
Package ‘JuliaConnectoR’
April 23, 2020

Type Package

Title A Functionally Oriented Interface for Integrating 'Julia' with R

Version 0.6.0

Author Stefan Lenz [aut, cre] (<https://orcid.org/0000-0001-9135-1743>),
Harald Binder [aut] (<https://orcid.org/0000-0002-5666-8662>)

Maintainer Stefan Lenz <stefan-m-lenz@web.de>

Description Allows to import functions and whole packages from 'Julia' in R.
Imported 'Julia' functions can directly be called as R functions.
Data structures can be translated between 'Julia' and R.

License MIT + file LICENCE

SystemRequirements Julia >= 1.0

Encoding UTF-8

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-23 16:30:14 UTC

R topics documented:
JuliaConnectoR-package . 2
AccessMutate.JuliaProxy . 4
as.data.frame.JuliaProxy . 6
juliaCall . 8
juliaEval . 8
juliaExpr . 9
juliaFun . 10
juliaGet . 10
juliaImport . 11
juliaLet . 13
juliaPut . 14
juliaSetupOk . 15

1

2 JuliaConnectoR-package

Index 16

JuliaConnectoR-package

A Functionally Oriented Interface for Integrating Julia with R

Description

This package provides a functionally oriented interface between R and Julia. The goal is to call
functions from Julia packages directly as R functions.

Details

This R-package provides a functionally oriented interface between R and Julia. The goal is to call
functions from Julia packages directly as R functions. Julia functions imported via the JuliaCon-
nectoR can accept and return R variables. It is also possible to pass R functions as arguments in
place of Julia functions, which allows callbacks from Julia to R.

From a technical perspective, R data structures are serialized with an optimized custom streaming
format, sent to a (local) Julia TCP server, and translated to Julia data structures by Julia. The results
are returned back to R. Simple objects, which correspond to vectors in R, are directly translated.
Complex Julia structures are by default transferred to R by reference via proxy objects. This enables
an effective and intuitive handling of the Julia objects via R. It is also possible to fully translate Julia
objects to R objects. These translated objects are annotated with information about the original Julia
objects, such that they can be translated back to Julia. This makes it also possible to serialize them
as R objects.

Setup

The package requires that Julia (Version ≥ 1.0) is installed and that the Julia executable is in the
system search PATH or that the JULIA_BINDIR environment variable is set to the bin directory of
the Julia installation.

Function overview

The function juliaImport makes functions and data types from Julia packages or modules avail-
able as R functions.

If only a single Julia function needs to be importedR, juliaFun can do this. The simplest way to
call a Julia function without any importing is to use juliaCall with the function name given as
character string.

For evaluating expressions in Julia, juliaEval and juliaLet can be used. With juliaLet one can
use R variables in a expression.

juliaExpr makes it possible use complex Julia syntax in R via R strings that contain Julia expres-
sions.

With juliaGet, a full translation of a Julia proxy object into an R object is performed.

as.data.frame is overloaded (as.data.frame.JuliaProxy) for translating Julia objects that im-
plement the Tables interface to R data frames.

https://julialang.org/downloads/
https://github.com/JuliaData/Tables.jl

JuliaConnectoR-package 3

Translation

Since Julia is more type-sensitive than R, and many Julia functions expect to be called using specific
types, it is important to know the translations of the R data structures to Julia.

Translation from R to Julia: The type correspondences of the basic R data types in Julia are
the following:

R Julia
integer → Int
double → Float64
logical → Bool
character → String
complex → Complex{Float64}
raw → UInt8
symbol → Symbol

R vectors of length 1 of the types in the table above will be translated to the types shown.
R vectors or arrays with more than one element will be translated to Julia Arrays of the corre-
sponding types. The dimensions of an R array, as returned by dim(), will also be respected. For
example, the R integer vector c(1L,2L) will be of type Vector{Int}, or Array{Int,1}, in Julia.
A double matrix such as matrix(c(1,2,3,4),nrow = 2) will be of type Array{Float64,2}.
Missing values (NA) in R are translated to missing values in Julia. R vectors and arrays with
missing values are converted to Julia arrays of type Array{Union{Missing,T}}, where T stands
for the translated type in the table above.
R lists are translated as Vector{T} in Julia, with T being the most specific supertype of the list
elements after translation to Julia.
An R function that is handed to Julia as argument in a function call is translated to a Julia callback
function that will call the given R function.
Strings with attribute "JLEXPR" will be evaluated as Julia expressions, and the value is used in
their place (see juliaExpr).
R data frames are translated to objects that implement the Julia Tables interface. Such objects
can be used by functions of many different Julia packages that deal with table-like data structures.

Translation from Julia to R: The type system of Julia is richer than that of R. Therefore, to be
able to turn the Julia data structures that have been translated to R back to the original Julia data
structures, the original Julia types are added to the translated Julia objects in R via the attribute
"JLTYPE". When passed to Julia, R variables with this attribute will be coerced to the respective
type. This allows the reconstruction of the objects with their original type.
It should not be necessary to worry too much about the translations from Julia to R because the
resulting R objects should be intuitive to handle.
The following table shows how basic R-compatible types of Julia are translated to R:

Julia R
Float64 → double
Float16, Float32, UInt32 → double with type attribute
Int64 that fits in 32 bits → integer

https://github.com/JuliaData/Tables.jl

4 AccessMutate.JuliaProxy

Int64 not fitting in 32 bits → double with type attribute
Int8, Int16, UInt16, Int32, Char → integer with type attribute
UInt8 → raw
UInt64, Int128, UInt128, Ptr → raw with type attribute
Complex{Float64} → complex
Complex{IntX} with X ≤ 64 → complex with type attribute
Complex{FloatX} with X ≤ 32 → complex with type attribute

Julia Arrays of these types are translated to vectors or arrays of the corresponding types in R.
Julia functions are translated to R functions that call the Julia function. These functions can also
be translated back to the corresponding Julia functions when used as argument of another function
(see juliaFun).
Julia object of other types, in particular structs, Tuples, NamedTuples, and AbstractArrays of
other types are transferred by reference in the form of proxy objects. Elements and properties
of these proxy objects can be accessed and mutated via the operators `[[`, `[`, and `$` (see
AccessMutate.JuliaProxy).
A full translation of the proxy objects into R objects, which also allows saving these objects in R,
is possible via juliaGet.

Limitations

Numbers of type Int64 that are too big to be expressed as 32-bit integer values in R will be
translated to double numbers. This may lead to a inaccurate results for very large numbers, when
they are translated back to Julia, since, e. g., (2^53 + 1) -2^53 == 0 holds for double-precision
floating point numbers.

AccessMutate.JuliaProxy

Access or mutate Julia objects via proxy objects

Description

Apply the R operators $ and $<-, [and [<-, [[and [[<- to access or modify parts of Julia objects
via their proxy objects. For an intuitive understanding, best see the examples below.

Usage

S3 method for class 'JuliaStructProxy'
x$name

S3 replacement method for class 'JuliaStructProxy'
x$name <- value

S3 method for class 'JuliaProxy'
x[...]

AccessMutate.JuliaProxy 5

S3 replacement method for class 'JuliaProxy'
x[i, j, k] <- value

S3 method for class 'JuliaSimpleArrayProxy'
x[...]

S3 method for class 'JuliaArrayProxy'
x[[...]]

S3 replacement method for class 'JuliaArrayProxy'
x[[i, j, k]] <- value

S3 method for class 'JuliaStructProxy'
x[[name]]

S3 replacement method for class 'JuliaStructProxy'
x[[name]] <- value

S3 method for class 'JuliaArrayProxy'
length(x)

S3 method for class 'JuliaArrayProxy'
dim(x)

Arguments

x a Julia proxy object
name the field of a struct type, the name of a member in a NamedTuple, or a key in a

Julia dictionary (type AbstractDict)
value a suitable replacement value. When replacing a range of elements in an array

type, it is possible to replace multiple elements with single elements. In all
other cases, the length of the replacement must match the number of elements
to replace.

i, j, k, ... index(es) for specifying the elements to extract or replace

Details

The operators $ and [[allow to access properties of Julia structs and NamedTuples via their proxy
objects. For dictionaries (Julia type AbstractDict), $ and [[can also be used to look up string
keys. Fields of mutable structs and dictionary elements with string keys can be set via $<- and
[[<-.

For AbstractArrays, the [, [<-, [[, and [[<- operators relay to the getindex and setindex!
Julia functions. The [[and [[<- operators are used to access or mutate a single element. With [
and [<-, a range of objects is accessed or mutated. The elements of Tuples can also be accessed
via [and [[.

The dimensions of proxy objects for Julia AbstractArrays and Tuples can be queried via length
and dim.

6 as.data.frame.JuliaProxy

Examples

if (juliaSetupOk()) {

(Mutable) struct
juliaEval("mutable struct MyStruct

x::Int
end")

MyStruct <- juliaFun("MyStruct")
s <- MyStruct(1L)
s$x
s$x <- 2
s[["x"]]

Array
x <- juliaCall("map", MyStruct, c(1L, 2L, 3L))
x
length(x)
x[[1]]
x[[1]]$x
x[[1]] <- MyStruct(2L)
x[2:3]
x[2:3] <- MyStruct(2L)
x

Tuple
x <- juliaEval("(1, 2, 3)")
x[[1]]
x[1:2]
length(x)

NamedTuple
x <- juliaEval("(a=1, b=2)")
x$a

Dictionary
strDict <- juliaEval('Dict("hi" => 1, "hello" => 2)')
strDict
strDict$hi
strDict$hi <- 0
strDict[["hi"]] <- 2
strDict["howdy", "greetings"] <- c(2, 3)
strDict["hi", "howdy"]

}

as.data.frame.JuliaProxy

Coerce a Julia Table to a Data Frame

as.data.frame.JuliaProxy 7

Description

Get the data from a Julia proxy object that implements the Julia Tables interface, and create an R
data frame from it.

Usage

S3 method for class 'JuliaProxy'
as.data.frame(x, ...)

Arguments

x a proxy object pointing to a Julia object that implements the interface of the
package Julia package Tables

... (not used)

Details

Strings are not converted to factors.

Examples

if (juliaSetupOk()) {

Demonstrate the usage with the Julia package "JuliaDB"
juliaEval('import Pkg; Pkg.add("JuliaDB")')
JuliaDB <- juliaImport("JuliaDB")

mydf <- data.frame(x = c(1, 2, 3),
y = c("a", "b", "c"),
z = c(TRUE, FALSE, NA),
stringsAsFactors = FALSE)

create a table in Julia, e. g. via JuliaDB
mytbl <- JuliaDB$table(mydf)

this table can, e g. be queried and
the result can be translated to an R data frame
seltbl <- JuliaDB$select(mytbl, juliaExpr("(:x, :y)"))[1:2]

translate selection of Julia table into R data frame
as.data.frame(seltbl)

}

https://github.com/JuliaData/Tables.jl

8 juliaEval

juliaCall Call a Julia function

Description

Call a Julia function and get the translated result.

Usage

juliaCall(name, ...)

Arguments

name name of the Julia function

... parameters handed to the function. Will be translated to Julia data structures

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned.

juliaEval Evaluate a Julia expression

Description

This function evaluates Julia code, given as a string, in Julia, and translates the result back to R.

Usage

juliaEval(expr)

Arguments

expr Julia code, given as a one-element character vector

Details

If the code needs to use R variables, consider using juliaLet instead.

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned. This is also the case if the last non-whitespace character of expr is a semicolon.

juliaExpr 9

Examples

if (juliaSetupOk()) {

juliaEval("1 + 2")
juliaEval('using Pkg; Pkg.add("BoltzmannMachines")')
juliaEval('using Random; Random.seed!(5);')

}

juliaExpr Mark a string as Julia expression

Description

A given R character vector is marked as a Julia expression. It will be executed and evaluated when
passed to Julia. This allows to pass a Julia object that is defined by complex Julia syntax as an
argument without needing the round-trip to R via juliaEval or juliaLet.

Usage

juliaExpr(expr)

Arguments

expr a character vector which should contain one string

Examples

if (juliaSetupOk()) {

Create complicated objects like version strings in Julia, and compare them
v1 <- juliaExpr('v"1.0.1"')
v2 <- juliaExpr('v"1.2.0"')
juliaCall("<", v1, v2)

}

10 juliaGet

juliaFun Wrap a Julia function in an R function

Description

Creates an R function that will call the Julia function with the given name when it is called. Like
any R function, the returned function can also be passed as a function argument to Julia functions.

Usage

juliaFun(name, ...)

Arguments

name the name of the Julia function
... optional arguments for currying: The resulting function will be called using

these arguments.

Examples

if (juliaSetupOk()) {

Wrap a Julia function and use it
juliaSqrt <- juliaFun("sqrt")
juliaSqrt(2)
In the following call, the sqrt function is called without
a callback to R because the linked function object is used.
juliaCall("map", juliaSqrt, c(1,4,9))

may also be used with arguments
plus1 <- juliaFun("+", 1)
plus1(2)
Results in an R callback (calling Julia again)
because there is no linked function object in Julia.
juliaCall("map", plus1, c(1,2,3))

}

juliaGet Translate a Julia proxy object to an R object

Description

R objects of class JuliaProxy are references to Julia objects in the Julia session. These R objects
are also called "proxy objects". With this function it is possible to translate these objects into R
objects.

juliaImport 11

Usage

juliaGet(x)

Arguments

x a reference to a Julia object

Details

If the corresponding Julia objects do not contain external references, translated objects can also
saved in R and safely be restored in Julia.

Modifying objects is possible and changes in R will be translated back to Julia.

The following table shows the translation of Julia objects into R objects.

Julia R
struct → list with the named struct elements
Array of struct type → list (of lists)
Tuple → list
NamedTuple → list with the named elements
AbstractDict → list with two sub-lists: "keys" and "values"
AbstractSet → list

Note

Objects containing cicular references cannot be translated back to Julia.

It is safe to translate objects that contain external references from Julia to R. The pointers will be
copied as values and the finalization of the translated Julia objects is prevented. The original objects
are garbage collected after all direct or indirect copies are garbage collected. Note, however, that
these translated objects cannot be translated back to Julia after the Julia process has been stopped
and restarted.

juliaImport Load and import a Julia package via import statement

Description

The specified package/module is loaded via import in Julia. Its functions and type constructors are
wrapped into R functions. The return value is an environment containing all these R functions.

Usage

juliaImport(modulePath, all = TRUE)

12 juliaImport

Arguments

modulePath a module path or a module object. A module path may simply be the name
of a package but it may also be a relative module path. Specifying a relative
Julia module path like .MyModule allows importing a module that does not
correspond to a package, but has been loaded in the Main module, e. g. by
juliaCall("include","path/to/MyModule.jl"). Additionally, via a path
such as SomePkg.SubModule, a submodule of a package can be imported.

all logical value, default TRUE. Specifies whether all functions and types shall be
imported or only those exported explicitly.

Value

an environment containing all functions and type constructors from the specified module as R func-
tions

Examples

if (juliaSetupOk()) {

Importing a package and using one of its exported functions
UUIDs <- juliaImport("UUIDs")
juliaCall("string", UUIDs$uuid4())

Importing a module without a package
testModule <- system.file("examples", "TestModule1.jl",

package = "JuliaConnectoR")
take a look at the file
writeLines(readLines(testModule))
load in Julia
juliaCall("include", testModule)
import in R via relative module path
TestModule1 <- juliaImport(".TestModule1")
TestModule1$test1()

Importing a local module is also possible in one line,
by directly using the module object returned by "include".
TestModule1 <- juliaImport(juliaCall("include", testModule))
TestModule1$test1()

}

if (juliaSetupOk()) {

Importing a submodule
testModule <- system.file("examples", "TestModule1.jl",

package = "JuliaConnectoR")
juliaCall("include", testModule)
load sub-module via module path
SubModule1 <- juliaImport(".TestModule1.SubModule1")
call function of submodule

juliaLet 13

SubModule1$test2()

}

juliaLet Evaluate Julia code in a let block using values of R variables

Description

R variables can be passed as named arguments, which are inserted for those variables in the Julia
expression that have the same name as the named arguments. The given Julia code is executed in
Julia inside a let block and the result is translated back to R.

Usage

juliaLet(expr, ...)

Arguments

expr Julia code, given as one-element character vector

... arguments that will be introduced as variables in the let block. The values are
transferred to Julia and assigned to the variables introduced in the let block.

Details

A simple, nonsensical example for explaining the principle:

juliaLet('println(x)',x = 1)

This is the same as

juliaEval('let x = 1.0; println(x) end')

More complex objects cannot be simply represented in a string like in this simple example any
more. That is the problem that juliaLet solves.

Note that the evaluation is done in a let block. Therefore, changes to global variables in the Julia
session are only possible by using the keyword global in front of the Julia variables (see examples).

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned.

14 juliaPut

Examples

if (juliaSetupOk()) {

Intended use: Create a complex Julia object
using Julia syntax and data from the R workspace
juliaLet('[1 => x, 17 => y]', x = rnorm(1), y = rnorm(2))

Assign a global variable
(although not recommended for a functional style)
juliaLet("global x = xval", xval = rnorm(10))
juliaEval("x")

}

juliaPut Create a Julia proxy object from an R object

Description

This function creates a proxy object for a Julia object that would otherwise be translated to an R
object. This is useful to prevent many translations of large objects if it is necessary performance
reasons. To see which objects are translated by default, please see the JuliaConnectoR-package
documentation.

Usage

juliaPut(x)

Arguments

x an R object (can also be a translated Julia object)

Examples

if (juliaSetupOk()) {

Transfer a large vector to Julia and use it in multiple calls
x <- juliaPut(rnorm(100))
x is just a reference to a Julia vector now
juliaEval("using Statistics")
juliaCall("mean", x)
juliaCall("var", x)

}

juliaSetupOk 15

juliaSetupOk Check Julia setup

Description

Checks that Julia can be started and that the Julia version is at least 1.0.

Usage

juliaSetupOk()

Value

TRUE if the Julia setup is OK; otherwise FALSE

Index

[.JuliaProxy (AccessMutate.JuliaProxy),
4

[.JuliaSimpleArrayProxy
(AccessMutate.JuliaProxy), 4

[<-.JuliaProxy
(AccessMutate.JuliaProxy), 4

[[.JuliaArrayProxy
(AccessMutate.JuliaProxy), 4

[[.JuliaStructProxy
(AccessMutate.JuliaProxy), 4

[[<-.JuliaArrayProxy
(AccessMutate.JuliaProxy), 4

[[<-.JuliaStructProxy
(AccessMutate.JuliaProxy), 4

$.JuliaStructProxy
(AccessMutate.JuliaProxy), 4

$<-.JuliaStructProxy
(AccessMutate.JuliaProxy), 4

AccessMutate.JuliaProxy, 4, 4
as.data.frame.JuliaProxy, 2, 6

dim.JuliaArrayProxy
(AccessMutate.JuliaProxy), 4

juliaCall, 2, 8
JuliaConnectoR-package, 2, 14
juliaEval, 2, 8, 9
juliaExpr, 2, 3, 9
juliaFun, 2, 4, 10
juliaGet, 2, 4, 10
juliaImport, 2, 11
juliaLet, 2, 9, 13
juliaPut, 14
juliaSetupOk, 15

length.JuliaArrayProxy
(AccessMutate.JuliaProxy), 4

16

	JuliaConnectoR-package
	AccessMutate.JuliaProxy
	as.data.frame.JuliaProxy
	juliaCall
	juliaEval
	juliaExpr
	juliaFun
	juliaGet
	juliaImport
	juliaLet
	juliaPut
	juliaSetupOk
	Index

