
Package ‘ItemResponseTrees’
May 7, 2020

Title IR-Tree Modeling in 'mirt', 'Mplus', or 'TAM'

Version 0.2.5

Description Item response tree (IR-tree) models are a class of item response
theory (IRT) models that assume that the responses to polytomous items can
best be explained by multiple psychological processes; see Böckenholt
(2012) <doi:10.1037/a0028111> for details. The package
'ItemResponseTrees' allows to fit such IR-tree models in 'mirt', 'Mplus', or
'TAM'. The package automates some of the hassle of IR-tree modeling by means
of a consistent syntax. This allows new users to quickly adopt this model
class, and this allows experienced users to fit many complex models
effortlessly.

License MIT + file LICENSE

URL https://github.com/hplieninger/ItemResponseTrees

BugReports https://github.com/hplieninger/ItemResponseTrees/issues

Depends R (>= 3.6.0)

Imports checkmate (>= 1.9), dplyr, generics, glue, magrittr, MASS,
Matrix, methods, mirt (>= 1.30), purrr, rlang (>= 0.4.0), sets,
stringr, tibble, tidyr (>= 1.0.0), tidyselect

Suggests covr, future, knitr, listenv, lme4, modeltests (>= 0.1.0),
MplusAutomation (>= 0.7), progress, rmarkdown, roxygen2,
simsalapar, sfsmisc, spelling, TAM (>= 3.5-19), testthat (>=
2.1.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Hansjörg Plieninger [aut, cre]
(<https://orcid.org/0000-0002-4416-300X>)

1

https://github.com/hplieninger/ItemResponseTrees
https://github.com/hplieninger/ItemResponseTrees/issues

2 augment.irtree_fit

Maintainer Hansjörg Plieninger <mail@hansjoerg.me>

Repository CRAN

Date/Publication 2020-05-06 22:00:15 UTC

R topics documented:
augment.irtree_fit . 2
control_mirt . 3
control_mplus . 4
control_tam . 5
fit.irtree_model . 6
glance.irtree_fit . 10
irtree_create_template . 11
irtree_gen_data . 13
irtree_model . 15
irtree_recode . 18
irtree_sim . 19
jackson . 22
pseudoitems . 25
tidy.irtree_fit . 26

Index 28

augment.irtree_fit Augment data with information from an irtree_fit object

Description

Augment accepts a model object and a dataset and adds information about each observation in the
dataset, namely, predicted values in the .fitted column. New columns always begin with a . prefix
to avoid overwriting columns in the original dataset.

Usage

S3 method for class 'irtree_fit'
augment(x = NULL, data = NULL, se_fit = TRUE, method = "EAP", ...)

Arguments

x object of class irtree_fit as returned from fit().

data Optional data frame that is returned together with the predicted values. Argu-
ment is not needed since the data are contained in the fitted object.

se_fit Logical indicating whether standard errors for the fitted values should be re-
turned as well.

method This is passed to mirt::fscores() or TAM:::IRT.factor.scores() (as argu-
ment type) if applicable.

control_mirt 3

... Additional arguments passed to mirt::fscores() or TAM:::IRT.factor.scores()
if applicable.

Details

Note that argument method is used only for engines mirt and TAM.

Value

Returns a tibble with one row for each observation and one (two) additional columns for each latent
variable if se_fit = FALSE (if se_fit = TRUE). The names of the new columns start with .fit (and
.se.fit).

See Also

generics::augment()

Examples

data("jackson")
df1 <- jackson[1:234, paste0("C", 1:5)]
irtree_create_template(df1)
m1 <- "
IRT:
t BY C1@1, C2@1, C3@1, C4@1, C5@1;
Class:
GRM"
fit1 <- fit(irtree_model(m1), data = df1)

tidy(fit1, par_type = "difficulty")

glance(fit1)

augment(fit1)

control_mirt Control aspects of fitting a model in mirt

Description

This function should be used to generate the control argument of the fit() function.

Usage

control_mirt(
SE = TRUE,
method = "EM",
quadpts = NULL,
control = list(),

4 control_mplus

technical = list(),
...

)

Arguments

SE, method, quadpts, ...

These arguments are passed to and documented in mirt::mirt(). They can be
used to tweak the estimation algorithm.

control List of arguments passed to argument control of mirt::mirt().

technical List of arguments passed to argument technical of mirt::mirt().

Value

A list with one element for every argument of control_mirt().

Examples

control_mirt(SE = FALSE,
method = "QMCEM",
quadpts = 4455,
technical = list(NCYCLES = 567),
TOL = .001)

control_mirt(method = "MHRM",
draws = 5544)

control_mplus Control aspects of fitting a model in Mplus

Description

This function should be used to generate the control argument of the fit() function.

Usage

control_mplus(
file = tempfile("irtree_"),
overwrite = FALSE,
cleanup = run,
run = TRUE,
estimator = "MLR",
quadpts = 15,
save_fscores = TRUE,
analysis_list = list(COVERAGE = "0"),
Mplus_command = "Mplus",
warnings2messages = FALSE

)

control_tam 5

Arguments

file String naming the file (or path) of the Mplus files and the data file. Do not
provide file endings, those will be automatically appended.

overwrite Logical value indicating whether data and input (if present) files should be over-
written.

cleanup Logical, whether the Mplus files should be removed on exit.

run Logical, whether to indeed run Mplus.

estimator String, passed to argument ’ESTIMATOR’ in Mplus.

quadpts This is passed to argument ’INTEGRATION’ of Mplus. Thus, it may be an in-
teger specifying the number of integration points for the Mplus default of rect-
angular numerical integration (e.g., quadpts = 15). Or it may be a string, which
gives more fine grained control (e.g., quadpts = "MONTECARLO(2000)").

save_fscores Logical, whether to save FSCORES or not.

analysis_list Named list of strings passed to Mplus’ argument ANALYSIS. See examples
below.

Mplus_command optional. N.B.: No need to pass this parameter for most users (has intelligent
defaults). Allows the user to specify the name/path of the Mplus executable
to be used for running models. This covers situations where Mplus is not in
the system’s path, or where one wants to test different versions of the Mplus
program.

warnings2messages

Logical, whether Mplus errors and warnings should be signaled as warnings (the
default) or messages.

Value

A list with one element for every argument of control_mplus().

Examples

control_mplus(file = tempfile("irtree_", tmpdir = "."),
quadpts = "GAUSS(10)",
analysis_list = list(COVERAGE = "0",

MITERATIONS = "500",
MCONVERGENCE = ".001"))

control_tam Control aspects of fitting a model in TAM

Description

This function should be used to generate the control argument of the fit() function.

6 fit.irtree_model

Usage

control_tam(
set_min_to_0 = FALSE,
control = list(snodes = 0, maxiter = 1000, increment.factor = 1, fac.oldxsi = 0),
...

)

Arguments

set_min_to_0 Logical. TAM::tam.mml() expects the data to be scored 0, ..., K. If set_min_to_0
= TRUE, the minimum of the data is subtracted from each response, which will
likely both satisfy TAM and do no harm to the data.

control List of arguments passed to argument control of TAM::tam.mml(). See exam-
ples below.

... Other arguments passed to TAM::tam.mml().

Value

A list with one element for every argument of control_tam().

Examples

control_tam(set_min_to_0 = TRUE,
control = list(snodes = 0,

maxiter = 1000,
increment.factor = 1,
fac.oldxsi = 0),

constraint = "items")

fit.irtree_model Fit an ItemResponseTrees model

Description

This function takes a data frame and an object of class irtree_model and runs the model in either
mirt, Mplus, or TAM.

Usage

S3 method for class 'irtree_model'
fit(
object = NULL,
data = NULL,
engine = c("mirt", "mplus", "tam"),
...,
link = c("logit", "probit"),
verbose = interactive(),

fit.irtree_model 7

control = NULL,
improper_okay = FALSE

)

Arguments

object Object of class irtree_model. See irtree_model for more information.

data Data frame containing containing one row per respondent and one column per
variable. The variable names must correspond to those used in object.

engine String specifying whether to use mirt, Mplus, or TAM for estimation.

... Not currently used. Use control instead.

link String specifying the link function. May be either logit, or (in case of Mplus),
probit.

verbose Logical indicating whether output should be printed to the console.

control List. The allowed elements of this list depend on the engine. Use control_mirt(),
control_mplus(), or control_tam() for convenience. Note that the fit()
function does not use ..., but that you can use the control_*() functions to pass
additional arguments.

improper_okay Logical indicating whether the model should also be fit if it is not a proper IR-
tree model. Set this only to TRUE if you really know what you are doing.

Value

Returns a list of class irtree_fit. The first list element is the return value of either mirt::mirt(),
MplusAutomation::readModels(), or TAM::tam.mml(). Further information is provided in the
element spec.

Methods

The methods coef(), summary(), and print() are implemented for objects of class irtree_fit,
and those wrap the respective functions of mirt, MplusAutomation, or TAM. However, glance(),
tidy(), and augment() may be more helpful.

Examples

Running these examples may take a while

data("jackson")
df1 <- jackson[1:456, paste0("C", 1:5)]
df2 <- jackson[1:456, c(paste0("C", 1:5), paste0("E", 1:5))]

irtree_create_template(df1)

Graded Response Model ---

m1 <- "
IRT:

8 fit.irtree_model

t BY C1@1, C2@1, C3@1, C4@1, C5@1;

Class:
GRM
"

model1 <- irtree_model(m1)

fit1 <- fit(model1, data = df1)

glance(fit1)
tidy(fit1, par_type = "difficulty")
augment(fit1)

IR-Tree Models --

IR-tree model for 1 target trait

m2 <- "
Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e

IRT:
t BY C1@1, C2@1, C3@1, C4@1, C5@1;
e BY C1@1, C2@1, C3@1, C4@1, C5@1;
m BY C1@1, C2@1, C3@1, C4@1, C5@1;

Class:
Tree
"

model2 <- irtree_model(m2)

See ?mirt::mirt for details on method argument
fit2 <- fit(model2, data = df1, control = control_mirt(method = "MHRM"))

IR-tree model for 2 target traits

m3 <- "
Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e

IRT:
t1 BY C1@1, C2@1, C3@1, C4@1, C5@1;
t2 BY E1@1, E2@1, E3@1, E4@1, E5@1;

fit.irtree_model 9

e BY C1@1, C2@1, C3@1, C4@1, C5@1, E1@1, E2@1, E3@1, E4@1, E5@1;
m BY C1@1, C2@1, C3@1, C4@1, C5@1, E1@1, E2@1, E3@1, E4@1, E5@1;

Class:
Tree

Constraints:
t = t1 | t2
"

model3 <- irtree_model(m3)

fit3 <- fit(model3, data = df2, control = control_mirt(method = "MHRM"))

IR-tree model constrained to Steps Model

m4 <- "
Equations:
1 = (1-a1)
2 = a1*(1-a2)
3 = a1*a2*(1-a3)
4 = a1*a2*a3*(1-a4)
5 = a1*a2*a3*a4

IRT:
a1 BY C1@1, C2@1, C3@1, C4@1, C5@1;
a2 BY C1@1, C2@1, C3@1, C4@1, C5@1;
a3 BY C1@1, C2@1, C3@1, C4@1, C5@1;
a4 BY C1@1, C2@1, C3@1, C4@1, C5@1;

Class:
Tree

Constraints:
a1 = a2
a1 = a3
a1 = a4
"

model4 <- irtree_model(m4)

fit4 <- fit(model4, data = df1)

Partial Credit Model --

Ordinary PCM

m5 <- "
IRT:
t BY C1@1, C2@1, C3@1, C4@1, C5@1;

Weights:
t = c(0, 1, 2, 3, 4)

10 glance.irtree_fit

Class:
PCM
"

model5 <- irtree_model(m5)

fit5 <- fit(model5, data = df1 - 1, engine = "tam")

Multidimensional PCM with constraints

m6 <- "
IRT:
t1 BY C1@1, C2@1, C3@1, C4@1, C5@1;
t2 BY E1@1, E2@1, E3@1, E4@1, E5@1;
e BY C1@1, C2@1, C3@1, C4@1, C5@1, E1@1, E2@1, E3@1, E4@1, E5@1;
m BY C1@1, C2@1, C3@1, C4@1, C5@1, E1@1, E2@1, E3@1, E4@1, E5@1;

Weights:
t = c(0, 1, 2, 3, 4)
e = c(1, 0, 0, 0, 1)
m = c(0, 0, 1, 0, 0)

Class:
PCM

Constraints:
t = t1 | t2
"

model6 <- irtree_model(m6)

fit6 <- fit(model6, data = df2 - 1, engine = "tam",
control = control_tam(control = list(snodes = 1234)))

glance.irtree_fit Glance at an irtree_fit object

Description

Glance accepts an irtree_fit object and returns a tibble with exactly one row of model summaries.

Usage

S3 method for class 'irtree_fit'
glance(x = NULL, ...)

irtree_create_template 11

Arguments

x object of class irtree_fit as returned from fit().

... Additional arguments. Not used.

Value

A one-row tibble with columns such as AIC and BIC.

Converged:
The column converged indicates whether the model converged or not. For Mplus, this is TRUE
if the output contained the phrase "The model estimation terminated normally". For mirt, this is
equal to the output of mirt::extract.mirt(x,"converged"). For TAM, this is NA if no clear
signs of non-convergence were observed. You are encouraged to check any warnings or errors in
any case.

Iterations:
iterations is NA for Mplus models since respective information is not easily obtained from the
output.

See Also

generics::glance(), mirt::extract.mirt(x,"secondordertest")

Examples

data("jackson")
df1 <- jackson[1:234, paste0("C", 1:5)]
irtree_create_template(df1)
m1 <- "
IRT:
t BY C1@1, C2@1, C3@1, C4@1, C5@1;
Class:
GRM"
fit1 <- fit(irtree_model(m1), data = df1)

tidy(fit1, par_type = "difficulty")

glance(fit1)

augment(fit1)

irtree_create_template

Create a template of a model string

Description

This function prints a template of a model string to the console based on the supplied data frame.
This template can be copy-pasted and modified to define an irtree_model.

12 irtree_create_template

Usage

irtree_create_template(data = NULL, mapping_matrix = NULL, rasch = TRUE)

Arguments

data Data frame.

mapping_matrix Matrix of so-called pseudo-items, optional. The observed response categories
must appear in the first column. The other columns contain the pseudo-items
and each entry may be either 1, 0, or NA.

rasch Logical. The string @1 will be appended to each variable name if TRUE with no
effect otherwise.

Examples

irtree_create_template(jackson[, c(1, 6, 11)])
#> m1 <- "
#> Equations:
#> 1 = ...
#> 2 = ...
#> 3 = ...
#> 4 = ...
#> 5 = ...
#>
#> IRT:
#> ... BY E1@1, E2@1, E3@1;
#> ... BY E1@1, E2@1, E3@1;
#>
#> Class:
#> Tree
#> "

irtree_create_template(jackson[, c(1, 6, 11)],
cbind(1:5,

m = c(0, 0, 1, 0, 0),
t = c(1, 1, NA, 0, 0),
e = c(1, 0, NA, 0, 1)))

#> m1 <- "
#> Equations:
#> 1 = (1-m)*t*e
#> 2 = (1-m)*t*(1-e)
#> 3 = m
#> 4 = (1-m)*(1-t)*(1-e)
#> 5 = (1-m)*(1-t)*e
#>
#> IRT:
#> m BY E1@1, E2@1, E3@1;
#> t BY E1@1, E2@1, E3@1;
#> e BY E1@1, E2@1, E3@1;
#>
#> Class:
#> Tree

irtree_gen_data 13

#> "

irtree_gen_data Generate data

Description

This function generates data from an ItemResponseTrees model.

Usage

irtree_gen_data(
object = NULL,
N = NULL,
sigma = NULL,
theta = NULL,
itempar = NULL,
link = c("logit", "probit"),
na_okay = TRUE,
skip = FALSE

)

Arguments

object Object of class irtree_model. See irtree_model for more information.

N Integer, the number of persons.

sigma Either a matrix or a function that returns a matrix. This matrix is the variance-
covariance matrix of the person parameters that is passed to MASS::mvrnorm().
Note that the order of the person parameters is taken from the section Processes
in the model object (see irtree_model).

theta Optional numeric matrix of person parameters with one row per person and one
column per dimension (i.e., object$S). If provided, this overrides N and sigma.

itempar Either a list or a function that returns a list. The list has an element beta and
an element alpha. Each of these is a matrix of item parameters. Note that the
order of items (rows) is taken from the section Items and the order of processes
(columns) is taken from the section Processes in the model (see irtree_model).

link Character. Link function to use.

na_okay Logical indicating whether variables with unobserved response categories are
permitted. If FALSE, rejection sampling is used to ensure that all categories are
observed.

skip Logical. Some features of the irtree_model syntax, which are available for
model fitting (e.g., Addendum), are not implemented for data generation. Those
parts of the model are ignored if skip = TRUE.

14 irtree_gen_data

Value

A list with element data containing the data and an element spec containing the true parameter
values etc.

Examples

IR-Tree Model ---

m1 <- "
Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e

IRT:
t BY x1, x2, x3;
e BY x1, x2, x3;
m BY x1, x2, x3;

Class:
Tree
"

model1 <- irtree_model(m1)

dat1 <- irtree_gen_data(model1, N = 5, sigma = diag(3),
itempar = list(beta = matrix(rnorm(9), 3, 3),

alpha = matrix(1, 3, 3)))
dat1$data

Partial Credit Model --

m2 <- "
IRT:
t BY x1@1, x2@1, x3@1;
e BY x1@1, x2@1, x3@1;
m BY x1@1, x2@1, x3@1;

Weights:
t = c(0, 1, 2, 3, 4)
e = c(1, 0, 0, 0, 1)
m = c(0, 0, 1, 0, 0)

Class:
PCM
"
model2 <- irtree_model(m2)
dat2 <- irtree_gen_data(model2, N = 5, sigma = diag(3),

itempar = list(beta = matrix(sort(rnorm(12)), 3, 4)))
dat2$data

irtree_model 15

m3 <- "
IRT:
t BY x1@1, x2@1, x3@1;

Weights:
t = 0:4

Class:
PCM
"

model3 <- irtree_model(m3)

dat3 <- irtree_gen_data(model3, N = 5, sigma = diag(1),
itempar = list(beta = matrix(sort(rnorm(12)), 3, 4)))

dat3$data

irtree_model ItemResponseTrees model syntax

Description

The ItemResponseTrees model syntax describes the statistical model. The function irtree_model()
turns a user-defined model string into an object of class irtree_model that represents the full model
as needed by the package.

Usage

irtree_model(model = NULL)

Arguments

model String with a specific structure as described below.

Value

List of class irtree_model. It contains the information extracted from model. Side note: The
returned list contains an element mappping_matrix that contains the pseudoitems. This information
is instructive, and it might be used as an input to the dendrify() function of the irtrees package.

Overview of the Model Syntax

1. The model string must contain at least the sections IRT, Class, and (if class is tree) Equations.

2. Section headings must appear on a separate line ending with a colon (:).

3. The model may contain empty lines and commented lines, which begin with # (do not use
inline comments).

16 irtree_model

4. Line breaks are only allowed in section IRT.

Details for all the required and optional sections of the model string are given in the following.

Equations:
The model must contain a section with heading Equations if Class is Tree. Therein, the model
equations are described. They have a structure similar to Cat = p1*(1-p2), where Cat is any
observed response category in the data set, and where p1 is a freely chosen name of a parameter.
These names must match the names of the latent variables in the section IRT (combined with
Constraints if specified).
If you prefer to work with pseudo-items, irtree_create_template() can generate the equations
for you.
The equations may contain only products and not sums. That is, it is not possible to estimate
genuine mixture models as, for example, in the package mpt2irt.
Each equation must appear on a separate, non-broken line. For example:

Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e

IRT:
The model must contain a section with heading IRT. Therein, the IRT structure of the model is
described in a way resembling the MODEL part of an Mplus input file. It has a structure of LV BY
item1*,item2@1, where LV is the name of the latent variable/parameter/process, and item is the
name of the observed variable in the data set, which is followed by the loading. The loading may
either be fixed (e.g., to 1) using @1 or it may be set free using * (which is equivalent to omitting a
loading altogether).
Each measurement model (i.e., the LV and its items) must appear on a separate line ending with a
semicolon. Items must be separated by commas. Line breaks are allowed. For example:

IRT:
t BY x1, x2, x3, x4, x5, x6;
e BY x1@1, x2@1, x3@1, x4@1, x5@1, x6@1;
m BY x1@1, x2@1, x3@1, x4@1, x5@1, x6@1;

Class:
The model must contain a section with heading Class to specify the type/class of IRT model to
use. Currently, may be either Tree, GRM, or PCM. For example:

Class:
Tree

Constraints:
The model may contain a section with heading Constraints to specify equality constraints of
latent variables. Constraints may be useful for multidimensional questionnaires to link IRT and
Equations in a specific way. Or, latent variables in IRT may be constrained to equality.

https://github.com/hplieninger/mpt2irt

irtree_model 17

Constraints in order to link sections IRT and Equations:
A process in the model equations (section Equations) may correspond to multiple latent vari-
ables (section IRT). For example, when analyzing a Big Five data set, one may wish to specify
only one extremity process e for all items but multiple target traits t, namely, one for each of
the five scales. In such a case, the section Equations would list only the parameter t, while the
section IRT would list the parameters t1, ..., t5.
In the framework of MPT, one would think of such a situation in terms of multiple albeit similar
trees with specific parameter contraints across trees. For example, one would use one tree for
each Big Five scale and fix the response style parameters to equality across trees but not the
target trait parameters.
Each line in this section has a structure of Param = LV1 | LV2, where Param is the name of the
process used only in section Equations and LV1 it the name of the process used only in section
IRT. Use one line for each definition. For example:
Constraints:
t = t1 | t2 | t3 | t4 | t5

Constraints within section IRT:
For example, in a sequential model as proposed by Tutz as well as Verhelst, one would specify
two processes for a 3-point item. The first process would correspond to a pseudoitem of 0-1-1
and the second process to a pseudoitem of NA-0-1. However, the latent variables corresponding
to these two processes would typically be assumed to be equal and need thus be constrained
accordingly.
Each line in this section has a structure of LV1 = LV2, where LV1 and LV2 are the names of the
latent variables used in section IRT. Use one line for each definition. For example:
Constraints:
LV1 = LV2
LV1 = LV3

Addendum:
The model may contain a section with heading Addendum if engine = "mplus" is used for es-
timation. Any code in this section is directly pasted in the MODEL section of the Mplus input
file. Use a semicolon at the end of each line; lines must not exceed 90 characters. Note that the
addendum is ignored in irtree_gen_data(). For example:

Addendum:
e WITH t@0;
m WITH t@0;

Weights:
The model may contain a section with heading Weights if model Class is PCM. This allows to
specify (uni- and) multidimensional partial credit models. They have been proposed, for example,
by Wetzel and Carstensen (2017), as an alternative to IR-tree models. Note that fitting these
models is only implemented for engine = "tam".
Each line in this section has a structure of LV = weights, where LV is the name of the latent
variable used in section IRT. weights must be valid R code, namely, a vector of weights (see,
e.g., Table 1 in Wetzel & Carstensen, 2017, or Table 2 in Falk & Cai, 2015). Use one line for each
definition. For example:

Weights:
t = c(0, 1, 2, 3, 4)

18 irtree_recode

e = c(1, 0, 0, 0, 1)
m = c(0, 0, 1, 0, 0)

Examples

m1 <- "
Random comment

Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e

IRT:
t1 BY x1@1, x2*, x3*;
t2 BY x4@1, x5*, x6*;
e BY x1@1, x2@1, x3@1, x4@1, x5@1, x6@1;
m BY x1@1, x2@1, x3@1, x4@1, x5@1, x6@1;

Constraints:
t = t1 | t2

Class:
Tree
"

model <- irtree_model(m1)

irtree_recode Recode data into pseudoitems

Description

This function takes a data set with polytomous items and an irtree_model and returns the recoded
items, the so-called pseudoitems.

Usage

irtree_recode(object = NULL, data = NULL, keep = FALSE)

Arguments

object Object of class irtree_model. See irtree_model for more information.

data Data frame containing containing one row per respondent and one column per
variable. The variable names must correspond to those used in object.

keep Logical indicating whether to append the original items to the data frame of the
generated pseudoitems

irtree_sim 19

Value

Data frame

Examples

m1 <- "
IRT:
t BY x1;
e BY x1;
m BY x1;
Equations:
1 = (1-m)*(1-t)*e
2 = (1-m)*(1-t)*(1-e)
3 = m
4 = (1-m)*t*(1-e)
5 = (1-m)*t*e
Class:
Tree
"
model1 <- irtree_model(m1)
dat <- data.frame(x1 = 1:5)
irtree_recode(model1, dat, keep = TRUE)

irtree_sim Run a simulation by generating from and fitting an ItemResponseTrees
model

Description

The function irtree_sim() generates data from an irtree_model and fits one or more models to
these data. This process is repeated R times, and the argument plan allows to run the simulation in
parallel.

Usage

irtree_sim(
R = 1,
gen_model = NULL,
fit_model = gen_model,
N = NULL,
sigma = NULL,
itempar = NULL,
link = c("logit", "probit"),
na_okay = TRUE,
engine = c("mirt", "mplus", "tam"),
verbose = FALSE,
control = NULL,
improper_okay = FALSE,

20 irtree_sim

par_type = "difficulty",
plan = NULL,
plan_args = list(),
file = NULL,
dir = tempdir(),
save_rdata = TRUE,
in_memory = c("reduced", "everything", "nothing")

)

Arguments

R Number of replications. Can be either a single number indicating the number of
replications (e.g., R = 100), or can be a range (e.g., R = 1:100).

gen_model Object of class irtree_model describing the data-generating model. See irtree_model
for more information.

fit_model Object of class irtree_model describing the model that should be fit to the
data. May be a list of multiple objects of class irtree_model if different models
should be fit to the same data set. See irtree_model for more information.

N Integer, the number of persons.

sigma Either a matrix or a function that returns a matrix. This matrix is the variance-
covariance matrix of the person parameters that is passed to MASS::mvrnorm().
Note that the order of the person parameters is taken from the section Processes
in the model object (see irtree_model).

itempar Either a list or a function that returns a list. The list has an element beta and
an element alpha. Each of these is a matrix of item parameters. Note that the
order of items (rows) is taken from the section Items and the order of processes
(columns) is taken from the section Processes in the model (see irtree_model).

link Character. Link function to use.

na_okay Logical indicating whether variables with unobserved response categories are
permitted. If FALSE, rejection sampling is used to ensure that all categories are
observed.

engine String specifying whether to use mirt, Mplus, or TAM for estimation.

verbose Logical indicating whether output should be printed to the console.

control List. The allowed elements of this list depend on the engine. Use control_mirt(),
control_mplus(), or control_tam() for convenience. Note that the fit()
function does not use ..., but that you can use the control_*() functions to pass
additional arguments.

improper_okay Logical indicating whether the model should also be fit if it is not a proper IR-
tree model. Set this only to TRUE if you really know what you are doing.

par_type Only used if the fit engine was mirt. Item parameters (or thresholds) can be ei-
ther of type easiness (the mirt default) or difficulty (as in Mplus and TAM).

plan Parameter passed as argument strategy to future::plan(). May be set to,
for example, multiprocess in order to run the simulations in parallel.

plan_args Named list. Parameters passed future::plan().

irtree_sim 21

file String giving the file path used to save the output if save_rdata = TRUE. Note
that the file ending is automatically set to .rda. This argument is also passed to
irtree_fit_mplus() if applicable.

dir Path name that is used to save the results of every run if save_rdata = TRUE.

save_rdata Logical indicating whether to save the results to an RData file.

in_memory Character string indicating what output should be kept in memory (note the ar-
gument save_rdata, which is not affected by in_memory). If "reduced", the
output of fit() is discarded and only summary information is retained. The al-
ternative is to keep "everything" in memory, or to keep "nothing" in memory
(which makes only sense in combination with save_rdata = TRUE).

Value

Returns a list of length R. For each replication, a list is returned with two elements. The element
spec contains various specifications (such as the data). The element fits is a list with one element
for each fit_model that contains the output of fit() as well as the elements glanced, tidied, and
augmented (see glance(), tidy(), and augment()). Thus, res$sim3$fits$m2$glanced gives
model-fit information such as AIC for the second model in the third replication, and res$sim3$spec$data
contains the corresponding data set.

If in_memory = "nothing", returns NULL.

See Also

The data are generated via irtree_gen_data(), and the models are fit via fit().

Examples

Running these examples may take a while

m1 <- "
Equations:
1 = 1-a
2 = a*(1-b)
3 = a*b

IRT:
a BY x1@1, x2@1, x3@1, x4@1, X5@1, X6@1, X7@1;
b BY x1@1, x2@1, x3@1, x4@1, X5@1, X6@1, X7@1;

Class:
Tree
"

m2 <- "
IRT:
a BY x1@1, x2@1, x3@1, x4@1, X5@1, X6@1, X7@1;

Class:
GRM

22 jackson

"

model1 <- irtree_model(m1)
model2 <- irtree_model(m2)

res <- irtree_sim(
Data generation
gen_model = model1,
link = "logit",
N = 500,
sigma = function(x) diag(2),
itempar = function(x) list(

beta = matrix(sort(runif(model1$J*model1$P, -2, 2)),
model1$J, model1$P),

alpha = matrix(1, model1$J, model1$P)),
na_okay = FALSE,

Estimation
fit_model = list(model1, model2),
engine = "mirt",
control = control_mirt(SE = FALSE),
par_type = "difficulty",

Replications
R = 2,
save_rdata = FALSE,

Optional parallelization
plan = "multiprocess",
plan_args = list(workers = future::availableCores() - 1)

)

tab1 <- matrix(NA, 0, 4, dimnames = list(NULL, c("Rep", "Model", "AIC", "BIC")))

for (ii in seq_along(res)) {
for (jj in seq_along(res[[ii]]$fits)) {

IC <- res[[ii]]$fits[[jj]]$glanced
tab1 <- rbind(tab1, c(ii, jj, round(IC$AIC, -1), round(IC$BIC, -1)))

}
}
tab1
#> Rep Model AIC BIC
#> [1,] 1 1 6900 6970
#> [2,] 1 2 7000 7060
#> [3,] 2 1 6810 6880
#> [4,] 2 2 6880 6940

jackson IPIP Big Five personality test answers (data set)

jackson 23

Description

"This is data from an online big five personality test: http://personality-testing.info/tests/BIG5.php.
The following items were rated on a likert scale from 1=disagree to 5=agree in relation to how much
they applied to the test taker, they were presented to the taker 5 per page" (Jackson, 2012).

The following items are reverse keyed and were already recoded: A1, E2, C2, N2, O2, A3, E4, C4, N4,
O4, A5, E6, C6, O6, A7, E8, C8, and E10.

Usage

data("jackson")

Format

A data frame with 9051 rows and 58 variables:

E1 Am the life of the party.

A1 Feel little concern for others.

C1 Am always prepared.

N1 Get stressed out easily.

O1 Have a rich vocabulary.

E2 Don’t talk a lot.

A2 Am interested in people.

C2 Leave my belongings around.

N2 Am relaxed most of the time.

O2 Have difficulty understanding abstract ideas.

E3 Feel comfortable around people.

A3 Insult people.

C3 Pay attention to details.

N3 Worry about things.

O3 Have a vivid imagination.

E4 Keep in the background.

A4 Sympathize with others’ feelings.

C4 Make a mess of things.

N4 Seldom feel blue.

O4 Am not interested in abstract ideas.

E5 Start conversations.

A5 Am not interested in other people’s problems.

C5 Get chores done right away.

N5 Am easily disturbed.

O5 Have excellent ideas.

E6 Have little to say.

24 jackson

A6 Have a soft heart.
C6 Often forget to put things back in their proper place.
N6 Get upset easily.
O6 Do not have a good imagination.
E7 Talk to a lot of different people at parties.
A7 Am not really interested in others.
C7 Like order
N7 Change my mood a lot.
O7 Am quick to understand things.
E8 Don’t like to draw attention to myself.
A8 Take time out for others.
C8 Shirk my duties.
N8 Have frequent mood swings.
O8 Use difficult words.
E9 Don’t mind being the center of attention.
A9 Feel others’ emotions.
C9 Follow a schedule.
N9 Get irritated easily.
O9 Spend time reflecting on things.
E10 Am quiet around strangers.
A10 Make people feel at ease.
C10 Am exacting in my work.
N10 Often feel blue.
O10 Am full of ideas.
gender Gender, either female, male, or other
age Age
SecondsElapsed Seconds elapsed
E Scale mean for extraversion
C Scale mean for conscientiousness
N Scale mean for neuroticism
O Scale mean for openness
A Scale mean for agreeableness

Details

The data set included here is Version 3 from 15.10.2012. It was released by Andrew Jackson under
the CC BY 4.0 license.

Source

Jackson, A. (2012). IPIP Big Five personality test answers. https://doi.org/10.6084/m9.
figshare.96542.v3

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.96542.v3
https://doi.org/10.6084/m9.figshare.96542.v3

pseudoitems 25

pseudoitems Pseudo-Items

Description

IR-tree models can be fit on the basis of so-called pseudo-items. To this end, the original, polyto-
mous items are recoded into binary pseudo-items. Whether a pseudo-item is coded as 1, 0, or NA
depends on the model equations (e.g., Böckenholt, 2012; Plieninger, 2020).

The ItemResponseTrees package internally works with pseudo-items as well. However, the user has
to specify the model equations rather than the pseudo-items in the irtree_model syntax. Internally,
the original responses are recoded on the basis of the model supplied by the user by the function
irtree_recode(). This function may also be used directly if desired.

As an alternative to specifying the model equations themselves, users may also use the function
irtree_create_template() with a mapping matrix (that specifies the structure of the pseudo-
items) to generate the model equations automatically.

References

Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice. Psycholog-
ical Methods, 17(4), 665–678. https://doi.org/10.1037/a0028111

Plieninger, H. (2020). Developing and applying IR-tree models: Guidelines, caveats, and an
extension to multiple groups. Organizational Research Methods. Advance online publication.
https://doi.org/10.1177/1094428120911096

Examples

Mapping matrix for data with three response categories:
(mm <- cbind(cat = 0:2,

p1 = c(0, 1, 1),
p2 = c(NA, 0, 1)))

#> cat p1 p2
#> [1,] 0 0 NA
#> [2,] 1 1 0
#> [3,] 2 1 1

irtree_create_template(data.frame(x1 = 0:2, x2 = 0:2),
mapping_matrix = mm)

#>
#> m1 <- "
#> Equations:
#> 0 = (1-p1)
#> 1 = p1*(1-p2)
#> 2 = p1*p2
#>
#> IRT:
#> p1 BY x1@1, x2@1;
#> p2 BY x1@1, x2@1;
#>

26 tidy.irtree_fit

#> Class:
#> Tree
#> "
#>

tidy.irtree_fit Tidy an irtree_fit object

Description

Tidy summarizes information about the parameter estimates of an ItemResponseTrees model.

Usage

S3 method for class 'irtree_fit'
tidy(x = NULL, par_type = NULL, ...)

Arguments

x object of class irtree_fit as returned from fit().

par_type Only used if the fit engine was mirt. Item parameters (or thresholds) can be ei-
ther of type easiness (the mirt default) or difficulty (as in Mplus and TAM).

... Not currently used.

Value

A tibble with one row for each model parameter and the following columns:

term The name of the model parameter.

estimate The estimated value of the term.

std.error The standard error of the term.

statistic The value of the test statistic of the term (Mplus only).

p.value The p-value associated with the statistic (Mplus only).

See Also

generics::tidy()

tidy.irtree_fit 27

Examples

data("jackson")
df1 <- jackson[1:234, paste0("C", 1:5)]
irtree_create_template(df1)
m1 <- "
IRT:
t BY C1@1, C2@1, C3@1, C4@1, C5@1;
Class:
GRM"
fit1 <- fit(irtree_model(m1), data = df1)

tidy(fit1, par_type = "difficulty")

glance(fit1)

augment(fit1)

Index

∗Topic datasets
jackson, 22

augment(), 7, 21
augment.irtree_fit, 2

control_mirt, 3
control_mirt(), 7, 20
control_mplus, 4
control_mplus(), 7, 20
control_tam, 5
control_tam(), 7, 20

fit(), 2–5, 11, 21, 26
fit.irtree_model, 6
future::plan(), 20

generics::augment(), 3
generics::glance(), 11
generics::tidy(), 26
glance(), 7, 21
glance.irtree_fit, 10

irtree_create_template, 11
irtree_create_template(), 16, 25
irtree_fit_mplus(), 21
irtree_gen_data, 13
irtree_gen_data(), 17, 21
irtree_model, 6, 7, 11, 13, 15, 18–20, 25
irtree_recode, 18
irtree_recode(), 25
irtree_sim, 19

jackson, 22

MASS::mvrnorm(), 13, 20
mirt, 7
mirt::fscores(), 2, 3
mirt::mirt(), 4, 7
MplusAutomation, 7
MplusAutomation::readModels(), 7

pseudoitems, 25

TAM, 7
TAM:::IRT.factor.scores(), 2, 3
TAM::tam.mml(), 6, 7
tibble, 3, 10, 11, 26
tidy(), 7, 21
tidy.irtree_fit, 26

28

	augment.irtree_fit
	control_mirt
	control_mplus
	control_tam
	fit.irtree_model
	glance.irtree_fit
	irtree_create_template
	irtree_gen_data
	irtree_model
	irtree_recode
	irtree_sim
	jackson
	pseudoitems
	tidy.irtree_fit
	Index

