
Package ‘LICORS’
February 19, 2015

Type Package

Title Light Cone Reconstruction of States - Predictive State
Estimation From Spatio-Temporal Data

Version 0.2.0

Date 2013-11-20

Author Georg M. Goerg <gmg@stat.cmu.edu>

Maintainer Georg M. Goerg <gmg@stat.cmu.edu>

Description Estimates predictive states from spatio-temporal data and
consequently can provide provably optimal forecasts.
Currently this implementation
supports an N-dimensional spatial grid observed over equally spaced time
intervals. E.g. a video is a 2D spatial systems observed over time. This
package implements mixed LICORS, has plotting tools (for (1+1)D and (2+1)D
systems), and methods for optimal forecasting. Due to memory limitations
it is recommend to only analyze (1+1)D systems.

License GPL-2

Depends R (>= 2.12.1)

Imports RColorBrewer, mvtnorm, zoo, FNN, fields, locfit, Matrix

Suggests huge, RANN, yaImpute, itertools

URL http://www.stat.cmu.edu/~gmg

Collate 'compute_LICORS_loglik.R' 'compute_mixture_penalty.R'
'compute_NEC.R' 'contCA00.R' 'data2LCs.R' 'estimate_LC_pdfs.R'
'estimate_state_adj_matrix.R' 'estimate_state_probs.R'
'get_LC_config.R' 'image2.R' 'initialize_states.R' 'kmeanspp.R'
'LC-utils.R' 'LICORS-package.R' 'merge_states.R'
'mixed_LICORS.R' 'normalize.R' 'predict_FLC_given_PLC.R'
'rdensity.R' 'relabel_vector.R' 'remove_small_sample_states.R'
'search_knn.R' 'setup_LC_geometry.R' 'sparsify_weights.R'
'states2weight_matrix.R' 'threshold.R' 'weight_matrix2states.R'
'wKDE.R' 'mixed_LICORS-utils.R' 'compute_LC_coordinates.R'
'compute_margin_coordinates.R' 'get_spacetime_grid.R'
'embed2.R'

1

http://www.stat.cmu.edu/~gmg

2 R topics documented:

NeedsCompilation no

Repository CRAN

Date/Publication 2013-11-26 07:39:36

R topics documented:

LICORS-package . 3
compute_LC_coordinates . 5
compute_LICORS_loglik . 6
compute_margin_coordinates . 6
compute_mixture_penalty . 7
compute_NEC . 8
contCA00 . 8
data2LCs . 9
embed2 . 11
estimate_LC_pdfs . 11
estimate_state_adj_matrix . 13
estimate_state_probs . 14
get_LC_config . 15
get_spacetime_grid . 16
image2 . 17
initialize_states . 18
kmeanspp . 19
LC-utils . 20
merge_states . 21
mixed_LICORS . 22
mixed_LICORS-utils . 23
normalize . 25
predict_FLC_given_PLC . 26
rdensity . 26
relabel_vector . 27
remove_small_sample_states . 28
search_knn . 28
setup_LC_geometry . 29
sparsify_weights . 30
states2weight_matrix . 31
threshold . 31
weight_matrix2states . 32
wKDE . 33

Index 34

LICORS-package 3

LICORS-package Light Cone Reconstruction of States - Predictive State Estimation
From Spatio-Temporal Data

Description

A package for predictive state estimation from spatio-temporal data. The main function is mixed_LICORS,
which implements an EM algorithm for predictive state recovery (see References).

This is an early release: some function names and arguments might/will (slightly) change in the
future, so regularly check with new package updates.

Details on Methodology - Predictive State Model for Spatio-temporal Processes

For details and additional references please consult Goerg and Shalizi (2012, 2013).

Let D = {X(r, t) | r ∈ S, t = 1, . . . , T} = (X1, . . . , XÑ) be a sample from a spatio-temporal
process, observed over an N -dimensional spatial grid S and for T time steps. We want to find a
model that is optimal for forecasting a new X(s, u) given the data D. To do this we need to know

P (X(s, u) | D)

In general this is too complicated/time-intensive since D is very high-dimensional. But we know
that in any physical system, information can only propagate at a finite speed, and thus we can restrict
the search for optimal predictors to a subset `−(r, t) ⊂ D; this is the past light cone (PLC) at (r, t).

There exists a mapping ε : `− → S, where S = {s1, . . . , sK} is the predictive state space. This
mapping is such that

P (Xi | `−i) = P (Xi | sj),

where sj = ε(`−i) is the predictive state of PLC i. Furthermore, the future is independent of the
past given the predictive state:

P (Xi | `−i , sj) = P (Xi | sj).

The likelihood of the joint process factorizes as a product of predictive conditional distributions

P (X1, . . . , XN) ∝
N∏
i=1

P (Xi | `−i) =

N∏
i=1

P (Xi | ε(`−i)).

Since sj is unknown this can be seen as the complete data likelihood of a nonparametric finite
mixture model over predictive states:

P (X1, . . . , XN) ∝
N∏
i=1

K∑
j=1

1(ε(`−i) = sj)× P (Xi | sj).

This predictive state model is a provably optimal finite mixture model, where the “parameter” ε is
chosen to provide optimal forecasts.

The LICORS R package implements methods to estimate this optimal mapping ε.

4 LICORS-package

Acronyms and common function arguments

The R package uses a lot of acronyms and terminology from the References, which are provided
here for the sake of clarity/easier function navigation:

LCs light cones

PLC past light cone; notation: `−

FLC future light cone; notation: `+

LICORS LIght COne Reconstruction of States

Many functions use these acryonyms as part of their name. Function arguments that repeat over and
over again are:

weight.matrix an N × K matrix, where N are the samples and K are the states. That is, each
row contains a vector of length K that adds up to one (the mixture weights).

states a vector of length N with entry i being the label k = 1, . . . ,K of PLC i

Author(s)

Georg M. Goerg <gmg@stat.cmu.edu>

References

Goerg and Shalizi (2013), JMLR W\&CP 31:289-297. Also available at arxiv.org/abs/1211.
3760.

Goerg and Shalizi (2012). Available at arxiv.org/abs/1206.2398.

See Also

The main function in this package: mixed_LICORS

Examples

Not run:
setup the light cone geometry
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 2, FLC = 0),

shape = "cone")
load the field
data(contCA00)
get LC configurations from field
contCA_LCs <- data2LCs(contCA00$observed, LC.coordinates = LC_geom$coordinates)
run mixed LICORS

mod <- mixed_LICORS(contCA_LCs, num.states_start = 10, initialization = "KmeansPLC",
max_iter = 20)

plot(mod)

End(Not run)

arxiv.org/abs/1211.3760
arxiv.org/abs/1211.3760
arxiv.org/abs/1206.2398

compute_LC_coordinates 5

compute_LC_coordinates

Computes coordinates of PLC and FLC relative to origin

Description

Computes the space-time coordinates of PLC and FLC given control settings relative to the origin
(r, t) = (0, 0).

Since these coordinates do not change for different space-time positions, they can be computed
once before getting the LC configurations for the entire field and then used in each call by array
maskexing in get_LC_config.

Usage

compute_LC_coordinates(horizon = 1, speed = 1, space.dim = 1, type = c("PLC", "FLC"),
shape = c("cone", "tube", "revcone"))

Arguments

horizon integer; horizon for the PLC or FLC

speed speed of propagation

space.dim maximum value

type "PLC" or "FLC"

shape shape of light cone: 'cone', 'tube', or 'revcone'.

See Also

get_LC_config setup_LC_geometry summary.LC plot.LC

Examples

plot(compute_LC_coordinates(speed = 1, horizon = 4), xlim = c(-4, 2), pch = "-",
cex = 2, col = 2, xlab = "Time", ylab = "Space")

points(compute_LC_coordinates(speed = 1, horizon = 2, type = "FLC"), pch = "+", cex = 2,
col = "blue")

plot(compute_LC_coordinates(speed = 1, horizon = 4, shape = "tube", type = "FLC"))
plot(compute_LC_coordinates(speed = 1, horizon = 4, shape = "revcone", type = "PLC"))

6 compute_margin_coordinates

compute_LICORS_loglik Log-likelihood of LICORS model

Description

Computes the average log-likelihood 1
N `(W;D) as a function of the weight matrix W and the

predictive state distributions P (X = x | S = sj) ≈ P (X = x |Wj) for all j = 1, . . . ,K. See
References.

Usage

compute_LICORS_loglik(weight.matrix, pdfs.FLC, lambda = 0, penalty = "entropy", q = 2,
base = exp(1))

Arguments

weight.matrix N ×K weight matrix

pdfs.FLC an N ×K matrix containing the estimates of all K FLC densities evaluated at
all N sample FLCs.

lambda regularization parameter. Default: lambda=0 (penalty and q will be ignored in
this case).

penalty type of penalty: c("entropy", "1-Lq", "lognorm"). Default: "entropy"

base logarithm base for the "entropy" penalty. Default: base = 2. Any other real
number is allowed; if base = "num.states" then it will internally assign it
base = ncol(weight.matrix).

q exponent for Lq norm.

compute_margin_coordinates

Get LC configuration from a (N+1)D field

Description

compute_margin_coordinates computes the coordinates (boundary) of the margin of the field.

Usage

compute_margin_coordinates(dim, LC.coordinates)

Arguments

dim a vector with the dimensions of the field (time, space1, space2, ..., spaceN)

LC.coordinates template of the LC coordinates

compute_mixture_penalty 7

See Also

compute_LC_coordinates

Examples

LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 3, FLC = 0), shape = "cone")

data(contCA00)

aa <- compute_margin_coordinates(dim(contCA00$observed), LC_geom$coordinates)
aa

compute_mixture_penalty

Penalty of mixture weights

Description

Computes the penalty Ω(W) of the weight matrix (or vector) for a mixture model.

Usage

compute_mixture_penalty(weigh.matrix, type = c("entropy", "Lq", "lognorm", "MDL"),
q = 2, row.average = TRUE, base = 2)

Arguments

weigh.matrix N ×K weight matrix

type type of penalty: c("entropy", "1-Lq", "lognorm"). Default: "entropy"

q exponent for Lq norm.

row.average logical; if TRUE (default) then an average penalty over all rows will be returned
(one single number); if FALSE a vector of length N will be returned.

base logarithm base for the "entropy" penalty. Default: base = 2. Any other real
number is allowed; if base = "num.states" then it will internally assign it
base = ncol(weigh.matrix).

See Also

compute_LICORS_loglik compute_NEC

Examples

WW <- matrix(c(rexp(10, 1/10), runif(10), 1/10), ncol = 3, byrow = FALSE)
WW[1, 1] <- 0
WW <- normalize(WW)
compute_mixture_penalty(WW, row.average = FALSE)
compute_mixture_penalty(WW, row.average = TRUE) # default: average penalty

8 contCA00

compute_NEC Compute Negative Entropy Criterion (NEC)

Description

Computes the negative entropy criterion (NEC) to assess the number of clusters in a mixture model.
See References for details.

Usage

compute_NEC(weight.matrix, loglik.1 = NULL, loglik.k = NULL)

Arguments

weight.matrix N ×K weight matrix

loglik.1 baseline log-likelihood for K = 1 cluster model

loglik.k log-likelihood for K cluster model

References

Christophe Biernacki, Gilles Celeux, and G\’erand Govaert(1999). “An improvement of the NEC
criterion for assessing the number of clusters in a mixture model”. Non-Linear Anal. 20, 3, 267-
272.

See Also

compute_mixture_penalty

Examples

WW <- matrix(c(rexp(10, 1/10), runif(10)), ncol = 5, byrow = FALSE)
WW <- normalize(WW)
compute_NEC(WW, -2, -1)

contCA00 Simulated 7 state (1+1)D field

Description

Simulated 7 state (1+1)D field

data2LCs 9

Format

Contains the running example dataset used in hard LICORS & mixed LICORS.

A list with three (1 + 1)D fields, each one extending over N = 100 pixels in space, and T = 200
over time:

• observed

• states

• predictive_states

References

arxiv.org/abs/1206.2398

Examples

set original par parameters
op <- par(no.readonly = TRUE)

data(contCA00)
par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
for (ii in 1:3) {

image2(contCA00[[ii]], legend = FALSE, col = "RdBu", main = attr(summary(contCA00),
"dimnames")[[1]][ii])

mtext("Time", 1, 1)
mtext("Space", 2, 1)

}
par(op)
Not run:
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 2, FLC = 0),

shape = "cone")
bb <- data2LCs(contCA00$observed, LC.coordinates = LC_geom$coordinates)
image2(bb$PLC)
image2(cor(bb$PLC), zlim = c(-1, 1), col = "RdBu")
mod_kk <- kmeanspp(bb$PLC, k = 10)
plot(bb$FLC, col = mod_kk$cluster, pch = ".", cex = 3)

ff <- estimate_LC_pdfs(bb$FLC, states = mod_kk$cluster, method = "nonparametric")
matplot(bb$FLC, ff, pch = ".", cex = 2)

End(Not run)

data2LCs Iterate over (N+1)D field and get all LC configurations

arxiv.org/abs/1206.2398

10 data2LCs

Description

data2LCs gets all PLC or FLC configuration from a (N + 1)D field given the LC template. The
shape and dimension of this LC template depends on coordinates passed on by setup_LC_geometry.

User-defined LC template:
Since data2LCs passes the LC.coordinates array to get_LC_config to iterate over the entire
dataset, this functional programming approach allows user-defined light cone shapes (independent
of the shapes implemented by setup_LC_geometry).

Just replace the $coordinates from the "LC" class with a user-specified LC template.

Usage

data2LCs(field, LC.coordinates = list(PLC = NULL, FLC = NULL))

Arguments

field spatio-temporal field; either a matrix or a 3-dimensional array with time t as
the first dimension, and the spatial coordinates as subsequent dimensions. Make
sure to check compute_LC_coordinates for correct formatting.

LC.coordinates coordinates for LC shape and dimension (usually the $coordinates value from
the "LC" class; but also user-defined coordinates are possible here).

See Also

compute_LC_coordinates, setup_LC_geometry

Examples

set.seed(1)
AA <- matrix(rnorm(200), ncol = 10)
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 2, FLC = 0), shape = "cone")
bb <- data2LCs(t(AA), LC.coordinates = LC_geom$coordinates)
image2(bb$PLC)
plot(density(bb$FLC))

a time series example
data(nottem)
xx <- nottem
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 24, FLC = 3), space.dim = 0)
bb <- data2LCs(xx, LC.coordinates = LC_geom$coordinates)
image2(bb$PLC)
plot(density(bb$FLC))

embed2 11

embed2 Improved embed() function

Description

Improved version of the embed function in the stats package. First it allows embeddings in past
and future observation space (backward and forward shift). Secondly, it adds ’NA’ to the beginning
(or end) of the embedding matrix, depending on the dimension of the embedding. Optionally, they
can be removed.

Usage

embed2(x, max.lag = 1, na.omit = FALSE)

Arguments

x a numeric vector, matrix, or time series.

max.lag a scalar representing the embedding dimension in past or future. Note that con-
trary to ’dimension = 1’ in embed, here ’max.lag = 1’ will return a 2 column
matrix (0 lag, 1 lag), and not just a 1 column matrix. Similarly, for negative
shift; e.g., ’max.lag = -2’ returns 3 column matrix with (0 lag, -1 lag, -2 lag).

na.omit logical; if TRUE, it removes NA values automatically from embedded matrix.

See Also

embed

Examples

data(nottem)
aa <- embed2(nottem, 12)

estimate_LC_pdfs Estimate PLC/FLC distributions for all states

Description

estimate_LC_pdfs estimates the PLC and FLC distributions for each state k = 1, . . . ,K. It
iteratively applies estimate_LC.pdf.state.

estimate_LC.pdf.state estimates the PLC and FLC distributions using weighted maximum like-
lihood (cov.wt) and nonparametric kernel density estimation (wKDE) for one (!) state.

12 estimate_LC_pdfs

Usage

estimate_LC_pdfs(LCs, weight.matrix = NULL, method = c("nonparametric", "normal",
"huge"), eval.LCs = NULL)

estimate_LC_pdf_state(state, states = NULL, weights = NULL, LCs = NULL, eval.LCs = NULL,
method = c("nonparametric", "normal", "huge"))

Arguments

LCs matrix of PLCs/FLCs. This matrix has N rows and np or nf columns (depend-
ing on the PLC/FLC dimensionality)

weight.matrix N ×K weight matrix

states vector of length N with entry i being the label k = 1, . . . ,K of PLC i

method type of estimation: either a (multivariate) Normal distribution ("normal") or
nonparametric with a kernel density estimator (method = "nonparametric").
For multivariate distributions (as usual for PLCs) only 'normal' should be used
due to computational efficiency and statistical accuracy.

eval.LCs on what LCs should the estimate be evaluated? If NULL then densities will be
evaluated on the training data LCs

state integer; which state-conditional density should be estimated

weights weights of the samples. Either a i) length N vector with the weights for each
observation; ii) N ×K matrix, where the state column of that matrix is used
as a weight-vector.

Value

estimate_LC_pdfs returns an N ×K matrix.

estimate_LC.pdf.state returns a vector of length N with the state-conditional density evaluated
at eval.LCs.

Examples

set.seed(10)
WW <- matrix(runif(10000), ncol = 10)
WW <- normalize(WW)
temp_flcs <- cbind(sort(rnorm(nrow(WW))))
temp_flc_pdfs <- estimate_LC_pdfs(temp_flcs, WW)
matplot(temp_flcs, temp_flc_pdfs, col = 1:ncol(WW), type = "l", xlab = "FLCs",

ylab = "pdf", lty = 1)
###################### one state only ###
temp_flcs <- temp_flcs[order(temp_flcs)]
temp_flc_pdf <- estimate_LC_pdf_state(state = 3, LCs = temp_flcs, weights = WW)

plot(temp_flcs, temp_flc_pdf, type = "l", xlab = "FLC", ylab = "pdf")

estimate_state_adj_matrix 13

estimate_state_adj_matrix

Estimate adjacency matrix for equivalent FLC distributions based on
states

Description

This function estimates the adjacency matrix A of all pairwise equivalent FLC distributions given
the states s1, . . . , sK . See Details below.

Usage

estimate_state_adj_matrix(states = NULL, FLCs = NULL, pdfs.FLC = NULL, alpha = NULL,
distance = function(f, g) return(mean(abs(f - g))))

Arguments

states vector of length N with entry i being the label k = 1, . . . ,K of PLC i

FLCs N × nf matrix of FLCs (only necessary if distance= "KS")

pdfs.FLC N×K matrix of allK state-conditional FLC densities evaluated at each FLC `+i ,
i = 1, . . . , N (only necessary if distance = function(f, g) return(...)).

alpha significance level for testing. Default: alpha=NULL (this will return a p-value
matrix if method == "KS")

distance either a Kolmogorov-Smirnov test (distance = "KS") or a function metric (e.g.
Lq distance). For a distance function, distance requires as input a function of
f and g that returns one value.
Default: distance = function(f, g) return(mean(abs(f-g)))→ L1

distance.

Value

A K ×K adjacency matrix with a trimmed version of exp(-distance) or p-values. If alpha!=NULL
then it returns the thresholded 0/1 matrix. However, here 1 stands for equivalent, i.e. not rejecting.
The matrix is obtained by checking for pval>alpha (rather than the usual pval<alpha).

Details and user-defined distance function

The (i, j)th element of the adjacency matrix is defined as

Aij = distance(P (X | si), P (X | sj)) = distance(f, g),

where distance is either

a metric in the function space of pdfs f and g, or

a two sample test for H0 : f = g, e.g. a Kolmogorov-Smirnov test (distance="KS").

14 estimate_state_probs

Again we use a functional programming approach and allow the user to specify any valid dis-
tance/similarity function distance = function(f, g) return(...).

If distance="KS" the adjacency matrix contains p-values of a Kolmogorov-Smirnov test or the
thresholded versions (if alpha!=NULL) - see Return for details.

Otherwise distance is an R function that takes as an input two vectors f and g (e.g. the wKDE
estimates for two states), and returns a non-negative, real number to estimate their distance. Default
is the L1 distance distance = function(f, g) return(mean(abs(f-g))).

Examples

WW <- matrix(runif(10000), ncol = 10)
WW <- normalize(WW)
temp_flcs <- cbind(rnorm(nrow(WW)))
temp_pdfs.FLC <- estimate_LC_pdfs(temp_flcs, WW)
AA_ks <- estimate_state_adj_matrix(states = weight_matrix2states(WW), FLCs = temp_flcs,

distance = "KS")
AA_L1 <- estimate_state_adj_matrix(pdfs.FLC = temp_pdfs.FLC)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 1))
image2(AA_ks, zlim = c(0, 1), legend = FALSE, main = "Kolmogorov-Smirnov")
image2(AA_L1, legend = FALSE, main = "L1 distance")

estimate_state_probs Estimate conditional/marginal state probabilities

Description

Estimates P (S = sk;W), k = 1, . . . ,K, the probability of being in state sk using the weight
matrix W.

These probabilites can be marginal (P (S = sk;W)) or conditional (P (S = sk | `−, `+;W)),
depending on the provided information (pdfs$PLC and pdfs$FLC).

• If both are NULL then estimate_state_probs returns a vector of length K with marginal
probabilities.

• If either of them is not NULL then it returns an N ×K matrix, where row i is the probability
mass function of PLC i being in state sk, k = 1, . . . ,K.

Usage

estimate_state_probs(weight.matrix = NULL, states = NULL, pdfs = list(FLC = NULL,
PLC = NULL), num.states = NULL)

get_LC_config 15

Arguments

weight.matrix N ×K weight matrix

states vector of length N with entry i being the label k = 1, . . . ,K of PLC i

pdfs a list with estimated pdfs for PLC and/or FLC evaluated at each PLC, i =
1, . . . , N and/or FLC, i = 1, . . . , N

num.states number of states in total. If NULL (default) then it sets it to max(states) or
ncol(weight.matrix) - depending on which one is provided.

Value

A vector of length K or a N ×K matrix.

Examples

WW <- matrix(runif(10000), ncol = 10)
WW <- normalize(WW)
estimate_state_probs(WW)

get_LC_config Get configuration of a light cone (LC)

Description

get_LC_config obtains the PLC or FLC at a particular (r, t) from a (N + 1)D field based on the
LC template from compute_LC_coordinates (or setup_LC_geometry).

Usage

get_LC_config(coord, field, LC.coordinates)

Arguments

coord space-time coordinate (r, t)

field spatio-temporal field; either a matrix or a 3-dimensional array with time t as the
first coord, and the spatial coords in order. Make sure to see also compute_LC_coordinates
for correct formatting.

LC.coordinates template coords for the LC

See Also

compute_LC_coordinates

16 get_spacetime_grid

Examples

AA <- matrix(rnorm(40), ncol = 5)
image2(AA)
LCind <- compute_LC_coordinates(speed = 1, horizon = 1, shape = "cone")
AA
get_LC_config(cbind(5, 2), AA, LCind)
a time series example
data(nhtemp)
xx <- c(nhtemp)
LCind <- compute_LC_coordinates(speed = 1, horizon = 4, shape = "cone", space.dim = 0)
cc <- get_LC_config(6, xx, LCind)

get_spacetime_grid Get an iterator over the space-time coordinates of the field.

Description

This function returns a matrix of space-time coordinates of the field. Both for the whole field as
well as the truncated field (without the margin)

Usage

get_spacetime_grid(dim, LC.coordinates)

Arguments

dim dimension of the original field (first dimension is time; rest is space)

LC.coordinates template of the LC coordinates

See Also

compute_LC_coordinates, setup_LC_geometry

Examples

AA <- matrix(rnorm(200), ncol = 10)
LC.geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 3, FLC = 0), shape = "cone")
bb <- get_spacetime_grid(dim(AA), LC.geom$coordinates)

image2 17

image2 Improved image() function

Description

Improved version of the image function in the graphics package. In particular, it displays matrices
the way they are shown in the R console, not transposed/rearranged/... For example, a covariance
matrix has the diagonal in from top-left to bottom-right as it should be, and not from bottom-left to
top-right.

The function make_legend also provides a better color scale legend handling.

Optionally image2 displays a color histogram below the image, which can be used to refine the
display of a matrix by trimming outliers (as they can often distort the color representation).

Usage

image2(x = NULL, y = NULL, z = NULL, col = NULL, axes = FALSE, legend = TRUE,
xlab = "", ylab = "", zlim = NULL, density = FALSE, max.height = NULL,
zlim.label = "color scale", ...)

make_legend(data = NULL, col = NULL, side = 1, zlim = NULL, col.ticks = NULL,
cex.axis = 2, max.height = 1, col.label = "")

Arguments

x,y locations of grid lines at which the values in z are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from 0 to 1 are used. If x is a list, its components x$x and x$y are used
for x and y, respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

col colors: either a string decribing a pallette from the RColorBrewer package (see
also http://colorbrewer2.org/), or a list of colors (see image for sugges-
tions).

axes a logical value indicating whether both axes should be drawn on the plot.

xlab a label for the x axis

ylab a label for the y axis

legend logical; if TRUE a color legend for will be plotted

zlim minimum and maximum z values for which colors should be plotted, defaulting
to the range of the finite values of z.

zlim.label character string (default: "color scale") to write next to the color legend

density logical; if TRUE a color histogram (density) will be plotted. Default: FALSE.

max.height height of the density plot (typically not modified by user)

... optional arguments passed to image

http://colorbrewer2.org/

18 initialize_states

data data for which the legend should be plotted

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right)

col.ticks color tick marks

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

col.label same as zlim.label

See Also

image, image.plot

Examples

Not run:
Correlation matrix
data(iris) # make sure its from 'datasets' package, not from 'locfit'
image(cor(as.matrix(iris[, names(iris) != "Species"])))

Correlation matrix has diagonal from top left to bottom right
par(mar = c(1, 3, 1, 2))
image2(cor(as.matrix(iris[, names(iris) != "Species"])), col = "RdBu", axes = FALSE)

End(Not run)
Color histogram
nn <- 10
set.seed(nn)
AA <- matrix(sample(c(rnorm(nn^2, -1, 0.1), rexp(nn^2/2, 0.5))), ncol = nn)

image2(AA, col = "Spectral")
image2(y = 1:15 + 2, x = 1:10, AA, col = "Spectral", axes = TRUE)
image2(y = 1:15 + 2, x = 1:10, AA, col = "Spectral", density = TRUE, axes = TRUE)

image2(AA, col = "Spectral", density = TRUE, zlim = c(min(AA), 3))

initialize_states State initialization for iterative algorithms (randomly or variants of
kmeans)

Description

Initializes the state/cluster assignment either uniformly at random from K classes, or using initial
kmeans++ (kmeanspp) clustering (in several variations on PLCs and/or FLCs).

Usage

initialize_states(num.states = NULL, num.samples = NULL, method = c("random",
"KmeansPLC", "KmeansFLC", "KmeansPLCFLC", "KmeansFLCPLC"), LCs = list(PLC = NULL,
FLC = NULL))

kmeanspp 19

Arguments

num.states number of states

num.samples number of samples.

method how to choose the labels: either uniformly at random from {1, . . . ,K} or using
K-means on PLCs and FLCs or a combination. Default: method = "random".
Other options are c("KmeansPLC","KmeansFLC","KmeansPLCFLC","KmeansFLCPLC")

LCs (optional) a list of PLC (N × np array) and FLC (N × nf array)

Examples

x1 <- rnorm(1000)
x2 <- rnorm(200, mean = 2)
yy <- c(x1, x2)
ss <- initialize_states(num.states = 2, num.samples = length(yy), method = "KmeansFLC",

LCs = list(FLCs = yy))
plot(yy, col = ss, pch = 19)
points(x1, col = "blue")

kmeanspp Kmeans++

Description

kmeans++ clustering (see References) using R’s built-in function kmeans.

Usage

kmeanspp(data, k = 2, start = "random", iter.max = 100, nstart = 10, ...)

Arguments

data an N × d matrix, where N are the samples and d is the dimension of space.

k number of clusters.

start first cluster center to start with

iter.max the maximum number of iterations allowed

nstart how many random sets should be chosen?

... additional arguments passed to kmeans

References

Arthur, D. and S. Vassilvitskii (2007). “k-means++: The advantages of careful seeding.” In H.
Gabow (Ed.), Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
[SODA07], Philadelphia, pp. 1027-1035. Society for Industrial and Applied Mathematics.

20 LC-utils

See Also

kmeans

Examples

set.seed(1984)
nn <- 100
XX <- matrix(rnorm(nn), ncol = 2)
YY <- matrix(runif(length(XX) * 2, -1, 1), ncol = ncol(XX))
ZZ <- rbind(XX, YY)

cluster_ZZ <- kmeanspp(ZZ, k = 5, start = "random")

plot(ZZ, col = cluster_ZZ$cluster + 1, pch = 19)

LC-utils Utilities for LC class

Description

The "LC" class is the core property of the LICORS model as it specifies the spatio-temporal neigh-
borhood of the past and future light cone. The function setup_LC_geometry generates an instance
of the "LC" class.

plot.LC plots LCs of (1 + 1)D and (2 + 1)D systems with respect to the origin (r, t) = (0, 0).
This is especially useful for a quick check if the LC geometry specified by setup_LC_geometry is
really the intended one.

summary.LC prints a summary of the LC geometry. Returns (invisible) the summary matrix.

LC_coordinates2control_setting computes auxiliary measures given the LC geometry such as
horizon, spatial/temporal extension, etc. This function should not be called by the user directly;
only by get_spacetime_grid.

Usage

S3 method for class 'LC'
plot(x, cex.axis = 2, cex.lab = 2, ...)

S3 method for class 'LC'
summary(object, verbose = TRUE, ...)

LC_coordinates2control_settings(LC.coordinates)

Arguments

x an object of class "LC" (see setup_LC_geometry)

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

merge_states 21

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex.

... optional arguments passed to plot.

object an object of class "LC"

verbose logical; if TRUE LC information is printed in the console

LC.coordinates template of a light cone (with respect to origin)

See Also

compute_LC_coordinates

Examples

aa <- setup_LC_geometry(horizon = list(PLC = 2, FLC = 1), speed = 1, space.dim = 1,
shape = "cone")

plot(aa)
bb <- setup_LC_geometry(horizon = list(PLC = 2, FLC = 1), speed = 1, space.dim = 1,

shape = "revcone")
plot(bb)
aa <- setup_LC_geometry(horizon = list(PLC = 2, FLC = 0), speed = 1, space.dim = 1,

shape = "cone")
summary(aa)
aa <- setup_LC_geometry(horizon = list(PLC = 2, FLC = 0), speed = 1, space.dim = 1,

shape = "cone")
LC_coordinates2control_settings(aa$coordinates)

merge_states Merge several states into one

Description

This function merges states i1, . . . , ij into a new, single state i1 by adding corresponding columns
of the weight matrix (Wi1 = Wi1 + . . .+ Wij) and removing columns i2, . . . , ij .

Usage

merge_states(states, weight.matrix)

Arguments

states vector of length 1 ≤ j ≤ K with the states i1, . . . , ij ⊂ {1, . . . ,K} that should
be merged; no repeating state labels allowed.

weight.matrix N ×K weight matrix

22 mixed_LICORS

Examples

set.seed(10)
WW <- matrix(c(rexp(1000, 1/10), runif(1000)), ncol = 5, byrow = FALSE)
WW <- normalize(WW)
image2(WW, density = TRUE)
Not run:
merge_states(c(1, 1, 5), WW) # error since states were repeated

End(Not run)
WW_new <- merge_states(c(1, 3, 5), WW)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 1))
image2(WW, main = paste(ncol(WW), "states"), legend = FALSE)
image2(WW_new, main = paste(ncol(WW_new), "states"), legend = FALSE)

mixed_LICORS Mixed LICORS: An EM-like Algorithm for Predictive State Space Es-
timation

Description

mixed_LICORS is the core function of this package as it estimates the “parameters” in the model for
the spatio-temporal process.

P (X1, . . . , XÑ) ∝
N∏
i=1

P (Xi | `−i) =

N∏
i=1

P (Xi | ε(`−i)).

Usage

mixed_LICORS(LCs = list(PLC = NULL, FLC = NULL, dim = list(original = NULL,
truncated = NULL)), num.states.init = NULL, initialization = NULL,
control = list(max.iter = 500, alpha = 0.01, trace = 0, lambda = 0,

sparsity = "stochastic", CV.split.random = FALSE, CV.train.ratio = 0.75,
seed = NULL, loss = function(x, xhat) mean((x - xhat)^2),
estimation.method = list(PLC = "normal", FLC = "nonparametric")))

Arguments

LCs list of PLCs and FLCs matrices (see output of data2LCs for details and format-
ting).

num.states.init

number of states to start the EM algorithm
initialization a a) character string, b) vector, or c) matrix. a) results num.states.init many

states initialized by passing the character string as method argument of initialize_states;
if b) the vector will be taken as initial state labels; if c) the matrix will be taken as
initial weights. Note that for both b) and c) num.states.init will be ignored.
k = 1, . . . ,K of PLC i

control a list of control settings for the EM algorithm. See complete_LICORS_control
for details.

mixed_LICORS-utils 23

Value

An object of class "LICORS".

See Also

plot.mixed_LICORS, summary.mixed_LICORS

Examples

Not run:
data(contCA00)

LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 2, FLC = 0),
shape = "cone")

bb <- data2LCs(t(contCA00$observed), LC.coordinates = LC_geom$coordinates)

mm <- mixed_LICORS(bb, num.states.init = 15, init = "KmeansPLC",
control = list(max.iter = 50, lambda = 0.001))

plot(mm)
ff_new <- estimate_LC_pdfs(bb$FLC, weight.matrix = mm$conditional_state_probs,

method = "nonparametric")
matplot(bb$FLC, ff_new, pch = ".", cex = 2)

End(Not run)

mixed_LICORS-utils Utilities for “LICORS” class

Description

The "mixed_LICORS" class is the objectput from the mixed_LICORS estimator.

plot.mixed_LICORS gives a visual summary of the estimates such as marginal state probabili-
ties, conditional state probabilities (= weight matrix), predictive state densities, trace plots for log-
likelihood/loss/penalty.

summary.mixed_LICORS prints object a summary of the estimated LICORS model.

predict.mixed_LICORS predicts FLCs based on PLCs given a fitted mixed LICORS model. This
can be done on an iterative basis, or for a selection of future PLCs.

complete_LICORS_control completes the controls for the mixed LICORS estimator. Entries of
the list are:

’loss’ an R function specifying the loss for cross-validation (CV). Default: mean squared error
(MSE), i.e. loss = function(x, xhat) mean((x-xhat)^2)

’method’ a list of length 2 with arguments PLC and FLC for the method of density estimation in each
(either "normal" or "nonparametric").

’max.iter’ maximum number of iterations in the EM

’trace’ if > 0 it prints output in the console as the EM is running

24 mixed_LICORS-utils

’sparsity’ what type of sparsity (currently not implemented)

’lambda’ penalization parameter; larger lambda gives sparser weights

’alpha’ significance level to stop testing. Default: alpha = 0.01

’seed’ set seed for reproducibility. Default: NULL. If NULL it sets a random seed and then returns this
seed in the output.

’CV.train.ratio’ how much of the data should be training data. Default: 0.75, i.e., 75% of data is
for training

’CV.split.random’ logical; if TRUE training and test data are split randomly; if FALSE (default) it uses
the first part (in time) as training, rest as test.

’estimation’ a list of length 2 with arguments PLC and FLC for the method of density estimation in
each (either "normal" or "nonparametric").

Usage

S3 method for class 'mixed_LICORS'
plot(x, type = "both", cex.axis = 1.5, cex.lab = 1.5,

cex.main = 2, line = 1.5, ...)

S3 method for class 'mixed_LICORS'
summary(object, ...)

S3 method for class 'mixed_LICORS'
predict(object, new.LCs = list(PLC = NULL), ...)

complete_LICORS_control(control = list(alpha = 0.01, CV.split.random = FALSE,
CV.train.ratio = 0.75, lambda = 0, max.iter = 500, seed = NULL,
sparsity = "stochastic", trace = 0, loss = function(x, xhat) mean((x -

xhat)^2), estimation.method = list(PLC = "normal", FLC = "nonparametric")))

Arguments

x object of class "mixed_LICORS"

type should only "training", "test", or "both" be plotted. Default: "both".

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex.

cex.main The magnification to be used for main titles relative to the current setting of cex.

line on which margin line should the labels be ploted, starting at 0 counting object-
wards (see also mtext).

... optional arguments passed to plot, summary, or predict

object object of class "mixed_LICORS"

new.LCs a list with PLC configurations to predict FLCs given these PLCs

control a list of controls for "mixed_LICORS".

normalize 25

Examples

see examples of LICORS-package see examples in LICORS-package see examples in
LICORS-package see examples in LICORS-package

normalize Normalize a matrix/vector to sum to one (probability simplex)

Description

normalize projects a vector or matrix onto the probability simplex.

If all entries (per row or column) get thresholded to 0 (since they are all negative to start with), then
it sets the position of the maximum of x to 1 and leaves all other entries at 0.

Usage

normalize(x, byrow = TRUE, tol = 1e-06)

Arguments

x a numeric matrix(like object).

byrow logical; if TRUE rows are normalized; otherwise columns.

tol a tolerance level to set values < tol to 0 (after an initial normalization). Default:
tol=1e-6

Value

If x is a vector it returns the thresholded vector (see threshold) and normalized by its sum. If x is
a matrix it works by column of by row (argument byrow).

See Also

threshold

Examples

print(normalize(c(1, 4, 2, 2, 10)))
print(normalize(c(-1, -2, -1)))
AA <- matrix(rnorm(12), ncol = 3)
print(normalize(AA, byrow = TRUE))
print(normalize(AA, byrow = FALSE))

26 rdensity

predict_FLC_given_PLC Predict FLCs given new PLCs

Description

This function predicts FLCs given new PLCs based on the estimated ε mappings and estimated
conditional distributions.

Usage

predict_FLC_given_PLC(train = list(data = list(FLC = NULL, PLC = NULL),
weight.matrix = NULL, pdfs = list(FLC = NULL, PLC = NULL)), test = list(PLC = NULL,
weight.matrix = NULL), type = c("weighted.mean", "mean", "median", "mode"),
method = list(FLC = "nonparametric", PLC = "normal"))

Arguments

train a list of training examples with LC observations (a list of PLC and FLC), weight.matrix,
and pdfs

test a list of test examples with PLC observations and/or the weight.matrix asso-
ciated with the PLC observations.

method estimation method for estimating PLC and FLC distributions

type prediction: 'mean', 'median', 'weightedmean', or 'mode'.

Value

N ×K matrix

rdensity Generate random sample from density() or wKDE

Description

This function draws random samples given data and a density estimate (or just providing the
correct bandwidth bw).

Usage

rdensity(n = 100, data = NULL, fhat = NULL, bw = fhat$bw, weights = NULL,
kernel = "Gaussian")

relabel_vector 27

Arguments

n number of samples
fhat an object of class 'density' for bandwidth selection (if bw is not explicitly

provided as argument)
weights vector of weights. Same length as data. Default weights=NULL - in this case

equal weights for each point
data underlying sample of fhat
kernel kernel choice for fhat. Default: kernel='Gaussian'. See density for other

options.
bw choice of bandwidth. Default: bw=fhat$bw. Again see density for other op-

tions.

Examples

set.seed(1923)
xx <- c(rnorm(100, mean = 2), runif(100))
aa <- density(xx)
plot(aa)
xx_sample <- rdensity(n = 1000, fhat = aa, data = xx)
lines(density(xx_sample), col = 2)

relabel_vector Relabels a vector to consecutive labels

Description

This function relabels a vector to have consecutive - no missing in between - labels. Labels always
start at 1 and increase by one.

For example, c(2, 2, 5) gets relabeled to c(1, 1, 2).

Usage

relabel_vector(vec, order = FALSE)

Arguments

vec vector with labels
order logical; if TRUE then new state labels are assigned by decreasing number of

points in that state. That is, state “1” has the most points in the state, followed
by state “2” etc.

Examples

TempVec <- c(10, 2, 1, 2, 2, 2, 10)
print(relabel_vector(TempVec))

print(relabel_vector(c(2, 2, 5)))

28 search_knn

remove_small_sample_states

Reassign low sample states to close states

Description

This function removes small sample states by reassigning points in those state to nearby states.

This can become necessary when in an iterative algorithm (like mixed_LICORS) the weights start
moving away from e.g. state j. At some point the effective sample size of state j (sum of column
Wj) is so small that state-conditional estimates (mean, variance, kernel density estimate, etc.) can
not be obtained accurately anymore. Then it is good to remove state j and reassign its samples to
other (close) states.

Usage

remove_small_sample_states(weight.matrix, min)

Arguments

weight.matrix N ×K weight matrix

min minimum effective sample size to stay in the weight matrix

Examples

set.seed(10)
WW <- matrix(c(rexp(1000, 1/10), runif(1000)), ncol = 5, byrow = FALSE)
WW <- normalize(WW)
colSums(WW)
remove_small_sample_states(WW, 20)

search_knn K nearest neighbor (KNN) search

Description

This is a wrapper for several k nearest neighbors (KNNs) algorithms in R. Currently wrapped func-
tions are from the FNN, RANN, and yaImpute package.

It searches for KNN in a N × d data matrix data where N are the number of samples, and d is the
dimension of space.

Either knn search in itself query=NULL or to query new data points wrt to training dataset.

Usage

search_knn(data, k = 1, query = NULL, method = c("FNN", "RANN", "yaImpute"), ...)

setup_LC_geometry 29

Arguments

data an N × d matrix, where N are the samples and d is the dimension of space. For
large d knn search can be very slow.

k number of nearest neighbors (excluding point itself). Default: k=1.

query (optional) an Ñ × d matrix to find KNN in the training data for. Must have
the same d as data; can have lower or larger Ñ though. Default: query=NULL
meaning that nearest neighbors should be looked for in the training data itself.

method what method should be used: 'FNN', 'RANN', or 'yaImpute'.

... other parameters passed to the knn functions in each package.

See Also

Packages FNN, RANN, and yaImpute for other options (...).

Examples

set.seed(1984)
XX <- matrix(rnorm(40), ncol = 2)
YY <- matrix(runif(length(XX) * 2), ncol = ncol(XX))
knns_of_XX_in_XX <- search_knn(XX, 1)
knns_of_YY_in_XX <- search_knn(XX, 1, query = YY)
plot(rbind(XX, YY), type = "n", xlab = "", ylab = "")
points(XX, pch = 19, cex = 2, xlab = "", ylab = "")
arrows(XX[, 1], XX[, 2], XX[knns_of_XX_in_XX, 1], XX[knns_of_XX_in_XX, 2], lwd = 2)
points(YY, pch = 15, col = 2)
arrows(YY[, 1], YY[, 2], XX[knns_of_YY_in_XX, 1], XX[knns_of_YY_in_XX, 2], col = 2)
legend("left", c("X", "Y"), lty = 1, pch = c(19, 15), cex = c(2, 1), col = c(1, 2))

setup_LC_geometry Setup light cone geometry

Description

setup_LC_geometry sets up the light cone geometry for LICORS.

Usage

setup_LC_geometry(horizon = list(PLC = 1, FLC = 0), speed = 1, space.dim = 1,
shape = "cone")

Arguments

horizon a list with PLC and FLC horizon

speed speed of propagation

space.dim dimension of the spatial grid. Eg. 2 if the data is a video (= image sequences).

shape shape of light cone: 'cone', 'tube', or 'revcone'.

30 sparsify_weights

Value

A list of class "LC".

See Also

LC-utils, compute_LC_coordinates

Examples

aa <- setup_LC_geometry(horizon = list(PLC = 3, FLC = 1), speed = 1, space.dim = 1,
shape = "cone")

aa
plot(aa)
summary(aa)

sparsify_weights Sparsify weights

Description

This function makes weights of a mixture model more sparse using gradient based penalty methods.

Usage

sparsify_weights(weight.matrix.proposed, weight.matrix.current = NULL,
penalty = "entropy", lambda = 0)

Arguments

weight.matrix.proposed

N ×K weight matrix
weight.matrix.current

N ×K weight matrix
penalty type of penalty: c("entropy", "1-Lq", "lognorm"). Default: "entropy"
lambda penalization parameter: larger lambda gives sparser mixture weights

See Also

compute_mixture_penalty, mixed_LICORS

Examples

WW <- matrix(c(rexp(10, 1/10), runif(10)), ncol = 5, byrow = FALSE)
WW <- normalize(WW)
WW_sparse <- sparsify_weights(WW, lambda = 0.1)
WW_more_sparse <- sparsify_weights(WW, lambda = 0.5)
compute_mixture_penalty(WW)
compute_mixture_penalty(WW_sparse)
compute_mixture_penalty(WW_more_sparse)

states2weight_matrix 31

states2weight_matrix Converts label vector to 0/1 mixture weight matrix

Description

Converts unique cluster assignment stored in a length N label vector into a N ×K Boolean matrix
of mixture weights.

Usage

states2weight_matrix(states, num.states.total = NULL)

Arguments

states a vector of length N with the state labels
num.states.total

total number of states. If NULL, then the maximum of states is chosen

See Also

weight_matrix2states

Examples

ss <- sample.int(5, 10, replace = TRUE)
WW <- states2weight_matrix(ss)

image2(WW, col = "RdBu", xlab = "States", ylab = "Samples", axes = FALSE)

threshold Threshold a matrix/vector below and above

Description

threshold sets values of a vector/matrix below min to min; values above max are set to max.

threshold is mainly used to project sparsified weight vectors (sparsify_weights) back onto the
probability simplex (thus min = 0 and then normalize).

Usage

threshold(x, min = -Inf, max = Inf)

Arguments

x a numeric matrix(like object)
min minimum value
max maximum value

32 weight_matrix2states

See Also

normalize

Examples

print(threshold(c(1, 4, 2, -1, 10), min = 0))

weight_matrix2states Returns unique state assignment from a (row-wise) weight matrix

Description

Converts a probabilistic cluster assignment to a unique cluster assignment using the

’argmax’ rule: state of row i is assigned as the position of the maximum in that row (ties are
broken at random).

’sample’ rule state of row i is sampled from the discrete distribution where probabilities equal the
weight vector in row i

Usage

weight_matrix2states(weight.matrix, rule = c("argmax", "sample"))

Arguments

weight.matrix an N ×K matrix

rule how do we choose the state given the weight matrix. c("argmax", "sample").

See Also

states2weight_matrix

Examples

WW <- matrix(runif(12), ncol = 3)
WW <- normalize(WW)
WW
weight_matrix2states(WW)
weight_matrix2states(WW, "sample")
another 'sample' is in general different from previous conversion unless WW is
a 0/1 matrix
weight_matrix2states(WW, "sample")

wKDE 33

wKDE Weighted kernel density estimator (wKDE)

Description

wKDE gives a (weighted) kernel density estimate (KDE) for univariate data.

If weights are not provided, all samples count equally. It evaluates on new data point by interpola-
tion (using approx).

mv_KDE uses the locfit.raw function in the locfit package to estimate KDEs for multivariate data.
Note: Use this only for small dimensions, very slow otherwise.

Usage

wKDE(x, eval.points = x, weights = NULL, kernel = "gaussian", bw = "nrd0")

mv_wKDE(x, eval.points = x, weights = NULL, kernel = "gaussian")

Arguments

x data vector
eval.points points where the density should be evaluated. Default: eval.points = x.
weights vector of weights. Same length as x. Default: weights=NULL - equal weight for

each sample.
kernel type of kernel. Default: kernel='Gaussian'. See density and locfit.raw

for additional options.
bw bandwidth. Either a character string indicating the method to use or a real num-

ber. Default: bw="nrd0". Again see density for other options.

Value

A vector of length length(eval.points) (or nrow(eval.points)) with the probabilities of each
point given the nonparametric fit on x.

Examples

Univariate example
xx <- sort(c(rnorm(100, mean = 1), runif(100)))
plot(xx, wKDE(xx), type = "l")
yy <- sort(runif(50, -1, 4) - 1)
lines(yy, wKDE(xx, yy), col = 2)
Multivariate example
XX <- matrix(rnorm(100), ncol = 2)
YY <- matrix(runif(40), ncol = 2)
dens.object <- mv_wKDE(XX)

plot(dens.object)
points(mv_wKDE(XX, YY), col = 2, ylab = "")

Index

∗Topic #
rdensity, 26

∗Topic aplot
image2, 17

∗Topic arith
relabel_vector, 27

∗Topic array
compute_mixture_penalty, 7
compute_NEC, 8
merge_states, 21
normalize, 25
relabel_vector, 27
sparsify_weights, 30
states2weight_matrix, 31
threshold, 31
weight_matrix2states, 32

∗Topic classif
search_knn, 28

∗Topic cluster
kmeanspp, 19
mixed_LICORS, 22
search_knn, 28

∗Topic color
image2, 17

∗Topic datagen
initialize_states, 18

∗Topic datasets
contCA00, 8

∗Topic dataset
contCA00, 8

∗Topic distribution
estimate_LC_pdfs, 11
estimate_state_adj_matrix, 13
estimate_state_probs, 14
initialize_states, 18
mixed_LICORS, 22
rdensity, 26
wKDE, 33

∗Topic hplot

image2, 17
LC-utils, 20
mixed_LICORS-utils, 23

∗Topic list
relabel_vector, 27

∗Topic manip
compute_LC_coordinates, 5
compute_LICORS_loglik, 6
compute_margin_coordinates, 6
compute_mixture_penalty, 7
compute_NEC, 8
data2LCs, 9
estimate_state_adj_matrix, 13
merge_states, 21
normalize, 25
relabel_vector, 27
remove_small_sample_states, 28
setup_LC_geometry, 29
sparsify_weights, 30
states2weight_matrix, 31
threshold, 31
weight_matrix2states, 32

∗Topic methods
predict_FLC_given_PLC, 26

∗Topic method
get_LC_config, 15
LC-utils, 20
remove_small_sample_states, 28

∗Topic models
LC-utils, 20

∗Topic model
mixed_LICORS-utils, 23

∗Topic multivariate
estimate_LC_pdfs, 11
estimate_state_adj_matrix, 13
estimate_state_probs, 14
initialize_states, 18
kmeanspp, 19
mixed_LICORS, 22

34

INDEX 35

∗Topic nonparametric
compute_LICORS_loglik, 6
estimate_LC_pdfs, 11
estimate_state_adj_matrix, 13
estimate_state_probs, 14
mixed_LICORS, 22
mixed_LICORS-utils, 23
rdensity, 26
search_knn, 28

∗Topic package
LICORS-package, 3

∗Topic print
LC-utils, 20

∗Topic smooth
wKDE, 33

∗Topic utilities
get_LC_config, 15

approx, 33

complete_LICORS_control, 22
complete_LICORS_control

(mixed_LICORS-utils), 23
compute_LC_coordinates, 5, 7, 10, 15, 16,

21, 30
compute_LICORS_loglik, 6, 7
compute_margin_coordinates, 6
compute_mixture_penalty, 7, 8, 30
compute_NEC, 7, 8
contCA00, 8
cov.wt, 11

data2LCs, 9, 22
density, 17, 26, 27, 33

embed, 11
embed2, 11
estimate_LC.pdf.state, 11, 12
estimate_LC.pdf.state

(estimate_LC_pdfs), 11
estimate_LC_pdf_state

(estimate_LC_pdfs), 11
estimate_LC_pdfs, 11, 11, 12
estimate_state_adj_matrix, 13
estimate_state_probs, 14

get_LC_config, 5, 10, 15
get_spacetime_grid, 16, 20

image, 17, 18

image.plot, 18
image2, 17
initialize_states, 18, 22

kmeans, 19, 20
kmeanspp, 18, 19

LC-utils, 20
LC_coordinates2control_settings

(LC-utils), 20
LICORS (LICORS-package), 3
LICORS-package, 3
locfit.raw, 33

make_legend, 17
make_legend (image2), 17
merge_states, 21
mixed_LICORS, 3, 4, 22, 23, 28, 30
mixed_LICORS-utils, 23
mtext, 24
mv_wKDE (wKDE), 33

normalize, 25, 31, 32

plot.LC, 5
plot.LC (LC-utils), 20
plot.mixed_LICORS, 23
plot.mixed_LICORS (mixed_LICORS-utils),

23
predict.mixed_LICORS

(mixed_LICORS-utils), 23
predict_FLC_given_PLC, 26

rdensity, 26
relabel_vector, 27
remove_small_sample_states, 28

search_knn, 28
setup_LC_geometry, 5, 10, 15, 16, 20, 29
sparsify_weights, 30, 31
states2weight_matrix, 31, 32
summary.LC, 5
summary.LC (LC-utils), 20
summary.mixed_LICORS, 23
summary.mixed_LICORS

(mixed_LICORS-utils), 23

threshold, 25, 31

weight_matrix2states, 31, 32
wKDE, 11, 14, 33

	LICORS-package
	compute_LC_coordinates
	compute_LICORS_loglik
	compute_margin_coordinates
	compute_mixture_penalty
	compute_NEC
	contCA00
	data2LCs
	embed2
	estimate_LC_pdfs
	estimate_state_adj_matrix
	estimate_state_probs
	get_LC_config
	get_spacetime_grid
	image2
	initialize_states
	kmeanspp
	LC-utils
	merge_states
	mixed_LICORS
	mixed_LICORS-utils
	normalize
	predict_FLC_given_PLC
	rdensity
	relabel_vector
	remove_small_sample_states
	search_knn
	setup_LC_geometry
	sparsify_weights
	states2weight_matrix
	threshold
	weight_matrix2states
	wKDE
	Index

