LAWBL: Latent (Variable) Analysis with Bayesian Learning

An analytical framework for latent variables with different Bayesian learning methods, currently based on the partially confirmatory factor analysis (PCFA) model by Chen, Guo, Zhang, & Pan (2020) <doi:10.1037/met0000293>.

Version: 1.1.0
Depends: R (≥ 3.6.0)
Imports: stats, MASS, coda
Suggests: knitr, rmarkdown, testthat
Published: 2020-07-23
Author: Jinsong Chen [aut, cre, cph]
Maintainer: Jinsong Chen <jinsong.chen at live.com>
BugReports: https://github.com/Jinsong-Chen/LAWBL/issues
License: GPL-3
URL: https://github.com/Jinsong-Chen/LAWBL, https://jinsong-chen.github.io/LAWBL
NeedsCompilation: no
Materials: README NEWS
CRAN checks: LAWBL results

Downloads:

Reference manual: LAWBL.pdf
Vignettes: pcfa-examples
Package source: LAWBL_1.1.0.tar.gz
Windows binaries: r-devel: LAWBL_1.1.0.zip, r-release: LAWBL_1.1.0.zip, r-oldrel: LAWBL_1.1.0.zip
macOS binaries: r-release: LAWBL_1.1.0.tgz, r-oldrel: LAWBL_1.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=LAWBL to link to this page.