
Package ‘JointAI’
February 12, 2020

Version 0.6.1

Title Joint Analysis and Imputation of Incomplete Data

Description Provides joint analysis and imputation of (generalized)
linear and cumulative logit regression models, (generalized) linear and
cumulative logit mixed models and parametric (Weibull) as well as Cox
proportional hazards survival models with incomplete (covariate) data in
the Bayesian framework.
The package performs some preprocessing of the data and creates a 'JAGS'
model, which will then automatically be passed to 'JAGS'
<http://mcmc-jags.sourceforge.net> with the help of
the package 'rjags'.
It also provides summary and plotting functions for the output and allows
the user to export imputed values.

URL https://nerler.github.io/JointAI

License GPL (>= 2)

Date 2020-02-12

BugReports https://github.com/nerler/JointAI/issues

LazyData TRUE

RoxygenNote 7.0.2

Depends rjags (>= 4-6)

Imports MASS, mcmcse, coda, rlang, foreach, doParallel

SystemRequirements JAGS (http://mcmc-jags.sourceforge.net)

Suggests knitr, rmarkdown, bookdown, foreign, ggplot2, ggpubr,
survival, testthat

VignetteBuilder knitr

Encoding UTF-8

Language en-US

NeedsCompilation no

Author Nicole S. Erler [aut, cre] (<https://orcid.org/0000-0002-9370-6832>)

Maintainer Nicole S. Erler <n.erler@erasmusmc.nl>

1

https://nerler.github.io/JointAI
https://github.com/nerler/JointAI/issues

2 add_samples

Repository CRAN

Date/Publication 2020-02-12 09:30:02 UTC

R topics documented:

add_samples . 2
default_hyperpars . 4
densplot . 6
get_MIdat . 8
get_models . 9
GR_crit . 11
JointAI . 12
JointAIObject . 14
list_models . 16
longDF . 17
MC_error . 18
md_pattern . 20
model_imp . 22
NHANES . 33
parameters . 34
plot.JointAI . 35
plot_all . 36
plot_imp_distr . 37
predDF . 38
predict.JointAI . 39
residuals.JointAI . 41
set_refcat . 41
sharedParams . 42
simLong . 43
summary.JointAI . 45
traceplot . 47
wideDF . 49

Index 51

add_samples Continue sampling from an object of class JointAI

Description

This function allows to continue sampling from an existing object of class ’JointAI’.
If the original sample was created using parallel computation, the separate ’jags’ objects will be
recompiled and sampling will again be performed in parallel.

add_samples 3

Usage

add_samples(
object,
n.iter,
add = TRUE,
thin = NULL,
monitor_params = NULL,
progress.bar = "text",
mess = TRUE

)

Arguments

object object inheriting from class ’JointAI’

n.iter the number of iterations of the MCMC chain (after adaptation; see also coda.samples)

add logical; should the new MCMC samples be added to the existing samples or
replace them? If samples are added, var.names is ignored.

thin thinning interval (see window.mcmc)

monitor_params named vector specifying which parameters should be monitored (see details)

progress.bar character string specifying the type of progress bar. Possible values are "text",
"gui", and "none" (see update). Note: when sampling is performed in parallel
it is currently not possible to display a progress bar.

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

Note

When the thinning interval differs between the original model and the added samples, the resulting,
new, ’JointAI’ object does not yet record this information. Moreover, when add_samples() is used
with add = FALSE the indices of iterations (for example given in the summary()) may not be correct.

See Also

*_imp

The vignette Parameter Selection contains some examples on how to specify the argument monitor_params.

Examples

Example 1:
Run an initial JointAI model:
mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100)

Continue sampling:
mod_add <- add_samples(mod, n.iter = 200, add = TRUE)

Example 2:

https://nerler.github.io/JointAI/articles/SelectingParameters.html

4 default_hyperpars

Continue sampling, but additionally sample imputed values.
Note: Setting different parameters to monitor than in the original model
requires add = FALSE.
imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE),

add = FALSE)

default_hyperpars Get the default values for hyperparameters

Description

This function returns a list of default values for the hyperparameters.

Usage

default_hyperpars()

Details

norm: hyperparameters for normal and lognormal models

mu_reg_norm mean in the priors for regression coefficients
tau_reg_norm precision in the priors for regression coefficients
shape_tau_norm shape parameter in Gamma prior for precision of an imputed variable
rate_tau_norm rate parameter in Gamma prior for precision of an imputed variable

gamma: hyperparameters for Gamma models

mu_reg_gamma mean in the priors for regression coefficients
tau_reg_gamma precision in the priors for regression coefficients
shape_tau_gamma shape parameter in Gamma prior for precision of an imputed variable
rate_tau_gamma rate parameter in Gamma prior for precision of an imputed variable

beta: hyperparameters for beta models

mu_reg_beta mean in the priors for regression coefficients
tau_reg_beta precision in the priors for regression coefficients
shape_tau_beta shape parameter in Gamma prior for precision of imputed variable
rate_tau_beta rate parameter in Gamma prior for precision of imputed variable

logit: hyperparameters for logistic models

mu_reg_logit mean in the priors for regression coefficients
tau_reg_logit precision in the priors for regression coefficients

default_hyperpars 5

probit: hyperparameters for probit models

mu_reg_logit mean in the priors for regression coefficients
tau_reg_logit precision in the priors for regression coefficients

multinomial: hyperparameters for multinomial models

mu_reg_multinomial mean in the priors for regression coefficients
tau_reg_multinomial precision in the priors for regression coefficients

ordinal: hyperparameters for ordinal models

mu_reg_ordinal mean in the priors for regression coefficients
tau_reg_ordinal precision in the priors for regression coefficients
mu_delta_ordinal mean in the prior for the intercepts
tau_delta_ordinal precision in the priors for the intercepts

Z: function creating hyperparameters for the random effects in mixed models, with output elements

RinvD scale matrix in Wishart prior (*) for random effects covariance matrix
KinvD degrees of freedom in Wishart prior for random effects covariance matrix
shape_diag_RinvD shape parameter in Gamma prior for the diagonal elements of RinvD
rate_diag_RinvD rate parameter in Gamma prior for the diagonal elements of RinvD

(*) when there is only one random effect a Gamma distribution is used instead of the Wishart and
RinvD and KinvD are NULL

surv: parameters for survival models (parametric and proportional hazard)

mu_reg_surv mean in the priors for regression coefficients
tau_reg_surv precision in the priors for regression coefficients

coxph: parameters for Cox proportional hazards models

c confidence in prior guess for the hazard function
r failure rate per unit time
eps time increment

Examples

default_hyperpars()

To change the hyperparameters:
hyp <- default_hyperpars()
hyp$norm['rate_tau_norm'] <- 1e-3
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, hyperpars = hyp, mess = FALSE)

6 densplot

densplot Plot the posterior density from object of class JointAI

Description

The function plots a set of densities (per chain and coefficient) from the MCMC sample of an object
of class "JointAI".

Usage

densplot(object, ...)

S3 method for class 'mcmc.list'
densplot(object, start = NULL, end = NULL, thin = NULL, ...)

S3 method for class 'JointAI'
densplot(
object,
start = NULL,
end = NULL,
thin = NULL,
subset = c(analysis_main = TRUE),
exclude_chains = NULL,
vlines = NULL,
nrow = NULL,
ncol = NULL,
joined = FALSE,
use_ggplot = FALSE,
keep_aux = FALSE,
warn = TRUE,
mess = TRUE,
...

)

Arguments

object object inheriting from class ’JointAI’

... additional parameters passed to plot

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (see window.mcmc)

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

densplot 7

vlines list, where each element is a named list of parameters that can be passed to
abline to create vertical lines. Each of the list elements needs to contain at
least v = <x location>, where <x location> is a vector of the same length as the
number of plots (see examples).

nrow optional number of rows and columns in the plot layout; automatically chosen
if unspecified

ncol optional number of rows and columns in the plot layout; automatically chosen
if unspecified

joined logical; should the chains be combined before plotting?

use_ggplot logical; Should ggplot be used instead of the base graphics?

keep_aux logical; Should constant effects of auxiliary variables be kept in the output?

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.

Examples

fit a JointAI object:
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

Example 1: basic densityplot
densplot(mod)
densplot(mod, exclude_chains = 2)

Example 2: use vlines to mark zero
densplot(mod, col = c("darkred", "darkblue", "darkgreen"),

vlines = list(list(v = rep(0, nrow(summary(mod)$stats)),
col = grey(0.8))))

Example 3: use vlines to visualize the posterior mean and 2.5% and 97.5% quantiles
densplot(mod, vlines = list(list(v = summary(mod)$stats[, "Mean"], lty = 1, lwd = 2),

list(v = summary(mod)$stats[, "2.5%"], lty = 2),
list(v = summary(mod)$stats[, "97.5%"], lty = 2)))

Example 4: ggplot version
densplot(mod, use_ggplot = TRUE)

Example 5: changing how the ggplot version looks (using standard ggplot syntax)
library(ggplot2)

https://nerler.github.io/JointAI/articles/SelectingParameters.html

8 get_MIdat

densplot(mod, use_ggplot = TRUE) +
xlab("value") +
theme(legend.position = 'bottom') +
scale_color_brewer(palette = 'Dark2', name = 'chain')

get_MIdat Extract multiple imputed datasets from an object of class JointAI

Description

This function returns a dataset containing multiple imputed datasets stacked onto each other (i.e.,
long format; optionally including the original, incomplete data).
These data can be automatically exported to SPSS (i.e., a .txt file containing the data and a .sps file
containing syntax to generate a .sav file). For the export function the foreign package needs to be
installed.

Usage

get_MIdat(
object,
m = 10,
include = TRUE,
start = NULL,
minspace = 50,
seed = NULL,
export_to_SPSS = FALSE,
resdir = NULL,
filename = NULL

)

Arguments

object object inheriting from class ’JointAI’

m number of imputed datasets

include should the original, incomplete data be included? Default is TRUE.

start the first iteration of interest (see window.mcmc)

minspace minimum number of iterations between iterations chosen as imputed values.

seed optional seed

export_to_SPSS logical; should the completed data be exported to SPSS?

resdir optional directory for results (if unspecified and export_to_SPSS = TRUE the
current working directory is used)

filename optional file name (without ending; if unspecified and export_to_SPSS = TRUE
a name is generated automatically)

https://CRAN.R-project.org/package=foreign

get_models 9

Value

A dataframe in which the original data (if include = TRUE) and the imputed datasets are stacked
onto each other.
The variable Imputation_ indexes the imputation, while .rownr links the rows to the rows of the
original data. In cross-sectional datasets the variable .id is added as subject identifier.

Note

In order to be able to extract (multiple) imputed datasets the imputed values must have been moni-
tored, i.e., imps = TRUE had to be specified in the argument monitor_params in *_imp.

See Also

plot_imp_distr

Examples

fit a model and monitor the imputed values with monitor_params = c(imps = TRUE)
mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, monitor_params = c(imps = TRUE), n.iter = 100)

Example 1: without export to SPSS
MIs <- get_MIdat(mod, m = 3, seed = 123)

Not run:
Example 2: with export for SPSS (here: to the temporary directory "temp_dir")
temp_dir <- tempdir()
MIs <- get_MIdat(mod, m = 3, seed = 123, resdir = temp_dir,

filename = "example_imputation",
export_to_SPSS = TRUE)

End(Not run)

get_models Specify the default (imputation) model types

Description

Specify the default (imputation) model types

Usage

get_models(
fixed,
random = NULL,
data,

10 get_models

auxvars = NULL,
no_model = NULL,
models = NULL

)

Arguments

fixed a two sided formula describing the fixed-effects part of the model (see formula)

random only for multi-level models: a one-sided formula of the form ~x1 + ... + xn
| g, where x1 + ... + xn specifies the model for the random effects and g the
grouping variable

data a data.frame

auxvars optional one-sided formula of variables that should be used as predictors in the
imputation procedure (and will be imputed if necessary) but are not part of the
analysis model

no_model names of variables for which no model should be specified. Note that this is
only possible for completely observed variables and implies the assumptions of
independence between the excluded variable and the incomplete variables.

models optional named vector specifying the types of models for (incomplete) covari-
ates. This arguments replaces the argument meth used in earlier versions. If
NULL (default) models will be determined automatically based on the class of
the respective columns of data.

Value

get_models() returns a list of two vectors named models and meth.
models is a named vector containing the names of covariates that either have missing values and/or
are longitudinal (level-1) covariates and the corresponding (imputation) models as well as models
for variables for which the user has specified a model.
meth is a subset of models containing only the variables that have missing values.

Examples

get_models(y ~ C1 + C2 + B2 + O2 + M2, data = wideDF)

get_models(y ~ C1 + O2 + c2 + b1 + o2 + time, random = ~ 1 | id, data = longDF)

get_models(y ~ C1 + O2 + c2 + b1 + o2 + time, random = ~ 1 | id,
no_model = 'time', data = longDF)

get_models(y ~ C1 + O2 + c2 + b1 + o2 + time, random = ~ 1 | id,
no_model = 'time', data = longDF, models = c(C1 = 'norm'))

GR_crit 11

GR_crit Gelman-Rubin criterion for convergence

Description

Calculates the Gelman-Rubin criterion for convergence (uses gelman.diag from package coda).

Usage

GR_crit(
object,
confidence = 0.95,
transform = FALSE,
autoburnin = TRUE,
multivariate = TRUE,
subset = NULL,
exclude_chains = NULL,
start = NULL,
end = NULL,
thin = NULL,
warn = TRUE,
mess = TRUE,
...

)

Arguments

object object inheriting from class ’JointAI’

confidence the coverage probability of the confidence interval for the potential scale reduc-
tion factor

transform a logical flag indicating whether variables in x should be transformed to im-
prove the normality of the distribution. If set to TRUE, a log transform or logit
transform, as appropriate, will be applied.

autoburnin a logical flag indicating whether only the second half of the series should be
used in the computation. If set to TRUE (default) and start(x) is less than
end(x)/2 then start of series will be adjusted so that only second half of series
is used.

multivariate a logical flag indicating whether the multivariate potential scale reduction factor
should be calculated for multivariate chains

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

12 JointAI

thin thinning interval (see window.mcmc)

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

... currently not used

References

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences,
Statistical Science, 7, 457-511.

Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simu-
lations. Journal of Computational and Graphical Statistics, 7, 434-455.

See Also

The vignette Parameter Selection contains some examples how to specify the argument subset.

Examples

mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
GR_crit(mod1)

JointAI JointAI: Joint Analysis and Imputation of Incomplete Data

Description

The JointAI package performs simultaneous imputation and inference for incomplete data using
the Bayesian framework. Distributions of incomplete variables, conditional on other covariates, are
specified automatically and modeled jointly with the analysis model. MCMC sampling is performed
in ’JAGS’ via the R package rjags.

Main functions

The package has the following main functions that allow analysis in different settings:

• lm_imp for linear regression

• glm_imp for generalized linear regression

• clm_imp for (ordinal) cumulative logit models

• lme_imp for linear mixed models

• glme_imp for generalized linear mixed models

• clmm_imp for (ordinal) cumulative logit mixed models

https://nerler.github.io/JointAI/articles/SelectingParameters.html
http://mcmc-jags.sourceforge.net
https://CRAN.R-project.org/package=rjags

JointAI 13

• survreg_imp for parametric (Weibull) survival models

• coxph_imp for Cox proportional hazard models

As far as possible, the specification of these functions is analogue to the specification of their com-
plete data versions lm, glm, clm (from the package ordinal), lme (from the package nlme), clmm2
(from the package ordinal), survreg (from the package survival) and coxph (from the package
survival).
Computations can be performed in parallel using the argument parallel = TRUE, the argument
ridge allows the user to impose a ridge penalty on the regression coefficients of the analysis model,
and hyperparameters can be changed via the argument hyperpars and the function default_hyperpars.

Results can be summarized and printed with summary(), coef() and confint(), and visualized
using traceplot() or densplot(). The function predict() allows prediction (including credible
intervals) from JointAI models.

Evaluation and export

Two criteria for evaluation of convergence and precision of the posterior estimate are available:

• GR_crit implements the Gelman-Rubin criterion (’potential scale reduction factor’) for con-
vergence

• MC_error calculates the Monte Carlo error to evaluate the precision of the MCMC sample

Imputed data can be extracted (and exported to SPSS) using get_MIdat(). The function plot_imp_distr()
allows visual comparison of the distribution of observed and imputed values.

Other useful functions

• parameters and list_models to gain insight in the specified model

• plot_all and md_pattern to visualize the distribution of the data and the missing data pattern

Vignettes

The following vignettes are available

• Minimal Example:
A minimal example demonstrating the use of lm_imp, summary.JointAI, traceplot and
densplot.

• Visualizing Incomplete Data:
Demonstrations of the options in plot_all (plotting histograms and barplots for all variables
in the data) and md_pattern (plotting or printing the missing data pattern).

• Model Specification:
Explanation and demonstration of all parameters that are required or optional to specify the
model structure in lm_imp, glm_imp and lme_imp. Among others, the functions parameters,
list_models, get_models and set_refcat are used.

• Parameter Selection:
Examples on how to select the parameters/variables/nodes to follow using the argument monitor_params
and the parameters/variables/nodes displayed in the summary, traceplot, densplot or when
using GR_crit or MC_error.

https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://nerler.github.io/JointAI/articles/MinimalExample.html
https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html
https://nerler.github.io/JointAI/articles/ModelSpecification.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html

14 JointAIObject

• MCMC Settings:
Examples demonstrating how to set the arguments controlling settings of the MCMC sam-
pling, i.e., n.adapt, n.iter, n.chains, thin, inits.

• After Fitting:
Examples on the use of functions to be applied after the model has been fitted, including
traceplot, densplot, summary, GR_crit, MC_error, predict, predDF and get_MIdat.

• Theoretical Background:
Explanation of the statistical method implemented in JointAI.

References

Nicole S. Erler, Dimitris Rizopoulos and Emmanuel M.E.H. Lesaffre (2019). JointAI: Joint Analy-
sis and Imputation of Incomplete Data in R. arXiv e-prints, arXiv:1907.10867. URL https://arxiv.org/abs/1907.10867.

Erler, N.S., Rizopoulos, D., Rosmalen, J., Jaddoe, V.W.V., Franco, O. H., & Lesaffre, E.M.E.H.
(2016). Dealing with missing covariates in epidemiologic studies: A comparison between mul-
tiple imputation and a full Bayesian approach. Statistics in Medicine, 35(17), 2955-2974. doi:
10.1002/sim.6944

Erler, N.S., Rizopoulos D., Jaddoe, V.W.V., Franco, O.H. & Lesaffre, E.M.E.H. (2019). Bayesian
imputation of time-varying covariates in linear mixed models. Statistical Methods in Medical Re-
search, 28(2), 555–568. doi: 10.1177/0962280217730851

JointAIObject Fitted object of class ’JointAI’

Description

An object returned by one of the main functions *_imp.

Value

analysis_type lm, glm, clm, lme, glme, clmm, survreg or coxph with attributes family and
link

data the original (incomplete) dataset

models named vector specifying the models used for longitudinal and incomplete co-
variates

fixed supplied fixed effects formula

random supplied random effects formula

Mlist a list: containing the data, split up into

• outcome (y)
• event indicator for survival outcomes (event)
• cross-sectional main effects (Xc)
• cross-sectional interactions (Xic)
• longitudinal main effects (Xl)

https://nerler.github.io/JointAI/articles/MCMCsettings.html
https://nerler.github.io/JointAI/articles/AfterFitting.html
https://nerler.github.io/JointAI/articles/TheoreticalBackground.html
https://arxiv.org/abs/1907.10867
https://doi.org/10.1002/sim.6944
https://doi.org/10.1177/0962280217730851

JointAIObject 15

• longitudinal interactions (Xil)
• categorical cross-sectional incomplete variables (Xcat)
• categorical longitudinal variables (Xlcat)
• transformed cross-sectional variables (Xtrafo)
• transformed longitudinal variables (Xltrafo)
• random effects design matrix (Z)

and other important specifications:

• a list naming which columns of the above matrices are covariates in the
analysis model (cols_main)

• a list giving the names of the covariates in the analysis model per matrix
(names_main)

• specification for transformations (trafos)
• specification for hierarchical centering (hc_list)
• reference values and dummies for categorical variables (refs)
• formula specifying auxiliary variables (auxvars)
• grouping specification (groups)
• the vector of variables to be scaled (scale_vars)
• updated fixed effects structure (fixed2)
• the number of categories if the outcome of the analysis model is categorical

(ncat)
• the number of subjects (N)
• whether posterior predictive checks are be enabled ppc (not yet used)
• whether ridge shrinkage priors should are used for the regression coeffi-

cients of the analysis model (ridge)
• the number of random effects (nranef)

K matrix specifying the indices of the regression coefficients that are related to
different parts of the model

K_imp matrix specifying the indices of regression coefficients for the imputation mod-
els relating to different covariates

mcmc_settings a list with elements

modelfile name and path of JAGS model file
n.chains number of MCMC chains
n.adapt number of iterations in the adaptive phase
n.iter number of iterations in the MCMC sample
variable.names monitored nodes
thin thinning of the MCMC sample
inits a list containing the initial values that were passed to rjags
parallel whether parallel sampling was used
n.cores how many cores were used in parallel sampling

monitor_params the list of parameter groups to be monitored

data_list list with data that was passed to rjags
scale_pars matrix with parameters used to center and scale the continuous variables

16 list_models

hyperpars a list containing the values of the hyperparameters used

imp_par_list a list with parameters used to write the imputation model syntax

model JAGS model

sample MCMC sample on the sampling scale (included only if keep_scaled_sample =
TRUE)

MCMC MCMC sample, scaled back to the scale of the data

time the computational time used for the sampling (adaptive phase + sampling)

fitted.values fitted (or predicted) values (if available)

residuals residuals (if available)

call the original call

list_models List covariate models

Description

This function prints information on models specified for (incomplete) covariates in a JointAI object,
including the model type, names of the parameters used and hyperparameters.

Usage

list_models(
object,
predvars = TRUE,
regcoef = TRUE,
otherpars = TRUE,
priors = TRUE,
refcat = TRUE

)

Arguments

object object inheriting from class ’JointAI’

predvars logical; should information on the predictor variables be printed? (default is
TRUE)

regcoef logical; should information on the regression coefficients be printed? (default is
TRUE)

otherpars logical; should information on other parameters be printed? (default is TRUE)

priors logical; should information on the priors (and hyperparameters) be printed? (de-
fault is TRUE)

refcat logical; should information on the reference category be printed? (default is
TRUE)

longDF 17

Note

The models listed by this function are not the actual imputation models, but the conditional models
that are part of the specification of the joint distribution. Briefly, the joint distribution is specified
as a sequence of conditional models

p(y|x1, x2, x3, ..., θ)p(x1|x2, x3, ..., θ)p(x2|x3, ..., θ)...

The actual imputation models are the full conditional distributions p(x1|·) derived from this joint
distribution. Even though the conditional distributions do not contain the outcome and all other
covariates in their linear predictor, outcome and other covariates are taken into account implicitly,
since imputations are sampled from the full conditional distributions. For more details, see Erler et
al. (2016) and Erler et al. (2019).

The function list_models prints information on the conditional distributions of the covariates
(since they are what is specified; the full-conditionals are automatically derived within JAGS). The
outcome is, thus, not part of the printed linear predictor, but is still included during imputation.

References

Erler, N.S., Rizopoulos, D., Rosmalen, J.V., Jaddoe, V.W., Franco, O.H., & Lesaffre, E.M.E.H.
(2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple
imputation and a full Bayesian approach. Statistics in Medicine, 35(17), 2955-2974.

Erler, N.S., Rizopoulos D. and Lesaffre E.M.E.H. (2019). JointAI: Joint Analysis and Imputation
of Incomplete Data in R. arXiv e-prints, arXiv:1907.10867. URL https://arxiv.org/abs/1907.10867.

Examples

(set n.adapt = 0 and n.iter = 0 to prevent MCMC sampling to save time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0, n.iter = 0, mess = FALSE)

list_models(mod1)

longDF Longitudinal example dataset

Description

A simulated longitudinal dataset.

Usage

data(longDF)

18 MC_error

Format

A simulated data frame with 329 rows and 21 variables with data from 100 subjects:

C1 continuous, complete baseline variable

C2 continuous, incomplete baseline variable

B1 binary, complete baseline variable

B2 binary, incomplete baseline variable

M1 unordered factor; complete baseline variable

M2 unordered factor; incomplete baseline variable

O1 ordered factor; complete baseline variable

O2 ordered factor; incomplete baseline variable

P1 count variable; complete baseline variable

P2 count variable; incomplete baseline variable

c1 continuous, complete longitudinal variable

c2 continuous incomplete longitudinal variable

b1 binary, complete longitudinal variable

b2 binary incomplete longitudinal variable

o1 ordered factor; complete longitudinal variable

o2 ordered factor; incomplete longitudinal variable

p1 count variable; complete longitudinal variable

p2 count variable; incomplete longitudinal variable

id id (grouping) variable

time continuous complete longitudinal variable

y continuous, longitudinal (outcome) variable

MC_error Monte Carlo error

Description

Calculate, print and plot the Monte Carlo error of the samples from a JointAI model.

Usage

MC_error(
x,
subset = NULL,
exclude_chains = NULL,
start = NULL,
end = NULL,
thin = NULL,

MC_error 19

digits = 2,
warn = TRUE,
mess = TRUE,
...

)

S3 method for class 'MCElist'
plot(x, data_scale = TRUE, plotpars = NULL, ablinepars = list(v = 0.05), ...)

Arguments

x object inheriting from class ’JointAI’

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (see window.mcmc)

digits number of digits for output

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

... Arguments passed on to mcmcse::mcse.mat

size represents the batch size in “bm” and the truncation point in “bartlett”
and “tukey”. Default is NULL which implies that an optimal batch size
is calculated using the batchSize() function. Can take character values
of ``sqroot'' and ``cuberoot'' or any numeric value between 1 and
n/2. ``sqroot'' means size is floor(n^(1/2)) and “cuberoot” means size is
floor(n^(1/3)).

g a function such that E(g(x)) is the quantity of interest. The default is NULL,
which causes the identity function to be used.

method any of ``bm'',``obm'',``bartlett'',``tukey''. ``bm'' repre-
sents batch means estimator, ``obm'' represents overlapping batch means
estimator with, ``bartlett'' and ``tukey'' represents the modified-
Bartlett window and the Tukey-Hanning windows for spectral variance es-
timators.

r the lugsail parameter that converts a lag window into its lugsail equivalent.
Larger values of ``r'' will typically imply less underestimation of ``cov'',
but higher variability of the estimator. Default is ``r = 3'' and ``r =
1,2'' are good choices. ``r > 5'' is not recommended. Non-integer val-
ues are ok.

data_scale show the Monte Carlo error of the sample transformed back to the scale of the
data (TRUE) or on the sampling scale (this requires the argument keep_scaled_mcmc
= TRUE in the JointAI model)

20 md_pattern

plotpars optional; list of parameters passed to plot()

ablinepars optional; list of parameters passed to abline()

Value

An object of class MCElist with elements unscaled, scaled and digits. The first two are matrices
with columns est (posterior mean), MCSE (Monte Carlo error), SD (posterior standard deviation) and
MCSE/SD (Monte Carlo error divided by post. standard deviation.)

Methods (by generic)

• plot: plot Monte Carlo error

Note

Lesaffre & Lawson (2012) [p. 195] suggest the Monte Carlo error of a parameter should not be
more than 5% of the posterior standard deviation of this parameter (i.e., MCSE/SD ≤ 0.05).

References

Lesaffre, E., & Lawson, A. B. (2012). Bayesian Biostatistics. John Wiley & Sons.

See Also

The vignette Parameter Selection provides some examples how to specify the argument subset.

Examples

mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

MC_error(mod)

plot(MC_error(mod), ablinepars = list(lty = 2))

md_pattern Missing data pattern

Description

Obtain a plot of the pattern of missing data and/or return the pattern as a matrix.

https://nerler.github.io/JointAI/articles/SelectingParameters.html

md_pattern 21

Usage

md_pattern(
data,
color = c(grDevices::grey(0.1), grDevices::grey(0.7)),
border = grDevices::grey(0.5),
plot = TRUE,
pattern = FALSE,
print_xaxis = TRUE,
ylab = "Number of observations per pattern",
print_yaxis = TRUE,
legend.position = "bottom",
...

)

Arguments

data data frame

color vector of length two, that specifies the color used to indicate observed and miss-
ing values (in that order)

border color of the grid

plot logical; should the missing data pattern be plotted? (default is TRUE)

pattern logical; should the missing data pattern be returned as matrix? (default is FALSE)
print_xaxis, print_yaxis

logical; should the x-axis (below the plot) and y-axis (on the right) be printed?

ylab y-axis label
legend.position

the position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector)

... optional additional parameters, currently not used

Note

This function requires the ggplot2 package to be installed.

See Also

See the vignette Visualizing Incomplete Data for more examples.

Examples

op <- par(mar = c(3, 1, 1.5, 1.5), mgp = c(2, 0.6, 0))
md_pattern(wideDF)
par(op)

https://CRAN.R-project.org/package=ggplot2
https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html

22 model_imp

model_imp Joint analysis and imputation of incomplete data

Description

Functions to estimate (generalized) linear and (generalized) linear mixed models, ordinal and ordi-
nal mixed models, and parametric (Weibull) as well as Cox proportional hazards survival models
using MCMC sampling, while imputing missing values.

Usage

lm_imp(
formula,
data,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

glm_imp(
formula,

model_imp 23

family,
data,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

clm_imp(
fixed,
data,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,

24 model_imp

seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

lme_imp(
fixed,
data,
random,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",

model_imp 25

warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

glme_imp(
fixed,
data,
random,
family,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

clmm_imp(
fixed,
data,
random,
n.chains = 3,
n.adapt = 100,

26 model_imp

n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

survreg_imp(
formula,
data,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,

model_imp 27

scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

coxph_imp(
formula,
data,
n.chains = 3,
n.adapt = 100,
n.iter = 0,
thin = 1,
monitor_params = NULL,
auxvars = NULL,
refcats = NULL,
models = NULL,
no_model = NULL,
trunc = NULL,
ridge = FALSE,
ppc = TRUE,
seed = NULL,
inits = NULL,
parallel = FALSE,
n.cores = NULL,
scale_vars = NULL,
scale_pars = NULL,
hyperpars = NULL,
modelname = NULL,
modeldir = NULL,
keep_model = FALSE,
overwrite = NULL,
quiet = TRUE,
progress.bar = "text",
warn = TRUE,
mess = TRUE,
keep_scaled_mcmc = FALSE,
...

)

28 model_imp

Arguments

formula a two sided model formula (see formula)
data a data.frame

n.chains the number of MCMC chains to be used
n.adapt the number of iterations for adaptation of the MCMC samplers (see also adapt)
n.iter the number of iterations of the MCMC chain (after adaptation; see also coda.samples)
thin thinning interval (see window.mcmc)
monitor_params named vector specifying which parameters should be monitored (see details)
auxvars optional one-sided formula of variables that should be used as predictors in the

imputation procedure (and will be imputed if necessary) but are not part of the
analysis model

refcats optional; either one of "first", "last", "largest" (which sets the category
for all categorical variables) or a named list specifying which category should
be used as reference category for each of the categorical variables. Options are
the category label, the category number, or one of "first" (the first category),
"last" (the last category) or "largest" (chooses the category with the most obser-
vations). Default is "first". (See also set_refcat)

models optional named vector specifying the types of models for (incomplete) covari-
ates. This arguments replaces the argument meth used in earlier versions. If
NULL (default) models will be determined automatically based on the class of
the respective columns of data.

no_model names of variables for which no model should be specified. Note that this is
only possible for completely observed variables and implies the assumptions of
independence between the excluded variable and the incomplete variables.

trunc optional named list specifying the limits of truncation for the distribution of the
named incomplete variables (see the vignette ModelSpecification)

ridge logical; should the parameters of the main model be penalized using ridge re-
gression? Default is FALSE

ppc logical: should monitors for posterior predictive checks be set? (not yet used)
seed optional seed value for reproducibility
inits optional specification of initial values in the form of a list or a function (see

jags.model). If omitted, initial values will be generated automatically by JAGS.
It is an error to supply an initial value for an observed node.

parallel logical; should the chains be sampled using parallel computation? Default is
FALSE

n.cores number of cores to use for parallel computation; if left empty all except two
cores will be used

scale_vars optional; named vector of (continuous) variables that will be scaled (such that
mean = 0 and sd = 1) to improve convergence of the MCMC sampling. De-
fault is that all continuous variables that are not transformed by a function (e.g.
log(),ns()) will be scaled. Variables for which a log-normal model is used are
only scaled with regards to the standard deviation, but not centered. Variables
modeled with a Gamma or beta distribution are not scaled. If set to FALSE no
scaling will be done.

https://nerler.github.io/JointAI/articles/ModelSpecification.html#functions-with-restricted-support

model_imp 29

scale_pars optional matrix of parameters used for centering and scaling of continuous co-
variates. If not specified, this will be calculated automatically. If FALSE, no
scaling will be done.

hyperpars list of hyperparameters, as obtained by default_hyperpars(); only needs to
be supplied if hyperparameters other than the default should be used

modelname optional; character string specifying the name of the model file (including the
ending, either .R or .txt). If unspecified a random name will be generated.

modeldir optional; directory containing the model file or directory in which the model file
should be written. If unspecified a temporary directory will be created.

keep_model logical; whether the created JAGS model should be saved or removed from the
disk (FALSE; default) when the sampling has finished.

overwrite logical; whether an existing model file with the specified <modeldir>/<modelname>
should be overwritten. If set to FALSE and a model already exists, that model
will be used. If unspecified (NULL) and a file exists, the user is asked for input
on how to proceed.

quiet if TRUE then messages generated during compilation will be suppressed, as well
as the progress bar during adaptation (see jags.model)

progress.bar character string specifying the type of progress bar. Possible values are "text",
"gui", and "none" (see update). Note: when sampling is performed in parallel
it is currently not possible to display a progress bar.

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

keep_scaled_mcmc

should the "original" MCMC sample (i.e., the scaled version returned by coda.samples())
be kept? (The MCMC sample that is re-scaled to the scale of the data is always
kept.)

... additional, optional arguments

family only for glm_imp and glmm_imp: a description of the distribution and link func-
tion to be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function. (See
family and the ‘Details‘ section below.)

fixed a two sided formula describing the fixed-effects part of the model (see formula)

random only for multi-level models: a one-sided formula of the form ~x1 + ... + xn
| g, where x1 + ... + xn specifies the model for the random effects and g the
grouping variable

Value

An object of class JointAI.

30 model_imp

Details

See also the vignettes Model Specification, MCMC Settings and Parameter Selection.

Implemented distribution families and link functions for glm_imp() and glme_imp():

https://nerler.github.io/JointAI/articles/ModelSpecification.html
https://nerler.github.io/JointAI/articles/MCMCsettings.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html

model_imp 31

gaussian with links: identity, log
binomial with links: logit, probit, log, cloglog
Gamma with links: inverse, identity, log
poisson with links: log, identity

Imputation methods: Implemented imputation models that can be chosen in the argument
models are:

norm linear model
lognorm log-normal model for skewed continuous data
gamma gamma model (with log-link) for skewed continuous data
beta beta model (with logit-link) for skewed continuous data in (0, 1)
logit logistic model for binary data
multilogit multinomial logit model for unordered categorical variables
cumlogit cumulative logit model for ordered categorical variables
lmm linear mixed model for continuous longitudinal covariates
glmm_lognorm log-normal mixed model for skewed longitudinal covariates
glmm_gamma Gamma mixed model for skewed longitudinal covariates
glmm_logit logit mixed model for binary longitudinal covariates
glmm_poisson Poisson mixed model for longitudinal count covariates
clmm cumulative logit mixed model for longitudinal ordered factors

When models are specified for only a subset of the incomplete or longitudinal covariates involved
in a model, the default choices are used for the unspecified variables.

Parameters to follow (monitor_params): See also the vignette: Parameter Selection

Named vector specifying which parameters should be monitored. This can be done either directly
by specifying the name of the parameter or indirectly by one of the key words selecting a set of pa-
rameters. Except for other, in which parameter names are specified directly, parameter (groups)
are just set as TRUE or FALSE. If left unspecified, monitor_params = c("analysis_main" = TRUE)
will be used.

name/key word what is monitored
analysis_main betas and sigma_y (and D in multi-level models)
analysis_random ranef, D, invD, RinvD
imp_pars alphas, tau_imp, gamma_imp, delta_imp
imps imputed values
betas regression coefficients of the analysis model
tau_y precision of the residuals from the analysis model
sigma_y standard deviation of the residuals from the analysis model
ranef random effects b
D covariance matrix of the random effects
invD inverse of D
RinvD matrix in the prior for invD
alphas regression coefficients in the covariate models
tau_imp precision parameters of the residuals from covariate models
gamma_imp intercepts in ordinal covariate models
delta_imp increments of ordinal intercepts
other additional parameters

https://nerler.github.io/JointAI/articles/SelectingParameters.html

32 model_imp

For example:
monitor_params = c(analysis_main = TRUE,tau_y = TRUE,sigma_y = FALSE) would monitor
the regression parameters betas and the residual precision tau_y instead of the residual standard
deviation sigma_y.
monitor_params = c(imps = TRUE) would monitor betas, tau_y, and sigma_y (because analysis_main
= TRUE by default) as well as the imputed values.

Note

Coding of variables:: The default imputation methods are chosen based on the class of each
of the incomplete variables, distinguishing between numeric, factor with two levels, unordered
factor with >2 levels and ordered factor with >2 levels.

When a continuous variable has only two different values it is assumed to be binary and its coding
and default (imputation) model will be changed accordingly. This behavior can be overwritten
specifying a model type via the argument models.

Variables of type logical are automatically converted to unordered factors.

Contrary to base R behavior, dummy coding (i.e., contr.treatment contrasts) are used for or-
dered factors in any linear predictor. It is not possible to overwrite this behavior using the base R
contrasts specification. However, since the order of levels in an ordered factor contains informa-
tion relevant to the imputation of missing values, it is important that incomplete ordinal variables
are coded as such.

Non-linear effects and transformation of variables:: JointAI handles non-linear effects, trans-
formation of covariates and interactions the following way:
When, for instance, the model formula contains the function log(x) and x has missing values, x
will be imputed and used in the linear predictor of models for covariates, i.e., it is assumed that
the other variables have a linear association with x but not with log(x). The log() of the ob-
served and imputed values of x is calculated and used in the linear predictor of the analysis model.

If, instead of using log(x) in the model formula, a pre-calculated variable logx is used instead,
this variable is imputed directly and used in the linear predictors of all models, implying that vari-
ables that have logx in their linear predictors have a linear association with logx but not with x.

When different transformations of the same incomplete variable are used in one model it is
strongly discouraged to calculate these transformations beforehand and supply them as differ-
ent variables. If, for example, a model formula contains both x and x2 (where x2 = x^2), they are
treated as separate variables and imputed with separate models. Imputed values of x2 are thus not
equal to the square of imputed values of x. Instead, x and I(x^2) should be used in the model
formula. Then only x is imputed and used in the linear predictor of models for other incomplete
variables, and x^2 is calculated from the imputed values of x internally.
The same applies to interactions involving incomplete variables.

Sequence of covariate models:: The default order is incomplete baseline covariates, complete
longitudinal covariates, incomplete longitudinal covariates, and within each group variables are
ordered according to the proportion of missing values (increasing).

NHANES 33

Not (yet) possible::
• multiple nesting levels of random effects (nested or crossed)
• prediction (using predict) conditional on random effects
• the use of splines for incomplete variables
• the use of pspline, frailty, cluster or strata in survival models
• left censored or interval censored data

See Also

set_refcat, get_models, traceplot, densplot, summary.JointAI, MC_error, GR_crit, predict.JointAI,
add_samples, JointAIObject, add_samples, parameters, list_models

Vignettes

• Minimal Example

• Model Specification

• Parameter Selection

• After Fitting

Examples

Example 1: Linear regression with incomplete covariates
mod1 <- lm_imp(y ~ C1 + C2 + M1 + B1, data = wideDF, n.iter = 100)

Example 2: Logistic regression with incomplete covariats
mod2 <- glm_imp(B1 ~ C1 + C2 + M1, data = wideDF,

family = binomial(link = "logit"), n.iter = 100)

Example 3: Linear mixed model with incomplete covariates
mod3 <- lme_imp(y ~ C1 + B2 + c1 + time, random = ~ time|id,

data = longDF, n.iter = 300)

NHANES National Health and Nutrition Examination Survey (NHANES) Data

Description

This data is a small subset of the data collected within the 2011-2012 wave of the NHANES study, a
study designed to assess the health and nutritional status of adults and children in the United States,
conduced by the National Center for Health Statistics.

Usage

data(NHANES)

https://nerler.github.io/JointAI/articles/MinimalExample.html
https://nerler.github.io/JointAI/articles/ModelSpecification.html
https://nerler.github.io/JointAI/articles/SelectingParameters.html
https://nerler.github.io/JointAI/articles/AfterFitting.html
https://www.cdc.gov/nchs/

34 parameters

Format

A data frame with 186 rows and 13 variables:

SBP systolic blood pressure

gender male or female

age in years

race race / Hispanic origin (5 categories)

WC waist circumference in cm

alc alcohol consumption (binary: <1 drink per week vs. >= 1 drink per week)

educ educational level (binary: low vs. high)

creat creatinine concentration in mg/dL

albu albumin concentration in g/dL

uricacid uric acid concentration in mg/dL

bili bilirubin concentration in mg/dL

occup occupational status (3 categories)

smoke smoking status (3 ordered categories)

Note

The subset provided here was selected and re-coded to facilitate demonstration of the functionality
of the JointAI package, and no clinical conclusions should be derived from it.

Source

National Center for Health Statistics (NCHS) (2011 - 2012). National Health and Nutrition Exami-
nation Survey Data. URL https://www.cdc.gov/nchs/nhanes/.

Examples

summary(NHANES)

parameters Parameter names of an JointAI object

Description

Returns the names of the parameters/nodes of an object of class ’JointAI’ for which a monitor is
set.

Usage

parameters(object, mess = TRUE, warn = TRUE)

https://www.cdc.gov/nchs/nhanes/

plot.JointAI 35

Arguments

object object inheriting from class ’JointAI’

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

Examples

(does not need MCMC samples to work, so we will set n.adapt = 0 and
n.iter = 0 to reduce computational time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0, n.iter = 0, mess = FALSE)

parameters(mod1)

plot.JointAI Plot an object object inheriting from class ’JointAI’

Description

Plot an object object inheriting from class ’JointAI’

Usage

S3 method for class 'JointAI'
plot(x, ...)

Arguments

x object inheriting from class ’JointAI’

... currently not used

Examples

mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, n.iter = 100)
plot(mod)

36 plot_all

plot_all Visualize the distribution of all variables in the dataset

Description

This function plots a grid of histograms (for continuous variables) and barplots (for categorical
variables) and labels it with the proportion of missing values in each variable.

Usage

plot_all(
data,
nrow = NULL,
ncol = NULL,
fill = grDevices::grey(0.8),
border = "black",
allNA = FALSE,
use_level = FALSE,
idvar,
xlab = "",
ylab = "frequency",
...

)

Arguments

data a data.frame (or a matrix)

nrow optional number of rows and columns in the plot layout; automatically chosen
if unspecified

ncol optional number of rows and columns in the plot layout; automatically chosen
if unspecified

fill color the histograms and bars are filled with

border color of the borders of the histograms and bars

allNA logical; if FALSE (default) the proportion of missing values is only given for
variables that have missing values, if TRUE it is given for all variables

use_level logical; should the multi-level structure be taken into account? This requires
specification of the argument idvar.

idvar name of the column that specifies the multi-level grouping structure

xlab labels for the x- and y-axis

ylab labels for the x- and y-axis

... additional parameters passed to barplot and hist

See Also

Vignette: Visualizing Incomplete Data

https://nerler.github.io/JointAI/articles/VisualizingIncompleteData.html

plot_imp_distr 37

Examples

op <- par(mar = c(2,2,3,1), mgp = c(2, 0.6, 0))
plot_all(wideDF)
par(op)

plot_imp_distr Plot the distribution of observed and imputed values

Description

Plots densities and barplots of the observed and imputed values in a long-format dataset (multiple
imputed datasets stacked onto each other).

Usage

plot_imp_distr(
data,
imp = "Imputation_",
id = ".id",
rownr = ".rownr",
ncol = NULL,
nrow = NULL

)

Arguments

data a data.frame containing multiple imputations and the original incomplete data
stacked onto each other

imp the name of the variable specifying the imputation indicator

id the name of the variable specifying the subject indicator

rownr the name of a variable identifying which rows correspond to the same observa-
tion in the original (unimputed) data

ncol optional number of rows and columns in the plot layout; automatically chosen
if unspecified

nrow optional number of rows and columns in the plot layout; automatically chosen
if unspecified

Examples

mod <- lme_imp(y ~ C1 + c2 + B2 + C2, random = ~ 1 | id, data = longDF,
n.iter = 200, monitor_params = c(imps = TRUE), mess = FALSE)

impDF <- get_MIdat(mod, m = 5)
plot_imp_distr(impDF, id = "id", ncol = 3)

38 predDF

predDF Create a new dataframe for prediction

Description

Build a data.frame for prediction, where one variable varies and all other variables are set to the
reference value (median for continuous variables).

Usage

predDF(object, ...)

S3 method for class 'JointAI'
predDF(object, var, length = 100, ...)

S3 method for class 'formula'
predDF(formula, dat, var, length = 100, ...)

Arguments

object object inheriting from class ’JointAI’

... optional, additional arguments (currently not used)

var name of variable that should be varying

length number of values used in the sequence when var is continuous

formula a two sided model formula (see formula)

dat original data

See Also

predict.JointAI, lme_imp, glm_imp, lm_imp

Examples

fit a JointAI model
mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

generate a dataframe with varying "C2" and reference values for all other variables in the model
newDF <- predDF(mod, var = "C2")

head(newDF)

predict.JointAI 39

predict.JointAI Predict values from an object of class JointAI

Description

Obtains predictions and corresponding credible intervals from an object of class ’JointAI’.

Usage

S3 method for class 'JointAI'
predict(
object,
newdata,
quantiles = c(0.025, 0.975),
type = c("link", "response", "prob", "class", "lp", "risk"),
start = NULL,
end = NULL,
thin = NULL,
exclude_chains = NULL,
mess = TRUE,
...

)

Arguments

object object inheriting from class ’JointAI’

newdata optional new dataset for prediction. If left empty, the original data is used.

quantiles quantiles of the predicted distribution of the outcome

type the type of prediction. The default is on the scale of the linear predictor ("link"
or "lp"). For generalized linear (mixed) models type = "response" transforms
the predicted values to the scale of the response. For ordinal (mixed) models
type may be "prob" (to obtain probabilities per class) or "class" to obtain the
class with the highest posterior probability.

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (see window.mcmc)

exclude_chains optional vector of the index numbers of chains that should be excluded

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

... currently not used

40 predict.JointAI

Details

A model.matrix X is created from the model formula (currently fixed effects only) and newdata.
Xβ is then calculated for each iteration of the MCMC sample in object, i.e., Xβ has n.iter rows
and nrow(newdata) columns. A subset of the MCMC sample can be selected using start, end
and thin.

Value

A list with entries dat, fit and quantiles, where fit contains the predicted values (mean over
the values calculated from the iterations of the MCMC sample), quantiles contain the specified
quantiles (by default 2.5% and 97.5%), and dat is newdata, extended with fit and quantiles
(unless prediction for an ordinal outcome is done with type = "prob", in which case the quantiles
are an array with three dimensions and are therefore not included in dat).

Note

• So far, predict cannot calculate predicted values for cases with missing values in covariates.
Predicted values for such cases are NA.

• For repeated measures models prediction currently only uses fixed effects.

Functionality will be extended in the future.

See Also

predDF.JointAI, *_imp

Examples

fit model
mod <- lm_imp(y ~ C1 + C2 + I(C2^2), data = wideDF, n.iter = 100)

calculate the fitted values
fit <- predict(mod)

create dataset for prediction
newDF <- predDF(mod, var = "C2")

obtain predicted values
pred <- predict(mod, newdata = newDF)

plot predicted values and 95% confidence band
plot(newDF$C2, pred$fit, type = "l", ylim = range(pred$quantiles),

xlab = "C2", ylab = "predicted values")
matplot(newDF$C2, pred$quantiles, lty = 2, add = TRUE, type = "l", col = 1)

residuals.JointAI 41

residuals.JointAI Extract residuals from an object of class JointAI

Description

Extract residuals from an object of class JointAI

Usage

S3 method for class 'JointAI'
residuals(object, type = c("deviance", "response", "working"), ...)

Arguments

object object inheriting from class ’JointAI’

type type of residuals: "deviance", "response", "working"

... currently not used

Note

• For mixed models residuals are currently calculated using the fixed effects only.

• For ordinal (mixed) models and parametric survival models only type = "response" is avail-
able.

• For Cox proportional hazards models residuals are not yet implemented.

Examples

mod <- glm_imp(B1 ~ C1 + C2 + O1, data = wideDF, n.iter = 100,
family = binomial(), mess = FALSE)

summary(residuals(mod, type = 'response'))
summary(residuals(mod, type = 'working'))

set_refcat Specify reference categories for all categorical covariates in the model

Description

The function is a helper function that asks questions and, depending on the answers given by the
user, returns the input for the argument refcats in the main analysis functions *_imp.

Usage

set_refcat(data, formula, covars, auxvars = NULL)

42 sharedParams

Arguments

data a data.frame

formula optional; model formula (used to select subset of relevant columns of data)

covars optional; vector containing the names of relevant columns of data

auxvars optional; formula containing the names of relevant columns of data that should
be considered additionally to the columns occurring in the formula

Examples

Not run:
Example 1: set reference categories for the whole dataset and choose answer option 3:
set_refcat(data = NHANES)
3

insert the returned string as argument refcats
mod1 <- lm_imp(SBP ~ age + race + creat + educ, data = NHANES, refcats = 'largest')

Example 2:
specify a model formula
fmla <- SBP ~ age + gender + race + bili + smoke + alc

write the output of set_refcat to an object
ref_mod2 <- set_refcat(data = NHANES, formula = fmla)
4
2
5
1
1

enter the output in the model specification
mod2 <- lm_imp(formula = fmla, data = NHANES, refcats = ref_mod2, n.adapt = 0)

End(Not run)

sharedParams Parameters used by several functions in JointAI.

Description

Parameters used by several functions in JointAI.

Arguments

object object inheriting from class ’JointAI’

no_model names of variables for which no model should be specified. Note that this is
only possible for completely observed variables and implies the assumptions of
independence between the excluded variable and the incomplete variables.

simLong 43

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

n.adapt the number of iterations for adaptation of the MCMC samplers (see also adapt)

n.iter the number of iterations of the MCMC chain (after adaptation; see also coda.samples)

n.chains the number of MCMC chains to be used

quiet if TRUE then messages generated during compilation will be suppressed, as well
as the progress bar during adaptation (see jags.model)

thin thinning interval (see window.mcmc)

nrow, ncol optional number of rows and columns in the plot layout; automatically chosen
if unspecified

use_ggplot logical; Should ggplot be used instead of the base graphics?

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

xlab, ylab labels for the x- and y-axis

use_level logical; should the multi-level structure be taken into account? This requires
specification of the argument idvar.

idvar name of the column that specifies the multi-level grouping structure

keep_aux logical; Should constant effects of auxiliary variables be kept in the output?

ridge logical; should the parameters of the main model be penalized using ridge re-
gression? Default is FALSE

parallel logical; should the chains be sampled using parallel computation? Default is
FALSE

n.cores number of cores to use for parallel computation; if left empty all except two
cores will be used

seed optional seed value for reproducibility

ppc logical: should monitors for posterior predictive checks be set? (not yet used)

simLong Simulated Longitudinal Data in Long and Wide Format

Description

This data was simulated to mimic data from a longitudinal cohort study following mothers and
their child from birth until approximately 4 years of age. It contains 2400 observations of 200
mother-child pairs. Children’s BMI and head circumference was measured repeatedly and their
age in months was recorded at each measurement. Furthermore, the data contain several baseline
variables with information on the mothers’ demographics and socioeconomic status.

44 simLong

Usage

simLong

simWide

Format

simLong: A data frame in long format with 2400 rows and 16 variables

simWide: A data frame in wide format with 200 rows and 81 variables

Baseline covariates

(in simLong and simWide)

GESTBIR gestational age at birth (in weeks)

ETHN ethnicity (binary: European vs. other)

AGE_M age of the mother at intake

HEIGHT_M height of the mother (in cm)

PARITY number of times the mother has given birth (binary: 0 vs. >=1)

SMOKE smoking status of the mother during pregnancy (3 ordered categories: never smoked
during pregnancy, smoked until pregnancy was known, continued smoking in pregnancy)

EDUC educational level of the mother (3 ordered categories: low, mid, high)

MARITAL marital status (3 categories)

ID subject identifier

Long-format variables

(only in simLong)

time measurement occasion/visit (by design, children should be measured at/around 1, 2, 3, 4, 7,
11, 15, 20, 26, 32, 40 and 50 months of age)

age child age at measurement time in months

bmi child BMI

hc child head circumference in cm

hgt child height in cm

wgt child weight in gram

sleep sleeping behavior of the child (3 ordered categories)

Wide-format variables

(only in simWide)

age1, age2, age3, age4, age7, age11, age15, age20, age26, age32, age40, age50 child age at the re-
peated measurements in months

summary.JointAI 45

bmi1, bmi2, bmi3, bmi4, bmi7, bmi11, bmi15, bmi20, bmi26, bmi32, bmi40, bmi50 repeated mea-
surements of child BMI

hc1, hc2, hc3, hc4, hc7, hc11, hc15, hc20, hc26, hc32, hc40, hc50 repeated measurements of child
head circumference in cm

hgt1, hgt2, hgt3, hgt4, hgt7, hgt11, hgt15, hgt20, hgt26, hgt32, hgt40, hgt50 repeated measure-
ments of child height in cm

wgt1, wgt2, wgt3, wgt4, wgt7, wgt11, wgt15, wgt20, wgt26, wgt32, wgt40, wgt50 repeated mea-
surements of child weight in gram

sleep1, sleep2, sleep3, sleep4, sleep7, sleep11, sleep15, sleep20, sleep26, sleep32, sleep40, sleep50
repeated measurements of child sleep behavior (3 ordered categories)

Examples

summary(simLong)
summary(simWide)

summary.JointAI Summary of an object of class JointAI

Description

Obtain and print the summary, (fixed effects) coefficients (coef) and credible interval (confint) for
an object of class ’JointAI’.

Usage

S3 method for class 'JointAI'
summary(
object,
start = NULL,
end = NULL,
thin = NULL,
quantiles = c(0.025, 0.975),
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...

)

S3 method for class 'summary.JointAI'
print(x, digits = max(3, .Options$digits - 4), ...)

S3 method for class 'JointAI'
coef(

46 summary.JointAI

object,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...

)

S3 method for class 'JointAI'
confint(
object,
parm = NULL,
level = 0.95,
quantiles = NULL,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...

)

S3 method for class 'JointAI'
print(x, digits = max(4, getOption("digits") - 4), ...)

Arguments

object object inheriting from class ’JointAI’

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (see window.mcmc)

quantiles posterior quantiles

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

... currently not used

x an object of class summary.JointAI or JointAI

traceplot 47

digits minimal number of significant digits, see print.default.
parm same as subset
level confidence level (default is 0.95)

See Also

The model fitting functions lm_imp, glm_imp, clm_imp, lme_imp, glme_imp, survreg_imp and
coxph_imp, and the vignette Parameter Selection for examples how to specify the parameter subset.

Examples

mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)

summary(mod1)
coef(mod1)
confint(mod1)

traceplot Traceplot of a JointAI model

Description

Creates a set of traceplots from the MCMC sample of an object of class "JointAI".

Usage

traceplot(object, ...)

S3 method for class 'mcmc.list'
traceplot(object, start = NULL, end = NULL, thin = NULL, ...)

S3 method for class 'JointAI'
traceplot(
object,
start = NULL,
end = NULL,
thin = NULL,
subset = c(analysis_main = TRUE),
exclude_chains = NULL,
nrow = NULL,
ncol = NULL,
keep_aux = FALSE,
use_ggplot = FALSE,
warn = TRUE,
mess = TRUE,
...

)

https://nerler.github.io/JointAI/articles/SelectingParameters.html

48 traceplot

Arguments

object object inheriting from class ’JointAI’

... Arguments passed on to graphics::matplot

lty vector of line types, widths, and end styles. The first element is for the first
column, the second element for the second column, etc., even if lines are
not plotted for all columns. Line types will be used cyclically until all plots
are drawn.

lwd vector of line types, widths, and end styles. The first element is for the first
column, the second element for the second column, etc., even if lines are
not plotted for all columns. Line types will be used cyclically until all plots
are drawn.

lend vector of line types, widths, and end styles. The first element is for the
first column, the second element for the second column, etc., even if lines
are not plotted for all columns. Line types will be used cyclically until all
plots are drawn.

col vector of colors. Colors are used cyclically.
cex vector of character expansion sizes, used cyclically. This works as a multi-

ple of par("cex"). NULL is equivalent to 1.0.
bg vector of background (fill) colors for the open plot symbols given by pch =

21:25 as in points. The default NA corresponds to the one of the underlying
function plot.xy.

xlim ranges of x and y axes, as in plot.
ylim ranges of x and y axes, as in plot.
add logical. If TRUE, plots are added to current one, using points and lines.
verbose logical. If TRUE, write one line of what is done.

start the first iteration of interest (see window.mcmc)

end the last iteration of interest (see window.mcmc)

thin thinning interval (see window.mcmc)

subset subset of parameters/variables/nodes (columns in the MCMC sample). Uses the
same logic as the argument monitor_params in *_imp.

exclude_chains optional vector of the index numbers of chains that should be excluded

nrow optional number of rows and columns in the plot layout; automatically chosen
if unspecified

ncol optional number of rows and columns in the plot layout; automatically chosen
if unspecified

keep_aux logical; Should constant effects of auxiliary variables be kept in the output?

use_ggplot logical; Should ggplot be used instead of the base graphics?

warn logical; should warnings be given? Default is TRUE. (Note: this applies only to
warnings given directly by JointAI.)

mess logical; should messages be given? Default is TRUE. (Note: this applies only to
messages given directly by JointAI.)

wideDF 49

See Also

summary.JointAI, lme_imp, glm_imp, lm_imp, densplot The vignette Parameter Selection con-
tains some examples how to specify the parameter subset.

Examples

fit a JointAI model
mod <- lm_imp(y ~ C1 + C2 + M1, data = wideDF, n.iter = 100)

Example 1: simple traceplot
traceplot(mod)

Example 2: ggplot version of traceplot
traceplot(mod, use_ggplot = TRUE)

Example 5: changing how the ggplot version looks (using standard ggplot syntax)
library(ggplot2)

traceplot(mod, use_ggplot = TRUE) +
theme(legend.position = 'botto') +
xlab('iteration') +
ylab('value') +
scale_color_discrete(name = 'chain')

wideDF Cross-sectional example dataset

Description

A simulated cross-sectional dataset.

Usage

data(wideDF)

Format

A simulated data frame with 100 rows and 13 variables:

C1 continuous, complete variable

C2 continuous, incomplete variable

B1 binary, complete variable

B2 binary, incomplete variable

https://nerler.github.io/JointAI/articles/SelectingParameters.html

50 wideDF

M1 unordered factor; complete variable

M2 unordered factor; incomplete variable

O1 ordered factor; complete variable

O2 ordered factor; incomplete variable

L1 continuous, complete variable

L2 continuous incomplete variable

id id (grouping) variable

time continuous complete variable

y continuous, complete variable

Index

∗Topic datasets
longDF, 17
NHANES, 33
simLong, 43
wideDF, 49

*_imp, 3, 6, 9, 11, 14, 19, 40, 41, 43, 46, 48

abline, 7, 20
adapt, 28, 43
add_samples, 2, 33

barplot, 36

clm, 13
clm_imp, 12, 47
clm_imp (model_imp), 22
clmm2, 13
clmm_imp, 12
clmm_imp (model_imp), 22
cluster, 33
coda.samples, 3, 28, 43
coef(), 13
coef.JointAI (summary.JointAI), 45
confint(), 13
confint.JointAI (summary.JointAI), 45
coxph, 13
coxph_imp, 13, 47
coxph_imp (model_imp), 22

default_hyperpars, 4, 13, 29
densplot, 6, 13, 14, 33, 49
densplot(), 13

family, 29
formula, 10, 28, 29, 38
frailty, 33

gelman.diag, 11
get_MIdat, 8, 14
get_MIdat(), 13
get_models, 9, 13, 33

glm, 13
glm_imp, 12, 13, 38, 47, 49
glm_imp (model_imp), 22
glme_imp, 12, 47
glme_imp (model_imp), 22
glmer_imp (model_imp), 22
GR_crit, 11, 13, 14, 33
graphics::matplot, 48

hist, 36

jags.model, 28, 29, 43
JointAI, 12, 29
JointAIObject, 14, 33

lines, 48
list_models, 13, 16, 33
lm, 13
lm_imp, 12, 13, 38, 47, 49
lm_imp (model_imp), 22
lme, 13
lme_imp, 12, 13, 38, 47, 49
lme_imp (model_imp), 22
longDF, 17

MC_error, 13, 14, 18, 33
mcmcse::mcse.mat, 19
md_pattern, 13, 20
model_imp, 22

NHANES, 33

par, 48
parameters, 13, 33, 34
plot, 6, 20, 48
plot.JointAI, 35
plot.MCElist (MC_error), 18
plot.xy, 48
plot_all, 13, 36
plot_imp_distr, 9, 37
plot_imp_distr(), 13

51

52 INDEX

points, 48
predDF, 14, 38
predDF.JointAI, 40
predict, 14
predict(), 13
predict.JointAI, 33, 38, 39
print.default, 47
print.JointAI (summary.JointAI), 45
print.summary.JointAI

(summary.JointAI), 45
pspline, 33

residuals.JointAI, 41

set_refcat, 13, 28, 33, 41
sharedParams, 42
simLong, 43
simWide (simLong), 43
strata, 33
summary, 13, 14
summary(), 13
summary.JointAI, 13, 33, 45, 49
survreg, 13
survreg_imp, 13, 47
survreg_imp (model_imp), 22

traceplot, 13, 14, 33, 47
traceplot(), 13

update, 3, 29

wideDF, 49
window.mcmc, 3, 6, 8, 11, 12, 19, 28, 39, 43,

46, 48

	add_samples
	default_hyperpars
	densplot
	get_MIdat
	get_models
	GR_crit
	JointAI
	JointAIObject
	list_models
	longDF
	MC_error
	md_pattern
	model_imp
	NHANES
	parameters
	plot.JointAI
	plot_all
	plot_imp_distr
	predDF
	predict.JointAI
	residuals.JointAI
	set_refcat
	sharedParams
	simLong
	summary.JointAI
	traceplot
	wideDF
	Index

