.frame(pars = pars$X, Optimal, xr[ ,1:3])
# The central value of linear programming problem is a valid solution
# the central point is a valid solution:
  <- xr[ ,"central"]
max(abs(LIMEcoli$A%*%X - LIMEcoli$B))
min(LIMEcoli$G%*%X - LIMEcoli$H)
# 4. Sample solution space  – this takes a while – note that iter is not enough
print(system.time(
  xs <- Xsample(LIMEcoli, iter = 200, type = "mirror", test = TRUE) ))</pre>
pairs(xs[ ,1:10], pch = ".", cex = 2)
# Print results:
data.frame(pars = pars$X, Optimal = Optimal, xr[ ,1:2],
           Mean = colMeans(xs), sd = apply(xs,2,sd))
# Plot results
par(mfrow = c(1, 2))
nr <- LIMEcoli$NUnknowns</pre>
ii <- 1:(nr/2)
dotchart(Optimal[ii, 1], xlim = range(xr), pch = 16, cex = 0.8)
segments(xr[ii, 1], 1:nr, xr[ii, 2], 1:nr)
ii <- (nr/2+1):nr
dotchart(Optimal[ii, 1], xlim = range(xr), pch = 16, cex = 0.8)
segments(xr[ii, 1], 1:nr, xr[ii, 2], 1:nr)
mtext(side = 3, cex = 1.5, outer = TRUE, line = -1.5,
      "E coli Core Metabolism, optimal solution and ranges")
```

LIMEverglades

Linear inverse model specification for the herpetological food web of the Everglades

Description

Linear inverse model specification for the herpetological wet prairie example from the everglades. as described in Diffendorfer et al., 2001

The everglades are a freshwater wetland in Florida, USA.

The model contains 9 functional compartments and 3 external compartments, connected with 402 flows.

Units of the flows are gram wet weight / Ha / year

LIMEverglades 17

The linear inverse model LIMEverglades is generated from the file Everglades.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMEverglades

Usage

```
data(LIMEverglades)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert karline Soetaert karline Soetaert karline Soetaert@nioz.nl Dick van Oevelen dick.vanoevelen@nioz.nl

References

Diffendorfer, J.E., Richards, P.M., Dalrymple, G.H., DeAngelis, D.L., 2001. Applying Linear Programming to estimate fluxes in ecosystems or food webs: an example from the herpetological assemblage of the freshwater Everglades. Ecol. Model. 144, 99-120.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep=""))
contains "Everglades.input", the input file; read this with Setup
LIMTakapoto, LIMRigaSummer and many others
```

18 LIMRigaAutumn

president je od vree	LIMRigaAutumn	Linear inverse model specification for the Gulf of Riga *autumn* planktonic food web
----------------------	---------------	--

Description

Linear inverse model specification for the Gulf of Riga planktonic food web in *autumn* as in Donali et al. (1999).

The Gulf of Riga is a highly eutrophic system in the Baltic Sea.

The foodweb comprises 7 functional compartments and two external compartments, connected with 26 flows. Units of the flows are mg C/m3/day

The linear inverse model LIMRigaAutumn is generated from the file RigaAutumn.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMRigaAutumn

Usage

```
data(LIMRigaAutumn)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem. see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Dick van Oevelen<dick.vanoevelen@nioz.nl>

References

Donali, E., Olli, K., Heiskanen, A.S., Andersen, T., 1999. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method. Journal of Marine Systems 23, 251..268.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep=""))
contains "RigaAutumn.input", the input file; read this with Setup
LIMTakapoto, LIMRigaSummer, LIMRigaSpring and many others
```

LIMRigaSpring 19

Examples

LIMRigaSpring

Linear inverse model specification for the Gulf of Riga *spring* planktonic food web.

Description

Linear inverse model specification for the Gulf of Riga planktonic food web in *spring* as in Donali et al. (1999).

The Gulf of Riga is a highly eutrophic system in the Baltic Sea.

The foodweb comprises 7 functional compartments and two external compartments, connected with 26 flows.

Units of the flows are mg C/m3/day

The linear inverse model LIMRigaSpring is generated from the file RigaSpring.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMRigaSpring.

Usage

```
data(LIMRigaSpring)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Dick van Oevelendick.vanoevelen@nioz.nl

20 LIMRigaSummer

References

Donali, E., Olli, K., Heiskanen, A.S., Andersen, T., 1999. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method. Journal of Marine Systems 23, 251..268.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep="")) contains "RigaSpring.input", the input file; read this with Setup LIMTakapoto,LIMRigaAutumn, LIMRigaAutumn and many others
```

Examples

LIMRigaSummer

Linear inverse model specification for the Gulf of Riga *summer* planktonic food web.

Description

Linear inverse model specification for the Gulf of Riga planktonic food web in *summer* as in Donali et al. (1999).

The Gulf of Riga is a highly eutrophic system in the Baltic Sea.

The foodweb comprises 7 functional compartments and two external compartments, connected with 26 flows.

Units of the flows are mg C/m3/day

The linear inverse model LIMRigaSummer is generated from the file RigaSummer.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMRigaSummer

Usage

```
data(LIMRigaSummer)
```

LIMScheldtIntertidal 21

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem. see the return value of Setup for more information about this list.

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert karline.soetaert@nioz.nl
Dick van Oevelen karline.soetaert@nioz.nl

References

Donali, E., Olli, K., Heiskanen, A.S., Andersen, T., 1999. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method. Journal of Marine Systems 23, 251..268.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep="")) contains "RigaSummer.input", the input file; read this with Setup LIMTakapoto,LIMRigaAutumn, LIMRigaSpring and many others
```

Examples

LIMScheldtIntertidal Linear inverse model specification for the Schelde Intertidal flat food web

Description

Linear inverse model specification for the Westerschelde Intertidal flat food web in June as in Van Oevelen et al. (2006).

The Westerschelde is a highly eutrophic estuary in the Netherlands.

The food web model was created for the intertidal flat called the "Molenplaat", site 2.

It is the basic input model.

The foodweb comprises 7 functional compartments and five external compartments, connected with 32 flows.

Units of the flows are mg C/m2/day

22 LIMScheldtIntertidal

The linear inverse model LIMScheldtIntertidal is generated from the file ScheldtIntertidal.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMScheldtIntertidal

Usage

```
data(LIMScheldtIntertidal)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem. see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert karline Soetaert karline Soetaert karline.soetaert@nioz.nl> Dick van Oevelenkarline.soetaert@nioz.nl

References

Van Oevelen, D., Soetaert, K., Middelburg, J.J., Herman, P.M.J., Moodley, L., Hamels, I., Moens, T., Heip, C.H.R., 2006b. Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. J. Mar. Res. 64, 1-30.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep="")) contains "ScheldtIntertidal.input", the input file; read this with Setup LIMTakapoto, LIMRigaSummer and many others
```

LIMTakapoto 23

LIMTakapoto	Linear inverse model specification for the Takapoto atoll planktonic food web.

Description

Linear inverse model specification for the Carbon flux model of the Takapoto atoll planktonic food web

as reconstructed by inverse modelling by Niquil et al. (1998).

The Takapoto Atoll lagoon is located in the French Polynesia of the South Pacific

The food web comprises 7 functional compartments and three external compartments/sinks connected with 32 flows.

Units of the flows are mg C/m2/day

The linear inverse model LIMTakapoto is generated from the file Takapoto.input which can be found in subdirectory /examples/FoodWeb of the package directory

In this subdirectory you will find many foodweb example input files

These files can be read using Read and their output processed by Setup which will produce a linear inverse problem specification similar to LIMTakapoto

Usage

```
data(LIMTakapoto)
```

Format

a list of matrices, vectors, names and values that specify the linear inverse model problem.

see the return value of Setup for more information about this list

A more complete description of this structures is in vignette("LIM")

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl> Dick van Oevelen<dick.vanoevelen@nioz.nl>

References

Niquil, N., Jackson, G.A., Legendre, L., Delesalle, B., 1998. Inverse model analysis of the planktonic food web of Takapoto Atoll (French Polynesia). Marine Ecology Progress Series 165, 17..29.

See Also

```
browseURL(paste(system.file(package="LIM"), "/doc/examples/Foodweb/", sep="")) contains "Takapoto.input", the input file; read this with Setup LIMRigaAutumn and many others
```

24 Linp

Examples

Linp

Solves a linear inverse model using linear programming.

Description

Solves a linear inverse model using linear programming

Input presented either as:

- matrices E, F, A, B, G, H (Linp.double) or
- as a list (Linp.lim) or
- as a lim input file (Linp.limfile)

Usage

```
Linp(...)
## S3 method for class 'lim'
Linp(lim, cost = NULL, ispos = lim$ispos, ...)
## S3 method for class 'limfile'
Linp(file, verbose = TRUE,...)
## S3 method for class 'character'
Linp(...)
## S3 method for class 'double'
Linp(...)
```

Arguments

lim	a list that contains the linear inverse model specification, as generated by function setup.limfile.
file	name of the inverse input file.
verbose	if TRUE: when reading the file, prints warnings and messages to the screen.
cost	if not NULL, a vector with the coefficients of the cost function (to be minimised).
ispos	if TRUE: all x-values have to be positive.
	other arguments passed to function linp from packagelimSolve.

Linp 25

Details

Solves the following inverse problem:

or
$$\min(\sum Cost_i*x_i)$$
 or
$$\max(\sum Profit_i*x_i)$$
 subject to
$$x_i>=0$$

$$Ax=B$$

$$Gx>=H$$

and where $Cost_i$ or $Profit_i$ are weighting coefficients

Value

a list containing:

X vector containing the solution of the linear programming problem.

unconstrained.solution

vector containing the unconstrained solution of the linear programming prob-

lem.

residualNorm scalar, the sum of residuals of equalities and violated inequalities.

solutionNorm scalar, the value of the quadratic function at the solution.

IsError logical, TRUE if an error occurred.

Error linp error text.

type linp.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Michel Berkelaar and others (2005). lpSolve: Interface to Lpsolve v. 5 to solve linear/integer programs. R package version 1.1.9.

See Also

linp, the more general function from package lpSolve

Ldei, to solve the linear inverse problem by least distance programming

Lsei, to solve the linear inverse problem by lsei (least squares with equality and inequality constraints)

function linp from packagelimSolve

26 Lsei

Examples

```
# the Blending example
Linp(LIMBlending)

# the E coli example: two functions to maximimise
Linp(LIMEcoli)

# E coli example, but only first function optimised..
Linp(LIMEcoli, cost = -LIMEcoli$Profit[1,])

# a foodweb example: need to specify the cost function
# here just sum of absolute values of flows...
Linp(LIMRigaAutumn, cost = (rep(1, LIMRigaAutumn$NUnknowns)))
```

Lsei

Solves a linear inverse model using the least squares method.

Description

Solves a linear inverse model using the least squares method

Input presented as:

- matrices E, F, A, B, G, H (Lsei.double) or
- a list (Lsei.lim) or
- as a lim input file (Lsei.limfile)

Useful for solving overdetermined lims.

Usage

Arguments

lim a list that contains the linear inverse model specification, as generated by func-

tion setup.limfile.

exact if not NULL, a vector containing the numbers of the equations to be solved ex-

actly; if NULL, all equations are considered exact.

Lsei 27

parsimonious if TRUE, also minimises the sum of squared unknowns.

file name of the inverse input file.

verbose if TRUE: when reading the file, prints warnings and messages to the screen.

... other arguments passed to function lsei from packagelimSolve.

Details

Solves the following inverse problem:

$$\min(||AAx - BB||^2)$$

, the approximate equations subject to

$$Ex = F$$

, the mass balances

$$Gx >= H$$

, the constraints.

and where E and F make up the equations from A and B, as specified by vector exact.

AA and BB are the equations from A and B, NOT in vector exact.

in case exact = NULL, there are no approximate equations.

in case parsimonious = TRUE, then the sum of squared unknowns is also minimised. This means that AA is augmented with the unity matrix (of size Nunknowns) and BB contains Nunknowns additional zeros.

For overdetermined lim problems, for instance, the inverse equations may be split up in the mass balance equations which have to be exactly met and the other equations which have to be approximated.

This is, it is assumed that the first *NComponents* equations, the mass balances, should be met exactly and the call to the function is: Lsei(lim,exact = 1:lim\$NComponents,...)

If the lim is underdetermined, an alternative is to use Ldei instead.

This will return the parsimonious solution.

The results should be similar with Lsei(...,parsimonious=TRUE).

In theory both Lsei.lim and Ldei should return the same value for underdetermined systems.

Value

a list containing:

X vector containing the solution of the least squares problem.

residualNorm scalar, the sum of residuals of equalities and violated inequalities. solutionNorm scalar, the value of the minimised quadratic function at the solution.

IsError TRUE if an error occurred.

Error error text. type lsei. 28 Plotranges

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

- K. H. Haskell and R. J. Hanson, An algorithm for linear least squares problems with equality and nonnegativity constraints, Report SAND77-0552, Sandia Laboratories, June 1978.
- K. H. Haskell and R. J. Hanson, Selected algorithms for the linearly constrained least squares problem a users guide, Report SAND78-1290, Sandia Laboratories, August 1979.
- K. H. Haskell and R. J. Hanson, An algorithm for linear least squares problems with equality and nonnegativity constraints, Mathematical Programming 21 (1981), pp. 98-118.
- R. J. Hanson and K. H. Haskell, Two algorithms for the linearly constrained least squares problem, ACM Transactions on Mathematical Software, September 1982.

See Also

```
lsei, the more general function from package limSolve
Linp, to solve the linear inverse problem by linear programming
Ldei, to solve the linear inverse problem by least distance programming
function lsei from packagelimSolve
```

Examples

```
Lsei(LIMRigaAutumn, parsimonious = TRUE)
```

Plotranges

Plots the minimum and maximum and central values

Description

Plots minimum and maximum ranges.

Takes as input either a lim list, as generated by Setup or a set of vectors specifying the minimum, maximum and the central value, or a data frame that contains min, max and central values.

Usage

```
Plotranges(...)
## S3 method for class 'double'
Plotranges(min, max, value = NULL, labels = NULL, log = "",
  pch = 16, pch.col = "black", line.col = "gray",
  seg.col = "black", xlim = NULL, main = NULL,
  xlab = NULL, ylab = NULL, lab.cex = 1.0, mark = NULL,...)
## S3 method for class 'lim'
Plotranges(lim = NULL, labels = NULL, type = "X", log = "",
```

Plotranges 29

```
pch = 16, pch.col = "black", line.col = "gray",
  seg.col = "black", xlim = NULL, main = NULL,
  xlab = NULL, ylab = NULL, lab.cex = 1.0, index = NULL, ...)
## S3 method for class 'character'
Plotranges(file, ...)
```

Arguments

min minimum value. maximum value. max value median or mean value. lim a list that contains the linear inverse model specification, as generated by function setup.limfile. file name of the inverse input file. names of each value. labels one of "X" or "V" for plotting of unknowns (X) or variables. type log if = x: logarithmic scale for x-axis. pch pch symbol used for mean value. pch.col pch color for mean value. line.col color for each variable, spanning x-axis. seg.col color for variable range. xlim limits on x-axis. main title. main x-axis label. xlab ylab y-axis label. lab.cex label expansion value. list of elements to be plotted, a vector of integers; default = all elements. index list of elements to be marked with a "*", i.e. when range is unbounded. mark

arguments passed to R-function "text" when writing labels.

Value

. . .

Only when a lim list was inputted. A data frame with

min the minimum.

max the maximum.

values the central value.

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

30 PrintMat

Examples

PrintMat

Writes linear inverse matrices to the screen

Description

Prints the linear inverse problem:

• inverse matrices and vectors A, b of the equalities

$$Ax = b$$

• inverse matrices and vectors G, h of the inequalities

$$Gx >= h$$

• if present, also writes the cost/profit function

Usage

```
PrintMat(lim)
```

Arguments

lim

a list that contains the linear inverse model specification, as generated by function setup.limfile.

Value

returns nothing.

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

```
PrintMat(LIMBlending)
```

Read 31

Read	Reads an inverse input file	

Description

Reads an inverse input file and creates the inverse problem as a list, of type "liminput"

Usage

```
Read(file, verbose = FALSE, checkLinear = TRUE, remtabs = TRUE)
```

Arguments

file name of inverse input file.

verbose if TRUE: prints warnings and messages to the screen.

checkLinear if FALSE: does not check for linearity

remtabs remove tabs.

Details

The structure of an inverse input file is explained in vignette("LIM") which should be consulted.

In short the inverse input file contains the declaration sections enclosed inbetween two lines starting with a \#\#.

For instance, the following section declares two components

\# COMP

State1

State2

\# END COMP

Only the first 4 characters of the section names are read

The following sections are allowed:

- Parameters \#\# PARAMETERS
- Components \#\# STOCKS or \#\# DECISION VARIABLES or \#\# STATES or \#\# UN-KNOWNS
- Externals \#\# EXTERNALS
- Rates \#\# RATES
- Flows \#\# FLOWS
- Variables \#\# VARIABLES
- Cost \#\# COST or \#\# MINIMISE
- Profit \#\# PROFIT or \#\# MAXIMISE
- Equalities \#\# EQUALITIES

32 Read

• InEqualities - \#\# INEQUALITIES or \#\# CONSTRAINTS

Any (part of a) line starting with a "!" is considered a comment.

Input is NOT case sensitive

The output of this function is used as input in function Setup which creates the inverse matrices

By default, only linear problems can be solved, and the function checks whether the input is linear. To toggle off this check, set checkLinear to FALSE.

Some input files contain tabs, which are converted to spaces, unless this logical is set to FALSE.

Value

a list containing:

file name of the inverse input file.

pars a data.frame with parameter declarations.

comp a data.frame with compartments (or states, stocks).

a data.frame with rate declarations. rate extern a data.frame with external declarations. flows a data frame with flow declarations. vars a data frame with variable declarations. a data.frame with cost declarations. cost profit a data.frame with profit declarations. equations a data.frame with equality declarations. a data.frame with constraint declarations. constraints reactions a data frame with reaction declarations.

posreac a vector with TRUE values if reaction or flow is unidirectional (and the unknown

x is thus positive), FALSE if it is two-way reaction or flow, and x can be positive

or negative.

marker a data.frame with marker declarations - see vignette("LIM").

parnames a vector with parameter names.

varnames a vector with variable names.

compnames a vector with compartment names.

externnames a vector with names of externals.

Type a string; one of "web" (flows are unknowns), "reaction" (reaction rates unknown)

and "simple" (compartments are unknowns).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

Setup the function to create inverse matrices, based on output of Read.

Setup 33

Examples

```
# this input has been created with function Read:
  LIMinputBlending

## Not run:
  wd <- getwd()
  setwd(paste(system.file(package = "LIM"), "/doc/examples/Foodweb", sep = ""))
  Read("RigaAutumn.input")
  setwd(wd)

## End(Not run)</pre>
```

Setup

Creates linear inverse matrices

Description

Creates the linear problem with equality and inequality equations.

Takes as input either a liminput list, as generated by Read or a filename with the linear inverse model specifications. Creates:

• inverse matrices and vectors A, b, G, h of the equalities/inequalities:

$$Ax = b$$

$$Gx >= h$$

• if present, also generates the cost/profit function which is used as:

$$\min(cost)$$

or

$$\max(profit)$$

• if the input was a flow network, Setup will also create the flow matrix (see details).

Usage

```
Setup(...)
## S3 method for class 'limfile'
Setup(file, verbose = TRUE, ...)
## S3 method for class 'character'
Setup(...)
## S3 method for class 'liminput'
Setup(liminput,...)
```

34 Setup

Arguments

file name of the inverse input file.

verbose if TRUE: prints warnings and messages to the screen.

liminput list of elements, as returned by Read.

... extra parameters allowing this to be a generic function.

Value

a list containing:

file name of the inverse input file.

NUnknowns number of unknowns.

NEquations number of equations.

NConstraints number of constraints.

NComponents number of components.

NExternal number of externals.

NVariables number of variables.

A matrix A of equalities Ax=B.

B vector B of equalities Ax=B.

G matrix G of inequalities Gx>h.

H vector H of inequalities Gx=h.

Cost cost vector (to minimise), the weight of each unknown; if not specified; 1 for all

unknowns.

Profit profit vector (to maximise).

Flowmatrix matrix where element ij denotes flow from compartment i to j.

VarA matrix VarA of variable equation VarA*x=VarB.

VarB vector VarB of variable equation VarA*x=VarB.

Flows a vector with flow names.

Parameters a data.frame with parameter names and values.

Components a data.frame with state names and values.

Externals a data.frame with external names and values.

rates a data.frame with rate names and values.

markers a data.frame with marker names and values.

Variables a vector with variable names.

Unknowns a vector with names of unknowns (either states or flows).

Weight a vector with the weights of unknowns- default is 1.

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

Variables 35

See Also

Read function that reads inverse input files and produces the input list used by Setup Lsei, Ldei, Linp functions to solve inverse problem, based on output generated by setup.limfile

Examples

```
LIMinputBlending
Setup(LIMinputBlending)
```

Variables

Generates the values of variables for a linear inverse (foodweb) problem

Description

Given an linear inverse model input list, generates the values of the inverse variables

Usage

```
Variables (lim, res, ...)
```

Arguments

lim	a list that contains the linear inverse model specification, as generated by function setup.limfile.
res	the solved linear inverse problem; if not specified, the model is solved first, using Lsei.lim<.
	extra parameters passed to function Lsei.lim.

Value

the variables, a one-column data.frame

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

Varranges which estimates the ranges of variables.

```
Variables(LIMRigaAutumn)
```

36 Varranges

Varranges

Generates ranges of the variables for a linear inverse problem

Description

Given an inverse input list, generates the minimal and maximal values of the variables (linear combinations of unknowns).

Usage

```
Varranges(lim, ...)
```

Arguments

lim a list that contains the linear inverse model specification, as generated by func-

tion setup.limfile.

... extra arguments passed to function varranges.

Value

a 2-columned vector containing the minimum (column 1) and maximum (column 2) of each variable.

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

See Also

Xranges which estimates the ranges of unknowns

Plotranges to plot the ranges

Examples

Varranges(LIMRigaAutumn)

Xranges 37

Xranges

Generates ranges of the unknowns of a linear inverse problem

Description

Given an inverse input list, generates the minimal and maximal values of the unknowns

Usage

```
Xranges (lim, ...)
```

Arguments

lim a list that contains the linear inverse model specification, as generated by function setup.limfile.extra arguments passed to function xranges from packagelimSolve.

Value

a 2-columned vector containing the minimum (column 1) and maximum (column 2) of each unknown.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

Varranges which estimates the ranges of inverse variables
Plotranges to plot the ranges
function xranges from packagelimSolve

38 Xsample

Xsample Generates a random sample of the unknowns for a linear inverse lem	prob-
--	-------

Description

Given an inverse input list, randomly samples the unknowns, using an MCMC method

Usage

```
Xsample(lim, exact = NULL, ...)
```

Arguments

lim	a list that contains the linear inverse model specification, as generated by function setup.limfile.
exact	if not NULL, a vector containing the numbers of the equations to be solved exactly; if NULL, all equations are considered exact.
	extra parameters passed to function xsample from packagelimSolve.

Details

For overdetermined LIM problems, the inverse equations may be split up in equations which have to be exactly met and other equations which have to be approximated.

exact is a vector with the exact equations

The default settings of xsample will often not do. For instance, the default consists of 3000 iterations (iter) and a jump length of jmp of 0.1. You may need to increase one of those to ensure that the entire solution space has been adequately sampled.

Value

a 2-columned vector containing the minimum (column 1) and maximum (column 2) of each unknown.

Author(s)

Karline Soetaert < karline.soetaert@nioz.nl>

References

Van den Meersche K, Soetaert K, Van Oevelen D (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30(1), 1-15.

```
http://www.jstatsoft.org/v30/c01/
```

Xsample 39

See Also

Varranges which estimates the ranges of inverse variables

Plotranges to plot the ranges

function xsample from packagelimSolve

```
# sample solution space
  xs <- Xsample(LIMRigaAutumn, iter = 500, jmp = 5)
# remove flows that are invariable (sd=0)
  xs <- xs[ ,-which(apply(xs, 2, sd) == 0 )]
#pairs plot
pairs(xs, gap = 0, pch = ".", upper.panel = NULL)</pre>
```

Index

10	
*Topic IO	Setup, 33
PrintMat, 30	Variables, 35
Read, 31	Varranges, 36
Setup, 33	Xranges, 37
*Topic algebra	Xsample, 38
Ldei, 6	
Linp, 24	FILERigaAutumn, 4
Lsei, 26	Flowmatrix, 3 , 5
*Topic array	
Ldei, 6	Ldei, 3, 6, 25, 27, 28, 35
Linp, 24	ldei, 7
Lsei, 26	LIM (LIM-package), 2
*Topic datasets	LIM-package, 2
FILERigaAutumn, 4	LIMBlending, 8
LIMBlending, 8	LIMBrouageMudflat, 10
LIMBrouageMudflat, 10	LIMCaliforniaSediment, 11
LIMCaliforniaSediment, 11	LIMCoralRockall, 13
LIMCoralRockall, 13	LIMEcoli, 9, 14
LIMEcoli, 14	LIMEverglades, 16
LIMEverglades, 16	LIMinputBlending (LIMBlending), 8
LIMRigaAutumn, 18	LIMRigaAutumn, 5, 18, 20, 21, 23
LIMRigaSpring, 19	LIMRigaSpring, <i>18</i> , 19, <i>21</i>
LIMRigaSummer, 20	LIMRigaSummer, <i>11–13</i> , <i>17</i> , <i>18</i> , 20, 22
LIMScheldtIntertidal, 21	LIMScheldtIntertidal, 21
LIMTakapoto, 23	LIMTakapoto, 9, 11–13, 17, 18, 20–22, 23
*Topic hplot	Linp, 3, 7, 24, 28, 35
Plotranges, 28	linp, 24, 25
*Topic optimize	Lsei, 3, 7, 25, 26, 35
Ldei, 6	lsei, 27, 28
Linp, 24	-1
Lsei, 26	Plotranges, 3, 28, 36, 37, 39
Varranges, 36	plotweb, 6
Xranges, 37	PrintMat, 30
Xsample, 38	5 1 2 4 0 11 17 20 22 22 21 25
*Topic package	Read, 3, 4, 9–11, 17–20, 22, 23, 31, 35
LIM-package, 2	Cation 2 4 0 12 15 17 22 22 22
*Topic utilities	Setup, 3, 4, 9–13, 15, 17–23, 32, 33
*Topic utilities Flowmatrix, 5	Variables, 3, 35
PrintMat, 30	Varranges, 3, 35, 36, 37, 39

INDEX 41

```
Xranges, 3, 36, 37
xranges, 37
Xsample, 3, 38
xsample, 38, 39
```