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1 Introduction

All multi-source clustering methods discussed in [Van Moerbeke et al.l [2018a) and [Van Moerbeke|
2018b|are implemented in the IntClust R package. In addition, linear models for microarrays
(limma; 2004) for the detection of the differential gene expression and functional class
scoring (MLP; Raghavan et al.|[2012) for pathway analysis are included. Both methods are relevant
if one of the high dimensional data sets contains information on gene expression data. This
vignette provides a short overview of the capacity of the IntClust package for data analysis and
visualisation.

2 Methods

The data structure we consider in the examples consist of L different data sets Dq,..., Dy, of size
n X my were n is the number of rows and my the number of columns in the ¢th data set. Note that
we assume that the row dimension is the same in all data matrices. In case that the columns are
the common dimension, the data matrices can be transposed. The aim of the analysis is to find
robust clusters of rows across all data sources.

The multi-source clustering procedures that are included in the IntClust package are presented
in Table I

Table 1: List of the multi-source clustering methods implemented in the IntClust package. The
methods are introduced in [Van Moerbeke et al.| 2018a.

Category Method R function Reference
Direct ADC ADC() Fodeh et al.
Clustering ADECa ADECa() Fodeh et al.
ADECb ADECb () Fodeh et al.
ADECc ADECc () Fodeh et al. 3
Similarity-based Weighted WeightedClust () Perualila-Tan et al.| 42016[)
approaches SNF SNF() ‘Wang et al.| (2014
Graph-based CSPA EnsembleClustering() Strehl and Gosh| (2002
approaches HGPA EnsembleClustering() Strehl and Gosh| (2002
MCLA EnsembleClustering() Strehl and Gosh| (2002
HBGF HBGF () Fern and Brodley| (2004
Balls ClusteringAggregation() Gionis et al.| (2007
Aggl. ClusteringAggregation() Gionis et al.| (2007
Furthest ClusteringAggregation() Gionis et al.| (2007
Voting-based CVAA CVAAQ) Saeed et al.| (2012
consensus W-CVAA CVAAQ) Saeed et al.| (2014
approaches IvC ConsensusClustering() Nguyen and Caruana (2007
IPVC ConsensusClustering() Nguyen and Caruana/ (2007
IPC ConsensusClustering() Nguyen and Caruana (2007
EA EvidenceAccumulation() Fred and Jain| (2002])
M-ABC M_ABC(O) Amaratunga et al.| (2008)
CTS LinkBasedClustering() lam-on and Garrett| (2010,
SRS LinkBasedClustering() JTam-on and Garrett| (2010
ASRS LinkBasedClustering() Jam-on and Garrett| (2010,
CECa CECa() Fodeh et al.| (2013
CECb CECb() Fodeh et al.| (2013
CECc CECc() Fodeh et al| (2013
Hierarchy-based EHC EHCO) Hossain et al.| (]2012[)
approaches HEC HECQ) Zheng et al.| (2014

As pointed out in in |[Van Moerbeke et al., |2018al the methods either integrate the data sets into a
combined data matrix or calculate a distance matrix based on all sources provided as input. Once
the integration step is completed, hierarchical clustering with the Ward link is performed.

The resulting clusters of the multi-source methods consist of objects that are expressing simi-
larity in each of the provided data sets. Interest could, for example, be in the clusters that remain
stable across methods. This stability indicates a fairly robust (sub)cluster of objects based on mul-
tiple sources of data. For the analysis presented in this chapter, the objects represent compounds.

Although the focus is on clustering multiple data sources simultaneously, it is important to in-



vestigate the clustering results of the individual data sources as well. This reveals whether or not
the single data sources already show a high degree of resemblance in the formed clusters. Further,
if the multi-source clustering procedures are executed, the influence of each data source can be
investigated. If a cluster of interest has been chosen, a secondary analysis can be conducted.

3 Application of IntClust

We illustrate several functions of the IntClust package using the data of the MCF7 cell line. The
data sets consist of a 56 x 350 fingerprint features matrix and a 56 x 477 target prediction matrix.
Both data matrices are binary with rows representing compounds and are included in the IntClust
package. In addition, a 2434 x 56 gene expression data matrix is available as well. The package
can be installed using the following code.

> install.packages("IntClust")
> library(IntClust)

> data(fingerprintMat)

> data(targetMat)

3.1 Single source clustering

Depending on the type of the data matrix, several distance measures can be used: Euclidean for
continuous data and jaccard or tanimoto for binary data. The argument clust="agnes" implies
that the implemented method for clustering is agglomerative hierarchical clustering (Hastie et al.,
2009). Data normalization can be performed using the argument normalize=TRUE. The imple-
mented normalizing methods are: Quantile-Normalization, Fisher-Yates Normalization, standard-
ization and range normalization. For the MCF7 data, normalization is not necessary since both
data sets are binary. The complete code for the single source clustering is given below.

> MCF7_F <- Cluster(Data=fingerprintMat,type="data",distmeasure="tanimoto",

+ normalize=FALSE,method=NULL, clust="agnes",linkage="flexible",gap=FALSE)
> MCF7_T <- Cluster(Data=targetMat,type="data",distmeasure="tanimoto",
+ normalize=FALSE,method=NULL,clust="agnes",linkage="flexible",gap=FALSE)

Two options are available to select the number of clusters. The argument gap=TRUE uses the gap
statistic (Hastie et al., 2009)) for the selection of the number of clusters. A second option to de-
termine the number of clusters is implemented in the function SelectnrClusters(). In this case
medoid clustering is performed (Struyf et al. [1997) for a sequence of numbers of clusters for each
provided data source. The number corresponding with the maximal average silhouette widths over
the data sources can be taken as an optimal number of clusters.

> List=1list (fingerprintMat,targetMat)

> NrClusters=SelectnrClusters(List=List,type="data",distmeasure=c("tanimoto",
+ "tanimoto") ,nrclusters=seq(5,20),normalize=c (FALSE,FALSE),

+ names=c ("FP","TP"))

In the specific case of these data sources, the average silhouette width will only increase as the
number of clusters increases. Therefore, we will rely on the gap statistic and conclude on seven
clusters. A dendrogram with a different colour per cluster can be used for visualization in the
following way.

> Colours <- ColorPalette(colors=c("chocolate","firebrick2", "darkgoldenrod2",
+ "darkgreen", "blue2", "darkorchid3", "deeppink") ,ncols=7)

The R object Colours contains the colour patterns and the function ClusterPlot () produces the
dendrograms (with seven clusters based on the gap statistic) in Figure [laj and



> ClusterPlot(Datal=MCF7_F,nrclusters=7,cols=Colours,main="Clustering on

+ Fingerprints: Dendrogram",ylim=c(-0.1,1.8))
> ClusterPlot(Datal=MCF7_T,nrclusters=7,cols=Colours, colorComps=NULL,main="Clustering on
+ Targets: Dendrogram",ylim=c(-0.1,2.5))
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(b) Target prediction clustering.

Figure 1: Dendrograms of the individual data clustering results. Panel a: The fingerprint cluster-
ing. Panel b: The target prediction clustering.

We can for example investigate the purple cluster shown in Figure[Ta] The cluster does not undergo

a lot of changes under the influence of the target predictions although the group is split across the
blue and yellow clusters.



3.2 Multi-source clustering

Several multi-source clustering procedures, listed in Table [I| have been implemented in the Int-
Clust package. We illustrate the Aggregated Data Clustering (ADC), Weighted clustering and
Weighting on Membership Clustering (WonM) methods. Multi-source clustering using other meth-
ods can be conducted easily using the appropriate function.

3.2.1 Aggregated data clustering (ADC())

Aggregated data clustering can only be applied if all data sources are of the same type. The first
step fuses all data matrices into one larger matrix such that only one data matrix remains. Next,
clustering is performed on this single matrix.

> L=list(fingerprintMat, targetMat)
> MCF7_ADC=ADC(List=L,distmeasure="tanimoto",normalize=FALSE,clust="agnes",
+ linkage="flexible")

3.2.2 Weighted clustering (WeightedClust())

The weighted clustering computes a single distance matrix using all data sources. For each data
matrix, a distance matrix DM, is calculated. The distance matrices are combined in a weighted
linear combination DM,,on which clustering is performed. The option weight=seq(0,1,0.1)
implies that in our setting of two data sets

DMw:wl-m1+(1—w1)-m2,

for a sequence of weights w; = (0,0.1,0.2,...,0.9,1).

> L=list(fingerprintMat,targetMat)

> MCF7_Weighted=WeightedClust (L, type="data",distmeasure=c("tanimoto", "tanimoto"),
+ normalize=c (FALSE,FALSE) ,weight=seq(0,1,0.1) ,weightclust=0.5,

+ StopRange=FALSE)

3.2.3 Weighting on membership clustering (WonM())

Weighting on membership performs hierarchical clustering on each data source separately. The
resulting dendrograms are cut, multiple times, into into clusters for a range of numbers of clusters
k. Each time, a binary incidence matrix is set up. A value of zero indicates that a pair of objects
resides in the same cluster to ensure distances. All incidence matrices are summed over the values
of k per data source and the different data sources. On the resulting consensus matrix, hierarchical
clustering is performed once again to obtain the final clustering taking into account all information
of the data sources.

> L=list(fingerprintMat,targetMat)

> MCF7_WonM=WonM(List=L,type="data",distmeasure=c("tanimoto", "tanimoto"),
+ normalize=c (FALSE,FALSE) ,nrclusters=seq(5,25),linkage=

+ c("flexible","flexible"))



3.3 Comparison of results

The clusters of the multi-source methods consist of objects that are expected to be similar in each of
the individual data sources. Clusters that remain stable over the applied the methods are of inter-
est. If a cluster does not undergo too many changes and is found multiple times, the objects show
a similarity with a high confidence. Further, it can be hypothesized that the used data sources are
related for the selected clusters. This can provide more insight into the MOA of compounds in drug
disovery experiments. One way to visualize the clustering solutions of the multi-source methods
is to follow the changes in the solutions obtained for different clustering methods. For the above
example, the function ComparePlot () was used to produce Figure [2] which presents a comparison
across all executed clustering procedures. We notice that the blue, green and pink cluster remain
stable over all other methods. Under the influence of the target predictions one compound disap-
pears and is replaced by another. For the weighted procedures, the results for all weights are shown.

Different methods cluster the compounds in a different order and this results in non-corresponding
cluster numbers. Therefore, one method is used as a reference (the clustering based on the fin-
gerprints features for the example presented in Figure and the cluster numbers obtained for
the other methods are rearranged according to the reference solution. The re-appointing of the
cluster numbers is based on finding the cluster that relatively has the most in common with one
of the reference clusters and taking over this number. In the IntClust package, this is done using
the function MatrixFunction() in which the rearranging algorithm is partly based on the Gale-
Shapley algorithm (Kleinberg and Tardos, [2005]). It creates a matrix of which the columns are the
compounds in the order of clustering by reference method. The rows are the different methods
and the values of the cells are the rearranged cluster numbers which are given different colours in
the resulting figure.

> L=1ist (MCF7_F,MCF7_ADC,MCF7_WonM,MCF7_Weighted,MCF7_T)

> N=c("FP","ADC", "WonM",paste("Weight",seq(1,0,-0.1),sep=" "),"TP")

> ComparePlot (L,nrclusters=7,cols=Colours,fusionsLog=TRUE,weightclust=FALSE,names=N,
+ margins=c(9.1,4.1,4.1,4.1),plottype="new",location=NULL)
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Figure 2: Visualization of the multi-source clustering results of the fingerprint and target prediction
data. The first row represents the single source clustering of the fingerprint data and the last row
represents the single source clustering of the target prediction data. The single source clustering
result of the fingerprint data set is used as a reference clustering. The results of the remaining
methods are coloured to this reference.

If a weighted clustering was performed, the ComparePlott() function allows us to follow the



membership changes in a chosen cluster with respect to the changing weight. The function Find-
Cluster () can be used in order to find the compounds of a cluster.

> Comps=FindCluster (List=L,nrclusters=7,select=c(1,6))
> Comps

Once the compound subset is found (the R object Comps in our example) the function TrackClus-

ter () can be used to produce Figure |3| to track the changes in the cluster with respect to the
weights.

> Tracking=TrackCluster (List=L,Selection=Comps,nrclusters=7,followMaxComps=FALSE,
+ followClust=TRUE, fusionsLog=TRUE,weightclust=FALSE,

+ names=N,selectionPlot=FALSE, table=FALSE, legendposy=2.4,

+ completeSelectionPlot=TRUE, cols=Colours,plottype="sweave",

+ location=NULL)
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Figure 3: Tracking of the purple cluster across the multi-source clustering methods.



3.4 Characteristic features

In the next stage of the analysis, we can investigate whether there are fingerprints features or
target predictions that define a specific cluster using the function ChooseCluster (). The function
performs a Fisher’s exact test (Fisher) [1922)) in order to discover discerning features. Note that
the function has the option to provide an interactive input as well.

> MCF7_Feat=ChooseCluster (Interactive=FALSE, leadCpds=1ist (Comps),clusterResult=MCF7_F,
+ colorLab=MCF7_F,binData=list (fingerprintMat, targetMat),datanames=
+ c("FP","TP"),topChar = 20,topG = 20)

The function BinFeaturesPlot () produces the image plot with the top identified features pre-
sented in Figure

> BinFeaturesPlot_SingleData(leadCpds=Comps, orderLab=MCF7_F,features=MCF7_Feat

+ $Characteristics$FP$TopFeat$Names,data=fingerprintMat,
+ colorLab=MCF7_F,nrclusters=7,cols=Colours,name=c ("FP"))
> BinFeaturesPlot_SingleData(leadCpds=Comps, orderLab=MCF7_F,features=MCF7_Feat

+ $Characteristics$TP$TopFeat$Names,data=targetMat,

+ colorLab=MCF7_F,nrclusters=7,cols=Colours,name=c("TP"))
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(b) Top 20 target predictions.

Figure 4: The top discriminating targets of the purple cluster by the fingerprint and target pre-
diction data (identified by Fisher’s exact test). Columns represent compounds and rows represent
target predictions. A hit target is coloured green for the cluster of interest and blue for the other
compounds. The labels on the left indicate the data sets while the feature names are indicated on
the right. Panel a: Fingerprint features. Panel b: Target prediction features.



4 Exploring connections with external data sets

In addition to the fingerprint features and target prediction data matrices, the MCF7 data consists
of a gene expression data matrix for the 56 compounds that was not included in the analysis up
to this stage. In this section we explore how gene expression profiles change across the cluster
solutions.

4.1 Differential gene expression

The IntClust package can be used to detect differentially expressed genes between a chosen clus-
ter and the rest of the compounds using the limma method (Smythl 2004). The p-values are
adjusted to multiple testing using the BH-FDR method (Benjamini and Hochbergl 1995)). The
option TopG=10 implies that the top 10 genes will be identified.

> data(geneMat)

> MCF7_Genes=DiffGenes (List=NULL,Selection=Comps,geneExpr=geneMat ,method="1imma",
+ sign=0.05, topG=10)

> Genes=MCF7_Genes$Selection$Genes$TopDE$ID

Genes profiles can be plotted with the function ProfilePlot ().

> ProfilePlot(Genes=Genes[1:5],Comps=Comps,geneExpr=geneMat,raw=FALSE,

+ order=MCF7_F,color=MCF7_F,nrclusters=7,cols=Colours,
+ addLegend=TRUE,margins=c(8.1,4.1,1.1,6.5) ,plottype="sweave",
+ location=NULL)
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Figure 5: The top 5 genes of the purple cluster as identified by limma.



4.2 Pathway analysis

The final step in the analysis is to allocate the identified genes to a gene set or pathway. If a
gene set is enriched the probability to observe significant genes of this gene set by chance is low
for the selected cluster. The selected database for pathway analysis is the Gene Ontology (GO)
database and the pathway analysis method MLP (Raghavan et al., |2012) is implemented in the
PathwaySelectionIter () function. We can count how many of the pathways are shared over the
different iterations with the Genseset.intersectSelection() function. A figure illustrating the
discovered pathways, as shown for the example in Figure[6] can be made with the PlotPathways ()
function.

data(GeneInfo)

data(GS)

L=1ist (MCF7_Genes)

MCF7_Paths=PathwayAnalysis(List=L,Selection=Comps,geneExpr=geneMat,
method = c("limma","MLP"),geneInfo=Genelnfo,
geneSetSource="GOBP",topP = NULL, topG=NULL, GENESET=GS,
sign = 0.05,niter=2)

PlotPathways (MCF7_Paths$Selection$Pathways)
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Figure 6: The top pathways annotated to the differentially expressed genes of the purple cluster
as determined by the MLP analysis.



5 Software used

R Under development (unstable) (2018-01-28 r74175), x86_64-w64-mingw32

Locale: LC_COLLATE=C, LC_CTYPE=Dutch_Belgium. 1252,
LC_MONETARY=Dutch_Belgium.1252, LC_NUMERIC=C, LC_TIME=Dutch_Belgium.1252

e Running under: Windows 7 x64 (build 7601) Service Pack 1

Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Loaded via a namespace (and not attached): compiler 3.5.0, tools 3.5.0
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