Package ‘IndTestPP’

August 1, 2016
Type Package

Title Tests of Independence Between Point Processes in Time
Version 1.0

Date 2016-08-01

Author Ana C. Cebrian <acebrian@unizar.es>
Maintainer Ana C. Cebrian <acebrian@unizar.es>
Imports parallel, stats

Description Several parametric and non-parametric tests and measures to check independence be-
tween two or more (homogeneous or nonhomogeneous) point processes in time are pro-
vided. Tools for simulating point processes in one dimension with different types of depen-
dence are also implemented.

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2016-08-01 23:46:57

R topics documented:

IndTestPP-package e 2
BarTxTn o e e 3
ComplPos.fun e 4
CondTest.fun e 5
CPSPpoints.fun e e e 7
CPSPPOTevents.fun 8
depchifun e 10
DepMarkedNHPPfun L 12
DepNHCPSPfun 13
DepNHNeyScot.fun 15
DepNHPPqueue.fun. 17
DistObs.fun 19
DistShift.fun. 20
DistSim.fun 22

2 IndTestPP-package
DutilleulPlot.fun 24
IndNHNeyScot.fun e 25
IndNHPPfun e 27
nearestdist.funo 28
NHD.fun 29
NHEfun 31
NHIfuno 33
NHK.fun 37
simHPc.fun 40
simNHPc.fun 0 41
SpecGap.fun. 42
TestindLS.fun L 43
TestindNH.fun e 45
uniongentri.fun oL L Lo L 48

Index 50

IndTestPP-package Tests of Independence Between Point Processes in Time
Description

It provides several parametric and non-parametric tests to check the independence between two
or more homogeneous and nonhomogeneous point processes. In addition, it provides tools for
simulating point processes in one dimension, usually time, with different types of dependence, in
particular: common Poisson shock processes, a network of queues with exponential arrivals, multi-
variate Neyman-Scott process with dependent cluster centers, and a Poisson process with dependent
marks.

Details

Package: IndTestPP

Type: Package

Version: 1.0

Date: 2016-07-25

License: GPL (>=2)
Author(s)

Ana C. Cebrian Maintainer: Ana C. Cebrian <acebrian @unizar.es>

BarTxTn 3

BarTxTn Barcelona temperature data

Description

Barcelona daily temperature series during the summer months (May, June, July, August and Septem-
ber) from 1951 to 2004.

Usage

data(BarTxTn)

Details

Variables

dia: Postion of the day in the year, from 121 (1st of May) to 253 (30th of September).

mes: Month of the year, from 5 to 9.

ano: Year, from 1951 to 2004.

diames: Position of the day in the month, from 1 to 30 or 31.

Tx: Daily maximum temperature.

Tn: Daily minimum temperature.

Txm31: Local maximum temperature signal. Lowess of Tx with a centered window of 31 days.
Txm15: Local maximum temperature signal. Lowess of Tx with a centered window of 15 days.
Tnm31: Local minimum temperature signal. Lowess of Tn with a centered window of 31 days.
Tnm15: Local minimum temperature signal. Lowess of Tn with a centered window of 15 days.
TTx: Long term maximum temperature signal. Lowess of Tx with a centered 40% window.

TTn: Long term minimum temperature signal. Lowess of Tn with a centered 40% window.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Examples

data(BarTxTn)

4 ComplPos.fun

ComplPos. fun Changes the format of a vector of the occurrence times in a point pro-
cess

Description

It changes the format ofthe vector of the occurrence points in a point process. It builds a vector of
length T, the length of the observation period, which takes value 0 at the non occurrence times and
the position value, or 1, at the occurence times.

Usage

ComplPos.fun(pos, T, type='Pos')

Arguments

pos Numeric vector. Occurrence times

T Integer. Length of the observation period

type Character string, *Pos’ or *Bin’. Type of the new format
Details

This function changes the format of the occurrence points in a point process. The new format is
useful when several point processes, in the same observation period, must be specfied; for example,
in function NHJ. fun or NHD. fun, where the occurrence times of different point processes must be
introduced as a matrix. Since the number of occurrences in each process can be different, in the
new format, occurrences in each process are specified as a vector of length T, which takes value 0
at non occurrence times and the time position (if type="Pos’) or 1 (if type="Bin’) at the occurrence
times.

Value

Npos Numeric vector of lenght T containing the occurrence times in the new format.

See Also

NHD. fun, NHF . fun, NHK. fun, NHJ. fun

Examples

pos<-c(4,15,18,34,36,67,98)
Npos<-ComplPos. fun(pos, T=100)

CondTest.fun 5

CondTest. fun Conditional Test of independence between two Poisson process

Description

It calculates a test of independence between two Poisson process (PP), based on the analysis of the
occurrences in the second process, given that there is an occurrence in the first one. Two different
approaches to calculate the p-value are implemented.

It calls the auxiliary function calcNmu, not intended for the users.

Usage
CondTest.fun(pos1, pos2, lambda2, r, changer = TRUE, type = "All"”, plotRes = FALSE, ...)
Arguments
pos1 Numeric vector. Occurrence points in the first PP, Ny
pos2 Numeric vector. Occurrence points in the second PP, Ny
lambda?2 Numeric vector. Intensity in each time in Ny
r Numerical value. The radius of the intervals centered on the occurrence times
in V- 1
changer Optional. Logical flag. If it is TRUE, when the defined intervals overlap, their
lengths are changed to obtain not overlapped intervals. The two overlapped
intervals are shortened by half of the overlapped period. In general, the resulting
intervals are not centered .
type Optional. Label *Poisson’, ’Normal’ or *All’. Approach to be used to calculate
test p-values.
plotRes Logical flag. If it is TRUE, residuals are plotted.
Further arguments to pass to the residual plot.
Details

The underlying idea of the tests is to analyze the behaviour of the second PP Ny, given that a point
has occured in the first one, N;. Under independence between N and Ny, N5 should be a PP with
intensity lambda2.

Fo the analysis, intervals of length 2r centered on each point in N; are defined. To analyze the
behaviour of N5, two approaces are implemented, both based on the idea that the number of points
in each interval should be a Poisson of mean p; equal to the integral of lambda?2 in the interval.

’Poisson’ option: under the null, and if the intervals are independent (that is if they do not overlap)
the number of points in all them should be a Poisson of mean p, equal to the sum of all the 1;. The
p-values is calculated as 2 * min((P(X < po) + P(X = po)/2), (P(X > po)+ P(X = po)/2)),
where X is a r.v with distibution Poisson(x) and po is the sum of the observed number of points in
all the intervals. Obviously,since the p-value is calculated from a discrete distribution, it will not be
uniformly distributed, and the size of the test P(reject HO when it is true) will not be 0.05. The size

6 CondTest.fun

depends on the value of the Poisson mean, only when it X can be approximated by a Normal, the
size will be 0.05

’Normal’ option: under the null, the variables (N; — p;) /(p; **0.5) must be zero mean and variance
one variables but they are not identically distributed, and consequently some approximation has to
be used to calculate the p-value. Since under the null, each NV; is a Poisson (1), if the means mui are
high enough, each variable (IV; — ;) /(p; %*%0.5) can be approximated by a N(0,1) distribution. If y;
are not high enough, still, the mean of the variables (N; — ;) /(p; **0.5) can be approximated by a
Normal distribution using the Central limit theorem under the Lindeberg condition for r.v which are
independent but not identically distributed. To apply this approximation a big sample size (number
of points in V1) is needed. Empirically, it has been seen that the smaller the values of mui, a bigger
sample size is required to have a valid normal approximation. As a reference, with mui values
between 0 and 1, a sample size of 50 is satisfactory

Hence, if the processes are independent, the variables (N; — ;) /(p; * %0.5) must have zero mean
and variance one, and Nn the sample mean of (V; — p;)/(u; * %0.5) can be approximated by
a N(0,1/n % %0.5) distribution, so that the p-value is calculated as 2 x P(Nn > abs(Nn0)) =
2% P(Z > abs(Nn0) x n * x0.5).

Value
Ni Number of occurrences in each interval
mui Theoretical mean of the number of occurrences in each interval under the inde-
pendence assumption
Res Residual vector obtained from each interval
pvP P-value obtained from the "Poisson’ approach
PVN P-value obtained from the "Normal® approach
linf Lower limit of each interval
1sup Upper limit of each interval
References

Billingsley, P. (1995). Probability and Measure. 3rd Ed. John Wiley and sons.

See Also

TestIndNH.fun,DutilleulPlot. fun

Examples

#Two dependent Poisson processes from a NHCPSP

set.seed(123)

lambdaol<-runif(1000)/10

set.seed(124)

lambdao2<-runif(1000)/10

set.seed(125)

lambda12<-runif (1000)/20

aux<-DepNHCPSP. fun(lambdail=1ambdaol, lambdai2=lambdao2, lambdail2=lambdal2,
fixed.seed=123)

CPSPpoints.fun 7

zz<-CondTest. fun(pos1=aux$posNH1,pos2=aux$posNH2, lambda2=aux$lambda2, r=3)

zz$pvP
zz$pvN
CPSPpoints.fun Calculates the occurrence times of the three indicator processes of a
bivariate Common Poisson shock process
Description

This function calculates the occurrence times of the points in the three indicator processes of a
bivariate Common Poisson shock process (CPSP), using as input information, the two marginal
processes N1 and No.

Usage

CPSPpoints.fun(X, Y, date = NULL)

Arguments
X Binary vector. The first CPSP marginal process; occurrence points are marked
with 1 and the other with 0.
Y Binary vector. The second CPSP marginal process; occurrence points are marked
with 1 and the other with 0.
date Optional. A vector or matrix indicating the date of each observation.
Details

A bivariate CPSP N is usually specified by its two marginal, and possibly dependent, processes Ny
and N, which are the observed processes. However, N can be decomposed into three independent
indicator processes: N1y, N(2) and N(;2), which are the processes of the points occurring only in
the first marginal process, only in the second and in both of them (simultaneous points). The union
of N1y and N(12), and N(3) and N(;2) gives respectively the two marginal processes.

Value

A list with components

PxX Vector of the occurrence points in NV(q).
PxY Vector of the occurrence points in N).
PxXY Vector of the occurrence points in N(;2).
X Input argument.

Y Input argument.

date Input argument.

References

CPSPPOTevents.fun

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

CPSPPQOTevents. fun

Examples

set.seed(123)

X<-as.numeric(runif(100)<0.10)

set.seed(124)

Y<-as.numeric(runif(100)<e.15)

aux<-CPSPpoints. fun(X=X, Y=Y)

CPSPPQOTevents. fun

Calculates the occurrence times of the three indicator processes of the
bivariate Common Poisson shock process resulting from applying a
POT approach

Description

This function calculates the occurrence times and other characteristics (length, maximum and mean
intensity) of the extreme events of the three indicator processes of a bivariate Common Poisson
shock process (CPSP) obtained from a POT approach.

Usage

CPSPPOTevents.fun(X, Y, thresX, thresY, date = NULL)

Arguments

X

thresX
thresY
date

Numeric vector. Series (z;) whose threshold exceedances define the first CPSP
marginal process.

Numeric vector. Series (y;) whose threshold exceedances define the second
CPSP marginal process.

Numeric value. Threshold used to define the extreme events in (z;).
Numeric value. Threshold used to define the extreme events in (y;).

Optional. A vector or matrix indicating the date of each observation.

CPSPPOTevents.fun 9

Details

A CPSP N can be decomposed into three independent indicator processes: N(1), N(2y and N(12),
the processes of the points occurring only in the first marginal process, only in the second and in
both of them (simultaneous points). In the CPSP resulting from applying a POT approach, the
events in IV(1) are a run of consecutive days where (z;) exceeds its extreme threshold but (y;) does
not exceed its extreme threshold. An extreme event in N5y is defined analogously. A simultaneous
event, or event in IV(12), is a run where both series exceed their thresholds.

For the events defined in each indicator process, three magnitudes (length, maximum intensity and
mean intensity) are calculated together with the initial point and the point of maximum excess of
each event. In the N(;), the maximum and the mean intensity of both (z;) and (y;) are also calcu-
lated. The occurrence point of each event is located at the time of the maximum sum of the excesses
over the threholds (where an excess is 0 if the observation does not exceed its corresponding thresh-
old). According to this definition, the occurrence point in N(y) is the point with maximum intensity
in (z;) within the run.

The vectors inddatX, inddatY and inddatXY, elements of the output list, mark the observations
that should be used in the estimation of each indicator process. The observations in an extreme
event which are not the occurrence point are marked with 0 and treated as non observed in the
estimation process. The rest are marked with 1 and must be included in the likelihood function.

Value

A list with components

ImX Vector of mean excesses (over the threshold) of the extreme events in N(y).

IxX Vector of maximum excesses (over the threshold) of the extreme events in N(y).

LX Vector of lengths of the extreme events in N(y).

PxX Vector of points of maximum excess of the extreme events in N(y).

PiX Vector of initial points of the extreme events in N(y).

inddatX Index equal to 1 in the observations which should be used in the estimation
process of N (1) and to 0 in the others.

ImY Vector of mean excesses (over the threshold) of the extreme events in N(g).

IxY Vector of maximum excesses (over the threshold) of the extreme events in N(3).

LY Vector of lengths of the extreme events in N(y).

PxY Vector of points of maximum excess of the extreme events in N(y).

PiY Vector of initial points of the extreme events in N(y).

inddatyY Index equal to 1 in the observations which should be used in the estimation
process of N(2) and to 0 in the others.

ImXYx Vector of mean excesses of the series (x;) in N(1g).

IxXYx Vector of maximum excesses the series (2;) in N(y2).

ImXYy Vector of mean excesses of the series (y;) in N(y2).

IxXYy Vector of maximum excesses the series (y;) in N(j2).

LXY Vector of lengths of the extreme events in N(13).

PxXY Vector of points of maximum excess of the extreme events in N(j9).

10 depchi.fun

PiXyY Vector of initial points of the extreme events in N(13).

inddatXy Index equal to 1 in the observations which should be used in the estimation
process of N(12) and to 0 in the others.

X Input argument.

Y Input argument.

thresX Input argument.

thresY Input argument.

date Input argument.
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

CPSPpoints. fun

Examples

data(BarTxTn)
dateB<-cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$diames)
BarBivEv<-CPSPPOTevents. fun(X=BarTxTn$Tx,Y=BarTxTn$Tn, thresX=318,
thresY=220, date=dateB)

depchi. fun Estimates extremal dependence measures between two variables

Description

This function estimates the extremal dependence coefficients y and x by Coles et al. (1999). It
also plots the functions x(u) and y(u) against a grid of values in [0,1] to analyse the extremal
dependence of two variables.

Usage

depchi.fun(X, Y, thresval = c(0:99)/100, tit = "", indgraph = TRUE,
bothest = TRUE, xlegend = "topleft”)

depchi.fun

Arguments

X

Y
thresval
tit
indgraph

bothest

xlegend

Details

11

Numeric vector. Values of the first variable.

Numeric vector. Values of the second variable.

Numeric vector. Grid values where the functions x(u) and x(u) are evaluated.
Character string. A title for the plots.

Logical flag. If it is TRUE, plots are carried out in individual windows. If it is
FALSE, windows with 2 x 1 plots are used.

Logical flag. If it is TRUE, two estimated coefficientes (for X given Y and for
Y given X)) are displayed in the same plot. Otherwise, only the coefficient for Y
given X is plotted.

Optional. Label "topleft" or"bottomright”. Position where the legend on the
graph will be located.

The extremal dependence between two variables X and Y is the tendency for one variable to be
large, given that the other one is large. The extremal dependence coefficients x and Y are defined as
X = limy 1 x(u) and Y (u) = 2log(P(U > u)/logP(U > u,V > u) — 1, where x(u) = P(U >
u|V > u) and (U,V) are the transformed uniform marginals of the variables X and Y.

x is on the scale [0, 1], with the set (0, 1] corresponding to asymptotic dependence, and the measure
x falls within the range [-1, 1], with the set [-1, 1) corresponding to asymptotic independence.
Thus, the complete pair (¥,) is required as a summary of extremal dependence: (x > 0, ¥ = 1)
signifies asymptotic dependence, in which case the value of x determines a measure of strength of
dependence within the class; alternatively, (x = 0, ¥ < 1) signifies asymptotic independence, in
which case the value of y determines the strength of dependence within this class. Full details can
be found in Coles et al. (1999).

In the x plot, the expected behaviour under independence of X and Y is also plotted.

Value

A list with elements

chiX
chiY
chiBX
chiBY
PX

PY
PXY

thresval

References

Estimated function for Y given X evaluated at the threshold grid.
Estimated function for X given Y evaluated at the threshold grid.
Estimated) function for Y given X evaluated at the threshold grid.
Estimated y function for X given Y evaluated at the threshold grid.
Estimation of the probabilities P(U < thresval)

Estimation of the probabilities P(V < thresval)

Estimation of the probabilities P[(U < thresval)&(V < thresval)]

Input argument

Coles, S., Heffernan, J. and Tawn, J. (1999) Dependence measures for extreme value analysis.
Extremes, 2, 339-365.

12 DepMarkedNHPP.fun

See Also

TestIndNH. fun, DutilleulPlot. fun, CondTest. fun

Examples

data(BarTxTn)

aux<-depchi. fun(X=BarTxTn$Tx,Y=BarTxTn$Tn, thresval = c(0:99)/100,
tit = "Barcelona”, xlegend = "topleft")

DepMarkedNHPP. fun Generates trajectories of dependent point processes using a marked
Poison Process

Description

This function generates d dependent (homogeneous or nonhomogeneous) point processes using a
marked PP, where the marks are generated by a Markov chain process defined by a given transition
matrix.

Usage

DepMarkedNHPP. fun(lambdaTot, MarkovM, inival = 1, fixed.seed=NULL)

Arguments
lambdaTot Numeric vector. Intensity values of the underlying PP used to generate the de-
pendent processes.
MarkovM Matrix. Trasition probabilities of the d-state Markov chain used to generate the
marks of the PP.
inival Optional. Initial mark value used to generate the series of marks.
fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.
Details

Points of the marked PP are generated in continuous time, using the following procedure: First, a
trajectory of the underlying PP, which represents the global process of the occurrences in all the
processes, is generated. Then, the mark series is generated using a d-state Markov chain. The mark
series takes values in 1,2,...,d and determines in which of the d processes the point occurs

A transition matrix P = (p;;) with equal rows leads to d independent point processes, and the
more similar the rows of P, the less dependent the resulting processes. Some dependence measures
between the generated processes, such as the spectral gap, are suggested in Abaurrea et al. (2014).

It is noteworthy, that the processes defined by the marks are not Poisson, since the generated marks
are dependent observations, see Isham (1980).

DepNHCPSPfun 13

Value

A list with elements

posNH Numeric vector of the occurrences times of the underlying PP generated.
mark Vector of the generated marks, which indicate the process where the point oc-
curs.
lambdaTot Input argument.
MarkovM Input argument.
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

Isham, V. (1980). Dependent thinning of point processes. J. Appl. Probab., 17(4), 987-95.

See Also

DepNHPPqueue. fun, DepNHNeyScot. fun, DepNHCPSP. fun, IndNHPP. fun, SpecGap. fun

Examples

Generation of three dependent point processes using a marked PP
set.seed(123)
lambdaTot<-runif(1000)/10

aux<-DepMarkedNHPP. fun(lambdaTot=1ambdaTot,
MarkovM=cbind(c(0.3,0.1,0.6), c(0.1, 0.6, 0.3), c(0.6, 0.3,0.1)),fixed.seed=123)
print(cbind(aux$posNH, aux$mark))

DepNHCPSP. fun Generates a trajectory of two dependent Poisson processes from a
Common Poisson shock process

Description
This function generates dependent (homogeneous or nonhomogeneous) Poisson processes obtained
as the two marginal processes of a bivariate Common Poisson shock process.

Usage

DepNHCPSP. fun(lambdail, lambdai2, lambdaiil2,fixed.seed=NULL)

14 DepNHCPSP.fun

Arguments
lambdaii Numeric vector. Intensity values of N(y).
lambdai2 Numeric vector. Intensity values of N(a).
lambdai1?2 Numeric vector. Intensity values of N(;2).
fixed. seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.
Details

A bivariate CPSP N is usually specified by its two marginal, and possibly dependent, processes Ny
and No, which are the observed processes. However, N can be decomposed into three independent
indicator processes: N1y, N(2) and N(y2), which are the processes of the points occurring only in
the first marginal process, only in the second and in both of them (simultaneous points). The union
of N1y and N(12), and N(3) and N(;2) gives respectively the two marginal processes.

In a CPSP, the indicator processes are three independet PPs and the CPSP distribution is completely
specified by them. The intensity vector of Ny, is lambdail+1lambdail2 and the intensity vector of
N is lambdaoi2+lambdail2. Conditionally independent marginal processes are obtained if and
only if lambdai12=0.

The decomposition into indicator processes can be readily applied for data generation, and it reduces
to the generation of three independet PPs. Points in each process are generated in continuous time.

Value

A list with elements

posNH1 A numeric vector which contains the points in /Vy
posNH2 A numeric vector which contains the points in Ny
posNHi1 A numeric vector which contains the points in V(y)
posNHi2 A numeric vector which contains the points in V()
posNHi12 A numeric vector which contains the points in N(;)
lambda1 Numeric vector which contains the intensity vector of Ny
lambda?2 Numeric vector which contains the intensity vector of Ny
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). Modeling and projecting the occurrence of bivariate
extreme heat events using a nonhomogeneous common Poisson shock process. Stochastic and
Environmental Research and risk assessment, 29(1), 309-322.

See Also

DepNHNeyScot . fun, DepNHPPqueue. fun, DepMarkedNHPP. fun

DepNHNeyScot.fun 15

Examples

set.seed(123)
lambdail<-runif(200,0,0.1)
set.seed(124)
lambdai2<-runif(200,0,0.07)
set.seed(125)
lambdail2<-runif(200,0,0.15)

aux<-DepNHCPSP. fun(lambdail=lambdail, lambdai2=lambdai2, lambdail2=lambdail2,
fixed.seed=123)

aux$posNH1
aux$posNH2

DepNHNeyScot. fun Generates trajectories of dependent Neyman-Scott cluster processes

Description

This function generates dependent (homogeneous or nonhomogeneous) point processes based on
Neyman-Scott processes with the same trajectory of cluster centers.

It calls the auxiliary function GenSons. fun (not intended for the users), see Details section.

Usage

DepNHNeyScot. fun(lambdaParent, d, lambdaNumP = 1, dist = "normal”,
sigmaC = 1, minC = -1, maxC = 1,fixed.seed=NULL)

Arguments

lambdaParent Numeric vector. Intensity values of the underlying PP used to generate the cen-
ters of the clusters of the Neyman-Scott process.

d Integer. Number of dependent processes to be generated.

lambdaNumP Optional. Numeric vector. Mean values of the number of sons of each dependent
process. If its length is equal to 1, the same value is used to generate all the
dependent processes.

dist Optional. Label "normal" or "uniform". Distribution used to generate the point
locations of each cluster.

sigmaC Optional. Numeric vector. Only used if dist="normal". Standard deviation of
the normal distribution. If its lengthis equal to 1, the same value is used in the d
processes.

minC Optional. Numeric vector. Only used if dist="uniform". Lower limits of the

Uniform distribution. If its length is equal to 1, the same value is used in the d
processes.

16 DepNHNeyScot.fun

maxC Optional. Numeric vector. Only used if dist="uniform". Upper limits of the
Uniform distribution. If its length is equal to 1, the same value is used in the d
processes.

fixed. seed Optional. An integer or NULL. Value used to set the seed in random generation

processes; if it is NULL, a random seed is used.

Details

A Neyman-Scott process is a Poisson cluster process where the points in each cluster are randomly
distributed around the cluster center.

Dependent homogeneous or NH point processes, in continuous time, are obtained by generating
Neyman-Scott processes with the same trajectory of cluster centers. First, the Poisson process of
the cluster centers is generated. Then, the number of points in each cluster is generated using a
Poisson distribution with means which can be different in each process. The point locations around
each center can be generated using two distributions N(0, sigmaC) or Uniform(minC, maxC).

Remark that high values of sigmaC or the range maxC-minC lead to a high variability around the
center and to a low dependence between the processes.

Value

A list with elements

posNH A list of d vectors, containing the occurrence points of the d dependent pro-
cesses. The name of the elements of the list are PP1, PP2...PPd

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

IndNHNeyScot. fun, DepNHPPqueue. fun, DepMarkedNHPP . fun, DepNHCPSP. fun

Examples

Generation of three dependent Neyman-Scott processes with the same mean number
#of sons per cluster and locations generated by the same normal distribution

set.seed(123)
lambdaParent<-runif(100,0,0.1)

DepNHNeyScot. fun(lambdaParent=1ambdaParent, d=3, lambdaNumP = 2,
dist = "normal”, sigmaC = 3,fixed.seed=123)

DepNHPPqueue.fun 17

DepNHPPqueue. fun Generates trajectories of dependent Poisson processes based on queue
simulation

Description
This function generates d dependent (homogeneous or nonhomogeneous) Poisson processes. using
d — 1 queues in tandem.

Usage

DepNHPPqueue. fun(lambda, d, rate = 1,type="NH", T=NULL, nEv ,fixed.seed=NULL)

Arguments
lambda Numeric value or vector. Intensity of the first PP. If its length is 1, homogeneous
PPs are generated.
d Integer. Number of dependent processes to be generated.
rate Optional. Numeric value or vector. Parameters (inverse of the mean) of the
exponential distributions used to generate the time services, see rexp. If its
length is 1, the same parameter is used to generate the time services in the d — 1
steps.
type Optional. Labels "H" or "NH". Type of the processes,homogeneous or nonho-
mogeneous. If type="H", the length of lambda must be 1.
T Optional. Positive integer. Length of the period where the point are going to be
generated. Only used if type="H" .
nEv Optional. Positive integer. Number of points to be generated in the PPs. Only
used if type="H".
fixed. seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.
Details

The generation of dependent homogeneous PPs is based on Burke s theorem, Burke (1956), which
states that in a stationary system formed by a tandem of M M 1 queues with input intensity A and
exponential time services, the input and the output processes of the first queue and the output of the
second are three dependent PPs with the same intensity .

Points are generated in continuous time, using the following procedure: first the points of a PP and
their time services are generated, and their corresponding output times obtained. The output times
are the occurrence times of the second process. Using them as input times of the following service
and generating new time services, the second output times, which are the occurrence times of the
third PP, are obtained. The last step is repeated up to obtain d dependent PPs.

Analogously, the generation of dependent NHPPs is based on a result by Keilson and Servi (1994),
which states that the output process from a M(t) G 1 queue is also a PP with a NH intensity equal to

18 DepNHPPqueue.fun
the convolution A,y (t) = Xinp(t) * f(t), where A;p,(t) is the input intensity and f(¢) the density
function of the service time, in this case an exponential distribution.

In the homogeneous processes, the argument A can be an integer or a vector with equal values. In
the first case, the argument nEv must be specified; in the second, the length of the vector determines
the length of period where the points are generated (as in the nonhomogeneous case).

Value

A list with elements

posNHs A list of d vectors, containing the occurrence points in each PP. The name of the
elements of the list are PP1, PP2,..., PPd.

lambdaM A d-column matrix containing the intensity vectors of the d dependent pro-
cesses.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

Burke, P. J. (1956). The Output of a Queuing System. Operations Research. 4(6), 699-704.

Keilson, J. Servi, L.D. (1994). Networks of nonhomogeneous M G oco. J. Appl. Probab., 31,
157-68.

See Also

IndNHPP. fun, DepNHNeyScot. fun, DepMarkedNHPP . fun, DepNHCPSP. fun

Examples

#Generation of 3 dependent HPPs, with mean service time equal to 10
aux<-DepNHPPqueue. fun(lambda=0.05, d=3, rate=0.1, type="H", nEv=25,
fixed.seed=123)

aux$posNHs

#Generation of 3 dependent NHPPs, with mean service time equal to 10
#lambda<-runif(200,0,0.1)

#aux<-DepNHPPqueue. fun(lambda=lambda, d=3, rate=0.1, type="NH")
#aux$posNHs

DistObs.fun 19

DistObs.fun Calculates the set of close points and the mean distance for each point
in the first process of a set or two or three processes

Description

Given a set or two or three processes, this function calculates the set of close points and the mean
distance for each point in the first process.

It calls the functions calcdist. fun, not intended for the users, and uniongentri. fun.

Usage

DistObs.fun(posx, posy, posz=NULL, info = FALSE,
PA = FALSE, procName=c('X','Y','Z"),...)

Arguments
posx Numeric vector. Position of the occurrence points in the first process.
posy Numeric vector. Position of the occurrence points in the second process.
posz Optional. Numeric vector. Position of the occurrence points in the third process.
info Optional logical flag. If it is TRUE, information about the generated points is
showed on the screen and dotcharts and bivariate charts of the occurrence points
of the processes are displayed.
PA Optional logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.
procName Vector of character strings. Labels for the first, second and third processes.
Further arguments to pass to plot if argument info="TRUE"
Details

Given a set of two or three point proccesses, for each point ¢,, in the first process of the set, this
function calcultes its set of close points and the mean distance to its close points. The definition of
set of close points can be found in Abaurrea et al. (2015)) and the distances are defined as |tyj —ta,
if there are two processes and as |t,, — t,| + |t-, — t.,| if there are three.

Value

DistTri The vector of the means of the distances of points ¢, , Z,, , ¢, for each x-coordinate

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

20 DistShift.fun

See Also

TestIndNH. fun, DistSim. fun, uniongentri. fun

Examples

data(BarTxTn)
dateB<-cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$diames)
BarBivEv<-CPSPPOTevents. fun(X=BarTxTn$Tx,Y=BarTxTn$Tn, thresX=318,
thresY=220, date=dateB)

DistObs.fun(BarBivEv$PxX, BarBivEv$PxY, BarBivEv$PxXY,info = TRUE)

DistShift.fun Shifts, conditionally on the first process, the remaining processes in a
set of up to three processes and calculates the set of close points and
the mean distance for each point in the first process

Description

Given a set of up to three processes, this function fixes the first one and shiftes the other ones a
given distance. Then, it calculates the set of close points and the mean distance for each point ¢,
in the first process. It can be used with homogeneous and non homogeneous processes.

Usage

DistShift.fun(posx,posy,posz=NULL, T, shiil, shii2=NULL, PA = FALSE,info=FALSE, ...

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Optional. Numeric vector. Position of the occurrence points in the third process.

T Numeric value. Length of the observation period of the processes.

shiil Numeric value. Distance used to shift the points in the second process. It must
be a positive value lower than the length of each lambda vector.

shii2 Optional. Numeric value. Distance used to shift the points in the third process.
If there is only two processes it must be NULL. It must be a positive value lower
than the length of each lambda vector.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

info Optional. Logical flag. If it is TRUE, information about the generated points is

shown on the screen and dotcharts and bivariate charts of the occurrence points
of the three processes are displayed.

Further arguments to pass to plot and to dotchart if the argument info=T

DistShift.fun 21

Details

Given a set of three (or two) point processes, this function aims to transform the set of processes by
a translation, conditionally on the first process. The idea of this translation is to keep the distribution
of the processes but break any dependence between them, without the need of parametric models to
describe the univariate marginal patterns. The only information required is the marginal intensities
of the processes.

The key idea, see Lotwick and Silverman (1982), is to wrap the processes onto a torus by identifying
opposite sides, The first process is fixed, while the others are translated over the torus. In nonho-
mogenous processes, translation may change their distribution, and to compensate, the intensity
must also be translated.

Then, the function calculates the set of close points and the mean distance for each point ¢, in the
first process, in the new shifted set of processes.

This function is mainly used to develop a Lotwick-Silverman type test to check the independecne
between the processes, see TestIndLS. fun.

For homogenous processes, the intensity vectors in lambda must be constant (that is all the values
in a column must be equal).

Value
DistTri Vector of the mean distance to the points in the set of close points, for each ¢,
in the first process.
References

Cebrian, A.C. Abaurrea, J. Asin, J. (2014). NHPoisson: An R Package for Fitting and Validating
Nonhomogeneous Poisson Processes. Journal of Statistical Software.

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also
TestIndLS.fun,DistSim.fun

Examples

set.seed(123)

lambdax<-runif (200, 0.01,0.17)

set.seed(124)

lambday<-runif (200, 0.015,0.15)

set.seed(125)

lambdaz<-runif (200, 0.005,0.1)

posx<-simNHPc. fun(lambda=1lambdax, fixed.seed=123)$posNH
posy<-simNHPc.fun(lambda=lambday, fixed.seed=123)$posNH
posz<-simNHPc.fun(lambda=lambdaz, fixed.seed=123)$posNH

DistShift.fun(posx=posx,posy=posy,posz=posz,T=200,
shii1=59, shii2=125)

22 DistSim.fun

DistSim.fun Generates a set of up to three independent processes and calculates
the set of close points and the mean distance for each point in the first
process

Description

Given a point process, this function generates a set of one or two more processes and calculates
the set of close points and the mean distance for each point ¢, in the first process. Two types of
processes, Poisson processes (PP) and Neyman-Scott cluster processes (NSP), are implemented up
to now. Homogeneous and nonhomogeneous processes can be generated in both cases.

If a seed must be fixed in the generation process, function DistSimfix. fun has to be used.

Usage

DistSim.fun(posx, NumProcess=2, type = "Poisson", lambdaMarg = NULL,
lambdaParent = NULL, lambdaNumP=NULL, dist = "normal”, sigmaC = 1,
minC = -1, maxC = 1, PA = FALSE,info=FALSE,...)

DistSimfix.fun(posx, NumProcess=2, type = "Poisson”, lambdaMarg = NULL,
lambdaParent = NULL,lambdaNumP=NULL, dist = "normal”, sigmaC = 1,
minC = -1, maxC = 1, PA = FALSE,info=FALSE, fixed.seed=1,...)

Arguments
posXx Numeric vector. Position of the occurrence points in the first process.
NumProcess Optional. Integer equal to 2 or 3, the number of processes involved.
type Optional. Label "Poisson" or "PoissonCluster". Type of point processes to be
generated. Up to now, only two types are available: Poisson processes ("Pois-
son") and Neyman-Scott cluster processes ("PoissonCluster").
lambdaMarg Two-column matrix. Only used when #ype="Poisson". Each column is the in-

tensity A(¢) used to generate the PPs.

lambdaParent Numeric vector. Only used when type="PoissonCluster". Intensity values of the
underlying PP used to generate the centers of the clusters of the NSP.

lambdaNumP Numeric vector (length < 2). Only used when type="PoissonCluster". Mean
values of the number of sons of each process. If its length is 1 and NumProcess=2,
the same value is used for both processes.

dist Optional. Label "normal" or "uniform". Only used when type="PoissonCluster".
Distribution used to generate the point locations in each cluster.

sigmaC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="normal".
Standard deviation of the normal distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

minC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="uniform".
Lower limits of the Uniform distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

DistSim.fun 23

maxC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="uniform".
Upper limits of the Uniform distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

info Optional. Logical flag. If it is TRUE, information about the generated points is
shown on the screen and dotcharts and bivariate charts of the occurrence points
of the three processes are displayed.

fixed.seed Optional. Only available in DistSimfix. fun. Integer value used to set the seed
in random generation procedures.

Further arguments to pass to plot and to dotchart if the argument info=T

Details

Up to now, generation of two types of processes (Poisson, "Poisson", and Neyman-Scott cluster pro-
cesses,"PoissonCluster") is available. Generation of NHPPs is done using the inversion approach,
see Cebrian et al. (2014) and simNHPc. fun. For generation of NSPs, see IndNHNeyScot. fun

The only difference between DistSim. fun and DistSimfix. fun is that the first one uses a random
seed while in the second one a seed is set by the argument fixed. seed.

This function is mainly used in TestIndNH. fun.

The lenght of the period where the processes are generated is determined by the length of the argu-
ment lambdaParent or the number of rows of lambdaMarg.Homogenous processes are generated
if the intensity vectors in lambdaParent or in lambdaMarg are constant (that is if all the values in
the vector are equal).

Value
DistTri Vector of the mean distance to the points in the set of close points, for each ¢,
in the first process.
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

Cebrian, A.C. Abaurrea, J. Asin, J. (2014). NHPoisson: An R Package for Fitting and Validating
Nonhomogeneous Poisson Processes. Journal of Statistical Software. To appear.

See Also

TestIndNH. fun, DistObs. fun, IndNHNeyScot. fun, simNHPc. fun

Examples

#0bserved process: PP; simulated processes: two independent PPs

24 DutilleulPlot.fun

set.seed(123)

lambdax<-runif (200, 0.01,0.15)

set.seed(124)

lambday<-runif (200, 0.005,0.1)

set.seed(125)

lambdaz<-runif (200, 0.005,0.2)

posaux<-simNHPc. fun(lambda=lambdax, fixed.seed=123)$posNH

DistSimfix.fun(posx=posaux, type = "Poisson”,
lambdaMarg = cbind(lambday,lambdaz), fixed.seed=123)
#DistSim. fun(posx=posaux, type = "Poisson”,

lambdaMarg = cbind(lambday,lambdaz))

DutilleulPlot.fun Performs a Diggle’s randomization testing procedure to check inde-
pendence between two point processes

Description

This function applies the Diggle’s randomization testing procedure extended by Dutilleul(2011) and
performs a plot which checks graphically the independence of two point proceses. It is implemented
for homogenous and non homogenous processes.

Usage
DutilleulPlot.fun(posx, posy, lambday, nsim = 1000, lenve = c(0.025, 0.975), ...)

Arguments
posx Numeric vector. Position of the occurrence points of the first point process.
posy Numeric vector. Position of the occurrence points of the second point process.
lambday Numeric vector. Intensity values of the second point process
nsim Optional. Positive integer. Number of simulations performed to obtain the con-
fidence bands.
lenve Optional. Numeric vector. Lower and the upper percentiles which determine the
limits of the confidence band.
Further arguments to be passed to plot.
Details

This is a procedure to check graphically the independence of two point proceses. It is based on
the comparison of the cumulative relative frequency of the nearest neighbour distances between
the points in the two observed processes, with their counterpart in two independent processes with
the same intensities. The procedure consists on plotting the cumulative relative frequency of the
observed processes and a confidence band calculated from nsim simulated independent processes.

IndNHNeyScot.fun 25

Value

A list with the elements used in the plot

quantobs Vector of observed percentiles of the nearest neighbour distances.
envel Vector of lower limits of the confidence band.
enve?2 Vector of upper limits of the confidence band.

References

Dutilleul, P. (2011), Spatio-temporal heterogeneity: Concepts and analyses, Cambridge University
Press.

See Also

TestIndNH. fun, CondTest. fun,nearestdist.fun

Examples

#Two independent NHPPs

set.seed(123)

lambdax<-runif (200, 0.01,0.1)

set.seed(124)

lambday<-runif (200, 0.015,0.15)
posx<-simNHPc. fun(lambdax, fixed.seed=123)$posNH
posy<-simNHPc.fun(lambday, fixed.seed=123)$posNH

aux<-DutilleulPlot.fun(posx, posy, lambday, nsim = 100)

#Two dependent NSPs

#set.seed(123)

#lambdaParent<-runif(200)/10
#DepPro<-DepNHNeyScot . fun(lambdaParent=1ambdaParent, d=2, lambdaNumP = 3,
dist = "normal”, sigmaC = 3,fixed.seed=123)

#posx<-DepPro$PP1

#posy<-DepPro$PP2

#aux<-DutilleulPlot.fun(posx, posy, lambday, nsim = 100)

IndNHNeyScot. fun Generates trajectories of independent Neyman-Scott cluster processes

Description

This function generates independent (homogeneous or nonhomogeneous) Neyman-Scott cluster
processes with independent trajectories of cluster centers with the same intensity.

It calls the auxiliary function GenSons. fun (not intended for the users), see Details section.

26

Usage

IndNHNeyScot.fun

IndNHNeyScot. fun(lambdaParent, d, lambdaNumP = 1, dist = "normal”,
sigmaC = 1, minC = -1, maxC = 1,fixed.seed=NULL)

Arguments

lambdaParent

d
lambdaNumP

dist

sigmaC

minC

maxC

fixed.seed

Details

Numeric vector. Intensity values of the underlying PP used to generate the cen-
ters of the clusters of the Neyman-Scott process.

Integer. Number of independent processes to be generated.

Optional. Numeric vector. Mean values of the number of sons of each dependent
process. If its length is equal to 1, the same value is used to generate all the
dependent processes.

Optional. Label "normal" or "uniform". Distribution used to generate the point
locations of each cluster.

Optional. Numeric vector. Standard deviation of the normal distribution. Only
used if dist="normal". If its length is equal to 1, the same value is used in the d
processes.

Optional. Numeric vector. Lower limits of the Uniform distribution. Only used
if dist="uniform". If its length is equal to 1, the same value is used in the d
processes.

Optional. Numeric vector. Upper limits of the Uniform distribution. Only used
if dist="uniform". If its length is equal to 1, the same value is used in the d
processes.

Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

A Neyman-Scott process is a Poisson cluster process where the points in each cluster are randomly
distributed around the cluster center. For generating each process, an independent trajectory of the
Poisson process of the cluster centers is generated first. Then, the number of points in each cluster
is generated using a Poisson distribution with mean value pp, (i=1,...d). Finally, th e point loca-
tions around each center can be generated using two distributions N(0, sigmaC) or Uniform(minC,

maxQC).

The lenght of the period where the processes are generated is determined by the length of the
argument lambdaParent.

Homogenous processes are generated if the intensity vector lambdaParent is constant (that is if all
the values are equal).

Value

A list with elements

posNH

A list of d vectors, each one containing the time occurrences of one of the de-
pendent processes. The name of the elements of the list are PP1, PP2...PPd

IndNHPP.fun 27

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

DepNHNeyScot. fun, IndNHPP. fun

Examples

set.seed(123)
lambda<-runif(1000)/10

IndNHNeyScot. fun(lambdaParent=1ambda, d=3, lambdaNumP = c(2,3,2), dist = "normal”,
sigmaC = 2, fixed.seed=123)

IndNHPP. fun Generates trajectories of independent Poisson processes

Description
This function generates independent Poisson processes (PPs), which can be homogeneous or non-
homogeneous depending on the value of the intensity vectors.

Usage
IndNHPP. fun(lambdas, fixed.seed=NULL)

Arguments
lambdas Matrix where each column contains the intensity vector to generate a Poisson
process
fixed. seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.
Details

The number of generated processes is determined by the number of columns of the argument
lambdas. The lenght of the period where the processes are generated is determined by the number
of rows of lambdas.

Homogenous processes are generated if the corresponding intensity vector is constant (that is if all
the rows of the corresponding column are equal).

For the generation algorithm of each PP, see simNHPc. fun.

28 nearestdist.fun

Value
posNHsA list of d vectors, each one containing the time occurrences of the independent NHPP. The
name of the elements of the list are PP1, PP2...PPd

See Also

IndNHNeyScot. fun, simNHPc. fun

Examples

set.seed(123)
lambdas<-cbind(runif(500)/1@, rep(@.05,500))

IndNHPP. fun(lambdas=1ambdas, fixed.seed=123)

nearestdist.fun Calculates the distance to the nearest point in the second process for
each point in the first process

Description
Given the occurrence points in two point processes, this function calculates for each point in the
first process, the distance to the nearest occurrence point in the second process.

Usage

nearestdist.fun(posx, posy)

Arguments
posXx Numeric vector. Position of the occurrence points in the first point process.
posy Numeric vector. Position of the occurrence points in the second point process.
Details

The distance between two points x; and y; in time, is the absolute value of their difference: |z; —y;|.

To obtain the vector of nearest points, this function applies to each point in posx, the function
pdist. fun, which calculates the distance to its nearest point in posy.

Value

Vector of distances to the nearest point in the second process for each point in the first process.

See Also

DutilleulPlot.fun

NHD.fun

Examples

29

posx<-c(3,8,23,54,57,82)
posy<-c(2,8,14,16,29,32,45,55,65)
nearestdist.fun(posx, posy)

NHD. fun

It estimates the cross D-function for two sets of point processes

Description

This function estimates the cross nearest neighbour distance distribution function, D, between two
sets, C' and D, of (homogenous or nonhomogeneous) point processes. The D-function is evaluated
in a grid of values 7, and it can be optionally plotted.

It calls the auxiliary functions NHDaux.fun and other functions, not intended for users.

Usage

NHD. fun(lambdaC, lambdaD, T=NULL,Ptype='inhom', posC, typeC=1, posD, typeD=1,
r = NULL, dplot = TRUE, tit = "D(r)")

Arguments

lambdaC

lambdaD

Ptype

posC

typeC

posD
typeD

dplot
tit

A matrix. Each column is the intensity vector of one of the point processes in
C. If there is only one process in C), it can be a vector or even a numeric value
if the process is homogeneous.

A matrix. Each column is the intensity vector of one of the point process in D.
If there is only one process in D, it can be a vector oe even a numeric value if
the process is homogeneous.

Numeric value. Length of the observation period. It only must be specified if all
the processes are homogeneous the number of rows in lambdaC and lambdaD is
1.

Optional. Label: ’hom’ or ’inhom’. The first one indicates that all the point
processes in sets C' and D are homogeneous. In that case, columns of arguments
lambdaC and lambdaD can be a number or a constant vector.

Numeric vector. Time position of the points in all the point processes in C.

Numeric vector with the same length as posC. Code of the point process in C
where points in posC have occurred. See Details.

Numeric vector. Time position of the points in all the point processes in D.

Numeric vector with the same length as posD. Code of the point process in D
where points in posD have occurred.

Numeric vector. Values where D-function must be evaluated.
Optional. A logical flag. If it is TRUE, a plot of the D-function is shown.
Optional. The title to be used in the plot of the D-function.

30 NHD.fun

Details

This function estimates the cross nearest neighbour distance disribution function D, between two
sets C' and D of point processes, using the estimator suggested by Cronie and van Lieshout (2015),
adapted to time point processes.

The D-function is the distribution function of the distances from a point in a process in C' to the
nearest point in a process D. In homogeneous proceesses, it estimates the probability that at least
one point in a process in set D occurs at a distance lower than r of a given point in a process in
set C. If the processes are nonhomogenous, the inhomogenous version of the function, adjusted
for time varying intensities, is used. It is calculated using the Hanisch estimator, see Van Lieshout
(2006)

Small values of cross D-function suggest few points in processes in D in the r-neighbourhood of
points of processes in C'. Large values indicate that points in processes in D are attracted by those
of processes in C.

For inference about independence of the processes, K and J-functions should be used.

The occurrence points in all the processes in C' must be part of the input. Since the number of
points will be possibly different in each process, a matrix cannot be used. Instead two vectors with
the same length are used: the first one contains the occrrence points in all the processes while the
second one indicates the point process in C' where the point in the same row in posC has occurred.
The codes used in typeC are the column number where the intensity of that process is in matrix
lambdaC. The same for set D.

See NHJ . fun for details on default values of r and L.

Value

A list with elements

r Vector of values where D-function is evaluated.
NHDr Estimations of D-function at values 7.
T Length of the observation period.

References

Cronie, O. and van Lieshout, M.N.M. (2015). Summary statistics for inhomogeneous marked point
processes. Ann Inst Stat Math. DOI 10.1007/s10463-015-0515-z

Stoyan et al (2001). On the estimation of distance distribution functions for points processes and
random sets. Image Anal Stereol, 20, 65-69

Van Lieshout, M.N.M. (2006) A J-function for marked point patterns. AISM, 58, 235-259. DOI
10.1007/s10463-005-0015-7

See Also

NHK. fun, NHJ . fun, NHF . fun

NHE fun 31

Examples

#Sets C and D with one independent NHPP

set.seed(123)

lambdal<-runif (500, 0.05, 0.1)

set.seed(124)

lambda2<-runif (500, 0.01, 0.2)

posi<-simNHPc. fun(lambda=lambdal, fixed.seed=123)$posNH
pos2<-simNHPc. fun(lambda=1lambda2, fixed.seed=123)$posNH

aux<-NHD. fun(lambdaC=1ambdal, lambdaD=1lambda2, posC=posl1, typeC=1, posD=pos2, typeD=1)
aux$NHDr

#Sets C and D with two independent NHPPs
#pos3<-simNHPc. fun(lambda=lambdal, fixed.seed=321)$posNH
#pos4<-simNHPc. fun(lambda=lambda2, fixed.seed=321)$posNH

#NHD. fun(lambdaC=cbind(lambdal, lambda2), lambdaD=cbind(lambdal,lambda2), posC=c(posi,pos2),
typeC=c(rep(1, length(pos1)), rep(2, length(pos2))), posD=c(pos3, pos4),
typeD=c(rep(1, length(pos3)), rep(2, length(pos4))))

NHF . fun It estimates the cross F-function for two sets of point processes

Description

This function estimates the cross F-function, between two sets, C' and D, of (homogenous or non-
homogeneous) point processes. The F-function is evaluated in a grid of values 7, and it can be
optionally plotted.

It calls the auxiliary functions NHFaux.fun and other functions not intended for users.

Usage

NHF . fun(lambdaD, T=NULL, Ptype='inhom', posD, typeD=1, r=NULL,L=NULL, dplot=TRUE,
tit="F(r)")

Arguments
lambdaD A matrix. Each column is the intensity vector of one of the point process in D.
If there is only one process in D, it can be a vector oe even a numeric value if
the process is homogeneous.
T Numeric value. Length of the observation period. It only must be specified if all

the processes are homogeneous the number of rows in lambdaC and 1ambdaD is
1.

32 NHE fun

Ptype Optional. Label: ’hom’ or ’inhom’. The first one indicates that all the point
processes in sets C' and D are homogeneous. In that case, columns of arguments
lambdaC and 1ambdaD can be a number or a constant vector.

posD Numeric vector. Time position of the points in all the point processes in D.

typeD Numeric vector with the same length as posD. Code of the point process in D
where the point in the same row in posD has occurred. The code must be the
column number where the intensity of that process is in matrix 1ambdaD.

r Numeric vector. Values where F-function must be evaluated.

L Optional. Numeric vector. Net of values during the observation period used to
calculate the F-function. If the value is NULL, a default vector, formed by all
the integers in the observation period, is used

dplot Optional. Logical flag. If it is true, the plot of the F-function is performed.
tit Optional. The title to be used in the plot of the F-function.
Details

This function estimates the cross F-function for the processes in set D, using the estimator suggested
by Cronie and van Lieshout (2015), adapted to time point processes.

The cross F-function, also known as empty space function, is the distribution function of the dis-
tances from an arbitray point in the space to the nearest point in a process in D. In homogeneous
processes, it estimates the probability that at least one point in processes in D occurs at a distance
lower than r of an arbitray point in the space. If the processes are nonhomogenous, the inhomoge-
nous version of the function, adjusted for time varying intensities, is used.

See NHJ . fun for details on default values of r and L.

The occurrence points in all the processes in D must be part of the input. Since the number of
points will be possibly different in each process, a matrix cannot be used. Instead two vectors with
the same length are used: the first one contains the occrrence points in all the processes while the
second one indicates the point process in D where the point in the same row in posD has occurred.
The codes used in typeD are the column number where the intensity of that process is in matrix
lambdaD.

Value

A list with elements

r Values r where the F-function is evaluated.

NHFr Estimated values of the F-function evaluated at values 7.

T Length of the observation period of the process.

L Net of values in the observation period used to calculate the F-function.
References

Cronie, O. and van Lieshout, M.N.M. (2015). Summary statistics for inhomogeneous marked point
processes. Ann Inst Stat Math. DOI 10.1007/s10463-015-0515-z

Stoyan et al (2001). On the estimation of distance distribution functions for points processes and
random sets. Image Anal Stereol, 20, 65-69

NHJ.fun 33

Van Lieshout, M.N.M. (2006) A J-function for marked point patterns. AISM, 58, 235-259. DOI
10.1007/s10463-005-0015-7

See Also

NHK. fun, NHJ. fun, NHD. fun

Examples

set.seed(123)
lambdal<-runif (500, 0.05, 0.1)
pos1<-simNHPc. fun(lambda=1lambdal, fixed.seed=123)$posNH

aux<-NHF . fun(lambdaD=1ambdal, posD=pos1, typeD=1)
aux$NHFr

#Set D with two processes

#lambda2<-runif (1000, 0.01, 0.2)

#pos2<-simNHPc. fun(lambda=lambda2, fixed.seed=123)$posNH
#NHF . fun(lambdaD=cbind(lambdal, lambda2), posD=c(pos1,pos2),
typeD=c(rep(1, length(pos1)), rep(2, length(pos2))))

NHJ. fun It estimates the cross J-function for two sets of point processes

Description

This function estimates the cross J-function between two sets, C' and D, of (homogenous or non-
homogeneous) point processes. The J-function is evaluated in a grid of values r, and it can be
optionally plotted. An independence test based on J-function is also available.

It calls the auxiliary functions NHJaux.fun and Jenv, not intended for users.

Usage

NHJ.fun(lambdaC, lambdaD, T=NULL,Ptype='inhom', posC, typeC=1, posD, typeD=1, r = NULL,
L = NULL, test=FALSE, nTrans=100, rTest=20, conf=0.95, dplot = NULL,
tit = rep("J-function”, 3), mfrow = c(1, 1), cores=1, fixed.seed=NULL)

Arguments
lambdaC A matrix. Each column is the intensity vector of one of the point processes in
C. If there is only one process in C), it can be a vector or even a numeric value
if the process is homogeneous.
lambdaD A matrix. Each column is the intensity vector of one of the point process in D.

If there is only one process in D, it can be a vector oe even a numeric value if
the process is homogeneous.

34

Ptype

posC

typeC

posD
typeD

test

nTrans

rTest

conf

dplot

tit

mfrow
cores

fixed.seed

Details

NHJ.fun

Numeric value. Length of the observation period. It only must be specified if
all the processes are homogeneous, that is if the number of rows in lambdaC and
lambdaD is 1.

Optional. Label: ’hom’ or ’inhom’. The first one indicates that all the point
processes in sets C' and D are homogeneous. In that case, columns of arguments
lambdaC and 1ambdaD can be a number or a constant vector.

Numeric vector. Time position of the points in all the point processes in C'.

Numeric vector with the same length as posC. Code of the point process in C
where the points in posC have occurred. See Details

Numeric vector. Time position of the points in all the point processes in D.

Numeric vector with the same length as posD. Code of the point process in D
where the points in posD have occurred.

Optional. Numeric vector. Values where J-function must be evaluated. If it is
NULL, a default vector is used, see Details

Optional. Numeric vector. Net of values in the observation period used to cal-
culate the J-function. If it is NULL, a default vector is used, see Details.

Optional. Logical flag. If it is TRUE, a test to check the independence and a
95% envelope for the J-function are calculated.

Optional. Numeric value. Only used if test=TRUE. Number of translations to
be performed in the test and envelope calculation.

Optional. Numeric value. Maximum value of r used to calculate the indepen-
dence test statistc, see Details.

Optional. Numeric value in (0,1). Confidence level of the envelope for the K-
function.

Optional. Label JDF’ or *J’. If it is equal to’JDF’, plots of J, D and F-functions
are displayed. If it is ’J’, only J-function is plotted.

Optional. A vector with one or three titles to be used in the plots of J, D and
F-functions.

Optional. Argument to be passed to par for the plot of the J-function.
Optional. Number of cores of the computer to be used in the calculations.

An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

This function estimates the cross J-function between two sets, C' and D, of homogenoeus or nonho-
mogeneous time point processes, using a version of the spatial estimator suggested by Cronie and
van Lieshout (2015) adapted to time processes. In the case of nonhomogeneous processes, the es-
timator is only defined for second order intensity-reweighted stationary point processes. J-function
measures the interpoint dependence between points in any of the processes in D, and points in any
of the processes in C', adjusted for time varying intensity in the case of nonhomogenous processes.

The cross J-function is defined as Jop(r) = (1 — Dep(r))/(1 — Fp(r)), if Fp(r) < 1 and it is
not calculated otherwise. It compares D(r), the distribution function of the distances from a point

NHJ.fun 35

in any of the processes in set C' to the nearest point in any of the processes in set D, to F(r), the
distribution function of the distances from a fixed point in the space to the nearest point in any of
the processes in set D.

If the processes in C' are independent of the processes in D (conditionally on the marginal structure
of the processes) J-funtion is equal to 1, since D(r)=F(r). Hence, deviations of J(r) estimations from
1, suggest dependence betweent the two sets of processes.

If argument r is NULL, it is calculated as

rl<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

If argument L is NULL, it is calculated as

L<-seq(1, T, by=2)

if (length(L)>200) L<-seq(1,T,by = round((T - 1)/199))
Testing independence

In order to test the independence hypothesis using this function, a Lotwick-Silverman type test is
available. This test provides a nonparametric way to test independence when the study area is rect-
angular. The key idea is to wrap the processes onto a torus by identifying opposite sides, keeping
the processes in set C' fixed and translating the processes in set D randomly over the torus. In non-
homogenous processes, random translation may change their distribution, and to compensate, the
intensity must also be translated. The considered translations keep the distribution of the processes
in D but break any dependence between them, without the need of parametric models to describe
the univariate marginal patterns. Critical values are estimated by bootstrap methods. Using this
approach, not only the p-value of a test to check independence but also an envelope for J(r) values
is calculated. The test is based on the statistic max,.(abs(J(r) — 1)).

One disadvantage of the proposed test is that it may be quite sensitive to the values of r. In addition,
in time processes, dependence often appears between close observations, and with high r values it
is more difficult that the J-function is able to discriminate between dependent and independent
processes. By this reason, the argument rTest allows us to fix a maximum value of r and only J(r)
estimations for r < rT'est will be used to calculate the test statistic. The value rTest is drawn in
the plot of the J-function as a vertical grey line, in order to help us to identify an adequate value.

The occurrence points in all the processes in C' must be part of the input. Since the number of
points will be possibly different in each process, a matrix cannot be used. Instead two vectors with
the same length are used: the first one contains the occrrence points in all the processes while the
second one indicates the point process in C' where the point in the same row in posC has occurred.
The codes used in typeC are the column number where the intensity of that process is in matrix
lambdaC. The same for set D.

Value
A list with elements
r Vector of values » where J-function is evaluated.

NHIr Estimated values of function J(r).

NHDr Estimated values of function D(r).

36 NHJ.fun
NHFr Estimated values of function J(r).
JenvL Lower limits of the envelope for J(r).
JenvU Upper limits of the envelope for J(r).
JStatOb Observed value of the statistic used to test the independence assumption.
JStatTr Sample of the values of the test statistic obtained by random translation.
pv P-value of the independence test.
T Length of the observation period of the process.

Net of values L used to calculate F-funtion.

References
Cronie, O. and van Lieshout, M.N.M. (2015). Summary statistics for inhomogeneous marked point
processes. Ann Inst Stat Math. DOI 10.1007/s10463-015-0515-z
Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13
Stoyan et al (2001). On the estimation of distance distribution functions for points processes and
random sets. Image Anal Stereol, 20, 65-69
Van Lieshout, M.N.M. (2006) A J-function for marked point patterns. AISM, 58, 235-259. DOI
10.1007/s10463-005-0015-7

See Also
NHK . fun, NHD. fun, NHF . fun

Examples

set.seed(122)

lambdal<-runif (100, 0.05, 0.1)

set.seed(121)

lambda2<-runif (100, 0.01, 0.2)

pos1<-simNHPc. fun(lambda=lambdal, fixed.seed=123)$posNH
pos2<-simNHPc. fun(lambda=lambda2, fixed.seed=123)$posNH

aux<-NHJ.fun(lambdaC=1lambdal, lambdaD=1lambda2, posC=posi1,nTrans=50,
posD=pos2, rTest=7, dplot='J', cores=1,test=TRUE)
aux$pv

#Sets with two processes

#pos3<-simNHPc. fun(lambda=lambdal, fixed.seed=321)$posNH

#pos4<-simNHPc. fun(lambda=lambda2, fixed.seed=321)$posNH

#aux<-NHJ. fun(lambdaC=cbind(lambdal, lambda2), lambdaD=cbind(lambdal,lambda2),
posC=c(pos1,pos2), typeC=c(rep(1, length(posl)), rep(2, length(pos2))),

posD=c(pos3, pos4), typeD=c(rep(1, length(pos3)), rep(2, length(pos4))),

dplot="J', test=TRUE)

#aux$pv

NHK.fun

37

NHK. fun

It estimates the cross K-function for two sets of point processes

Description

This function estimates the cross K-function between two sets, C' and D, of (homogenous or non-
homogeneous) time point processes. It is evaluated in a grid of distances r, and it can be optionally
plotted. An independence test based on K-function is also available.

It calls the auxiliary functions NHKaux.fun, NHKaux2.fun, NHKaux3.fun and Kenv, not intended

for users.

Usage

NHK . fun(lambdaC, lambdaD, T=NULL, posC, typeC=1, posD, typeD=1, r=NULL,
test=TRUE, nTrans=100, conf=0.95, rTest=20, dplot=FALSE,
tit="K-function”, cores=1, fixed.seed=NULL)

Arguments

lambdaC

lambdaD

posC
typeC

posD
typeD

test

nTrans

conf

rTest

A matrix. Each column is the intensity vector of one of the point processes in
C. If there is only one process in (), it can be a vector or even a numeric value
if the process is homogeneous.

A matrix. Each column is the intensity vector of one of the point process in D.
If there is only one process in D, it can be a vector oe even a numeric value if
the process is homogeneous.

Numeric value. Length of the observation period. It only must be specified if
all the processes are homogeneous, that is if the number of rows in 1lambdaC and
lambdaD is 1.

Numeric vector. Time position of the points in all the point processes in C.

Numeric vector with the same length as posC. Code of the point process in C
where the points in posC have occurred. See Details.

Numeric vector. Time position of the points in all the point processes in D.

Numeric vector with the same length as posD. Code of the point process in D
where the points in posD have occurred.

Optional. Numeric vector. Values where K-function must be evaluated. If it is
NULL, a default vector is used, see Details

Optional. Logical flag. If it is TRUE, a test to check the independence and a
95% envelope for the K-function are calculated.

Optional. Numeric value. Only used if test=TRUE. Number of translations to
be performed in the test and envelope calculation.

Optional. Numeric value in (0,1). Confidence level of the envelope for the K-
function.

Optional. Numeric value. Maximum value of r used to calculate the indepen-
dence test statistc, see Details.

38 NHK .fun
dplot Optional. A logical flag. If it is true a plot of the K-function is shown.
tit Optional. Title to be used in the plot of the K-function.
cores Optional. Number of cores of the computer to be used in the calculations.
fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.
Details

This function estimates the cross K-function between two sets, C' and D, of (homogenous or non-
homogeneous) time point processes, using a version of the spatial estimator suggested by Moller
and Waagepetersen (2007), p662, adapted to cross time processes; the edge correction suggested in
that paper is also used. In the case of nonhomogeneous processes, the estimator is only defined for
second order intensity-reweighted stationary point processes. Homogenous processes are generated
if the intensity vector lambda is constant (that is if all the values are equal) or its length is 1.

K-function measures the degree of dependence between two point processes (or two sets of point
processes) and counts the expected number of points in any of the processes in D, within a given
distance of a point in any of the processes in C, adjusted for time varying intensity in the case of
nonhomogenous processes.

The cross K-function of independent Poisson processes (conditionally on the marginal structure of
the processes) is the length of the considered intervals, Ko p(r) = 2r + 1. Then, values K¢ p (1) >
2r + 1 indicate attraction between the processes, while values lower than 27 + 1 indicate repulsion.

If argument r is NULL, it is calculated as
rl<-max(20, floor(T/20))

r<-seq(1,rl,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)
Testing independence

In order to test the independence hypothesis using this function, a Lotwick-Silverman type test is
available. This test provides a nonparametric way to test independence when the study area is rect-
angular. The key idea is to wrap the processes onto a torus by identifying opposite sides, keeping
the processes in set C' fixed and translating the processes in set D randomly over the torus. In non-
homogenous processes, random translation may change their distribution, and to compensate, the
intensity must also be translated. The considered translations keep the distribution of the processes
in D but break any dependence between them, without the need of parametric models to describe
the univariate marginal patterns. Critical values are estimated by bootstrap methods. Using this
approach, not only the p-value of a test to check independence but also an envelope for the K (r)
values is calculated. The test is based on the statistic max,.(K(r)/(2r + 1)).

One disadvantage of the proposed test is that it may be quite sensitive to the values of r. In addition,
in time processes, dependence often appears between close observations, and with high r values it
is more difficult that the K-function is able to discriminate between dependent and independent
processes. By this reason, the argument rTest allows us to fix a maximum value of r and only K(r)
estimations for r < rTest will be used to calculate the test statistic. The value rTest is drawn in
the plot of the K-function as a vertical grey line, in order to help us to identify an adequate value.

The occurrence points in all the processes in C' must be part of the input. Since the number of
points will be possibly different in each process, a matrix cannot be used. Instead two vectors with
the same length are used: the first one contains the occrrence points in all the processes while the

NHK.fun 39

second one indicates the point process in C' where the point in the same row in posC has occurred.
The codes used in typeC are the column number where the intensity of that process is in matrix
lambdaC. The same for set D.

Value

A list with elements

r Vector of values » where K-function is evaluated.
NHKr Estimated values of function K(r).
KenvL Lower limits of the envelope for K(r).
KenvU Upper limits of the envelope for K(r).
KStatOb Observed value of the statistic used to test the independence assumption.
KStatTr Sample of the values of the test statistic obtained by random translation.
pv P-value of the independence test.
T Length of the observation period of the process.
References

Cronie, O. and van Lieshout, M.N.M. (2015). Summary statistics for inhomogeneous marked point
processes. Ann Inst Stat Math. DOI 10.1007/s10463-015-0515-z

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

Moller, J. and Waagepetersen, R.P. (2007). Modern statistics for spatial point processes. Scandina-
vian Journal of Statistics, 34(4), 643 684

See Also

NHD. fun, NHJ. fun, NHF . fun

Examples

set.seed(122)

lambdal<-runif (100, 0.05, 0.1)

set.seed(121)

lambda2<-runif (100, 0.01, 0.2)
pos1<-simNHPc.fun(lambda=lambdal, fixed.seed=123)$posNH
pos2<-simNHPc. fun(lambda=1lambda2, fixed.seed=123)$posNH

aux<-NHK. fun(lambdaC=1ambdal, lambdaD=lambda2, posC=posl1, posD=pos2, rTest=7,
dplot=TRUE, tit="K(r).", nTrans=75, cores=1)
aux$pv

#Sets with two processes
#pos3<-simNHPc. fun(lambda=lambdal, fixed.seed=321)$posNH

40 simHPc.fun

#pos4<-simNHPc. fun(lambda=lambda2, fixed.seed=321)$posNH

#aux<-NHK. fun(lambdaC=cbind(lambdal,lambda2), lambdaD=cbind(lambdal,lambda2), posC=c(posl,pos2),
typeC=c(rep(1, length(pos1)), rep(2, length(pos2))), posD=c(pos3, pos4),

typeD=c(rep(1, length(pos3)), rep(2, length(pos4))), dplot=TRUE)

#aux$pv
simHPc. fun Generate a given number of occurrence points in a homogenous Pois-
Son process in continuous time
Description

This function generates a given number of occurrence points in a homogenous Poisson process
(HPP) in continuous time.

Usage

simHPc. fun(lambda, nEv, fixed.seed=NULL)

Arguments
lambda Numeric value. Intensity A used to generate the PP.
nEv Optional. Positive integer. Number of points to be generated in the PPs.
fixed. seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.
Details

The points in a HPP are generated using independent exponentials with mean A.

Points in a HPP can also be generated using simNHPc. fun. The main difference is that here, the
number of points to be generated is given, while in the other function, points are generated in a
period of a given length T.

Value

A list with elements

posN Numeric vector. Occurrence points of the PP.
T Length of the period where the given number of points are generated.
fixed.seed Input argument.

References

Ross, S.M. (2006). Simulation. Academic Press.

See Also

simNHPc. fun, IndNHPP. fun

simNHPc.fun 41

Examples

aux<-simHPc.fun(lambda=0.01, nEv=50,fixed.seed=123)

aux$posH
simNHPc. fun Generate the occurrence points of a Poisson process in continuous
time
Description

This function generates the occurrence points of a homogenous or nonhomogeneous Poisson pro-
cess (NHPP) with a given intensity A(¢), in a continuous period of time (0, T).

It calls the auxiliary function buscar (not intended for the users), see Details section.

Usage

simNHPc. fun(lambda, fixed.seed=NULL)

Arguments
lambda Numeric vector of length T, the obsevation period length. Intensity A(¢) used to
generate the PP.
fixed. seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.
Details

The generation of the NHPP points consists in two steps. First, the points of a homogeneous PP
of intensity 1 are generated using independent exponentials. Then, the homogeneous occurrence
times are transformed into the points of a non homogeneous process with intensity A(¢). This
transformation is performed by the auxiliary function buscar (not intended for the user).

The lenght of the period where the processes are generated is determined by the length of the
argument lambda.

Homogenous processes are generated if the intensity vector lambda is constant (that is if all the
values are equal).
Value
A list with elements
posNH Numeric vector. Occurrence points of the PP.

lambda Input argument.

fixed.seed Input argument.

42 SpecGap.fun

References
Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Ross, S.M. (2006). Simulation. Academic Press.

See Also

simHPc. fun, IndNHPP. fun
Examples

#Generation of a HPP
aux<-simNHPc. fun(lambda=rep(@.1,200),fixed.seed=123)
aux$posNH

#Generation of a NHPP

set.seed(123)

lambdat<-runif (500, 0.01,0.1)
aux<-simNHPc.fun(lambda=lambdat, fixed.seed=123)
aux$posNH

SpecGap. fun It calculates the stationary distribution of a matrix and its spectral gap

Description
This function calculates the stationary distribution of the transition matrix of a Markov chain process
and its spectral gap.

Usage

SpecGap. fun(P)

Arguments

P Matrix. It must be a markovian matrix

Details

The spectral gap of a matrix P assesses the convergence speed of P to a matrix Pr with all the rows
equal to (7, 72, ...Tk), the stationary distribution of P. It takes values in [0,1].

The spectral gap of a transition matrix can be used as a dependence measure between the multitype
processes defined by a marked Poisson procces with marks generated by a Markov chain with that
transition matrix, see Abaurrea et al (2015) for details.

TestIndLS.fun 43

Value

A list with elements

SG Spectral gap value of the matrix.
pi Vector of the stationary distribution of the matrix.
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

DepMarkedNHPP . fun

Examples

P<-cbind(c(0.7, 0.1, 0.2), c(0.2, 0.7, ©.1), c(0.1, 0.2, 0.7))
SpecGap. fun(P)

TestIndLS.fun Calculate a Lotwick-Silverman test to check the independence between
up to three homogeneous point processes in time

Description

This function calculates a test of type Lotwick-Silverman (LS) to check the independence between
up to three homogeneous point processes in time. The statistic is based on the close point relation,
which adapts the crossed nearest neighbour distance ideas of spatial point processes to the case of
point processes in time. The p-value is obtained using a bootstrap based on a type LS approach.

Usage

TestIndLS.fun(posx, posy, posz=NULL, T, alpha = @0.05, nTrans = 100,
PA = FALSE, cores=1,fixed.seed=NULL)

Arguments
posx Numeric vector. Position of the occurrence points in the first process.
posy Numeric vector. Position of the occurrence points in the second process.
posz Numeric vector. Position of the occurrence points in the third process. Only

used if there are 3 processes in the set.

T Numeric value. Length of the observation period of the processes.

44 TestIndLS.fun
alpha Optional. Significance level used to obtain a decision (reject-no reject) based on
the test p-value.
nTrans Optional. Positive integer. Number of translations performed to calculate the
test.
PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.
cores Optional. Number of cores of the computer to be used in the calculations.
fixed. seed Optional. An integer or NULL. If it is an integer, that is the value used to set the
seed in random generation processes. It it is NULL, a random seed is used.
Details

The underlying idea of the test is to compare, for each point in the first process, the behavior of its
set of close points in the observed process vector (N, NV, N,), and in a new process vector with
the same characteristics and mutually independent components. In the new vectors, the process IV,
is fixed and second and third processes are obtained by a translation of the original ones. If the
observed behavior is significantly different, independence is rejected. The test statistic is the same
as the one used in TestIndNH. fun, but the p-value is obtained using a different bootstrap technique,
based on a LS approach, see Lotwick and Silverman (1982).

This test provides a nonparametric way to test independence. The key idea is to wrap the processes
onto a torus by identifying opposite sides, keeping the first process fixed and translating the other
processes randomly over the torus. The translation keeps the distribution of the processes (since
they are homogenous) but breaks any dependence between them, without the need of parametric
models to describe the univariate marginal patterns, not even the intensity of the processes.

Value

A list with elements

KSpv P-value of the independence test.

reject Binary vale indicating if the test is rejected (value 1) or not (value 0) at the alpha
significance level.

KSest Statistic of the independence test.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also

TestIndNH. fun, CondTest.fun,DutilleulPlot. fun, DistShift.fun

TestIndNH.fun 45

Examples

#Test applied to three independent NHPP
posx<-simHPc.fun(@.1, 20, fixed.seed=123)$posH
posz<-simHPc.fun(@.15,22, fixed.seed=124)$posH
posy<-simHPc.fun(@.1, 18, fixed.seed=125)%posH
T<-max(posx,posy,posz)+10

aux<-TestIndLS.fun(posx, posy, posz,T=T,
cores=1,fixed.seed=321)

aux$KSpv
TestIndNH. fun Calculate a bootstrap test to check the independence between up to
three nonhomogeneous Poisson or point processes in time
Description

This function calculates the test by Abaurrea et al. (2014). The statistic is based on the close point
relation, which adapts the crossed nearest neighbour distance ideas of spatial point processes to the
case of (homogenoeus or nonhomogeneous) point processes in time. The test can be applied to
two or three homogeneous or non homogeneous Poisson processes or to any point process which
can be simulated. Currently, it is implemented for Poisson processes and for Neyman-Scott cluster
processes. The p-value is obtained using a parametric bootstrap approach.

Usage

TestIndNH.fun(posx, posy, posz=NULL, NumProcess=2, alpha = 0.05,
nsim = 100, PA = FALSE, cores = 1, type = "Poisson”,

lambdaMarg = NULL, lambdaParent = NULL, lambdaNumP = NULL,

dist = "normal”, sigmaC = 1, minC = -1, maxC = 1,fixed.seed=NULL)

Arguments

posXx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Numeric vector. Position of the occurrence points in the third process. Only
used if NumProcess=3.

NumProcess Optional. Integer equal to 1 or 2. Number of processes added to the first one.

alpha Optional. Significance level used to obtain a decision (reject-no reject) based on
the test p-value.

nsim Optional. Positive integer. Number of simulations performed to calculate the
test.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by

including the previous and the following points to the overlapping intervals.

46

TestIndNH.fun
cores Optional. Number of cores of the computer to be used in the calculations.
type Optional. Label "Poisson" or "PoissonCluster". Type of point processes to be
generated in the parametric bootstrap. Up to now, only two types are available:
Poisson processes ("Poisson") and Neyman-Scott cluster processes ("Poisson-
Cluster").
lambdaMarg Matrix of dimension 7' x (NumProcess — 1). Only used if type="Poisson’.

Each column is the intensity vector to generate the Poisson processes.

lambdaParent Numeric vector. Only used if type=’PoissonCluster’. Intensity vector of the PP
used to generate the centers of the clusters of the Neyman-Scott process.

lambdaNumP Numeric vector with 1 or 2 values. Only used if type=’PoissonCluster’. Mean
values of the number of sons of the processes to be generated. If its length is
equal to 1, the same value is used in both processes.

dist Optional. Label "normal" or "uniform". Only used if type="PoissonCluster’.
Distribution used to generate the point locations of each cluster.

sigmaC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster’
and dist="normal’. Standard deviation of the normal distribution. If its length is
equal to 1, the same value is used in both processes.

minC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster’
and dist="uniform’. Lower limits of the Uniform distribution. If its lengthis
equal to 1, the same value is used in both processes.

maxC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster’
and dist="uniform’. Upper limits of the Uniform distribution. If its lengthis
equal to 1, the same value is used in both processes.

fixed. seed Optional. An integer or NULL. If it is an integer, that is the value used to set the
seed in random generation processes. It it is NULL, a random seed is used.

Details

The underlying idea of the test is to compare, for each point in the first process, the behavior of its
set of close points in the observed vector process (N, N, IV,), and in simulated vector processes
with the same characteristics and mutually independent components. In the simulated vectors, the
process N, is fixed and second and third processes with intensities A, and A, (the intensities of N,
and IV,) are generated. If the observed behavior is significantly different, independence is rejected.
The distribution of the statistic is obtained using a Monte Carlo approach if the intensities A, (¢) and
A (t) are known, or a parametric bootstrap if they have been estimated. See Abaurrea et al. (2014)
for more details

It is noteworthy that is being assumed that the processes are Poisson or Neyman-Scott cluster pro-
cesses. Then, if necessary, validation of that assumption should be previously carried out.

The lenght of the observation period is determined by the length of the intensity vector A, that is
lambdaParent (if type="PoissonCluster’) or the first element of the dimension of lambdaMarg (if
type="PoissonC’.
Homogenous processes are generated if the intensity vector lambda is constant (that is if all the
values are equal).

The test TestIndLS. fun, which uses a non parametric bootstrap approach, is available for any
homogeneous point process.

TestIndNH.fun 47

Value

A list with elements

KSpv P-value of the independence test.
reject Binary vale indicating if the test is rejected (value 1) or not (value 0) at the alpha
significance level.
KSest Statistic of the independence test.
References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

TestIndLS.fun,CondTest.fun,DutilleulPlot. fun,DistSim.fun, DistObs.fun,uniongentri.fun

Examples

#Test applied to 3 independent NHPP
set.seed(123)

lambdax<-runif (150, 0.01,0.1)

set.seed(124)

lambday<-runif (150, 0.02,0.1)

set.seed(125)

lambdaz<-runif (150, 0.015,0.1)
posx<-simNHPc.fun(lambdax, fixed.seed=123)$posNH
posy<-simNHPc. fun(lambday, fixed.seed=124)$posNH
posz<-simNHPc.fun(lambdaz, fixed.seed=125)$posNH

aux<-TestIndNH.fun(posx, posy, posz, nsim=50, type='Poisson',
NumProcess=3, lambdaMarg=cbind(lambday, lambdaz), fixed.seed=321)
aux$KSpv

#Test applied to 3 dependent NS cluster processes with 2 cores
#set.seed(123)

#lambdaParent<-runif(500,0,0.1)
#DepPro<-DepNHNeyScot . fun(lambdaParent=1ambdaParent, d=3, lambdaNumP = 3,
dist = "normal”, sigmaC = 1, fixed.seed=123,cores=2)
#posx<-DepPro$PP1

#posy<-DepPro$PP2

#posz<-DepPro$PP3

#aux<-TestIndNH.fun(posx, posy, posz, cores=1, type='PoissonCluster',
NumProcess=3,lambdaParent = lambdaParent, lambdaNumP = 3,

dist = "normal”, sigmaC = 1, fixed.seed=123, nsim=200)

#aux$KSpv

48 uniongentri.fun

uniongentri.fun Calculates the set of close points of each point in a process

Description
This function calculates the set of close points of each occurence point in the first process of a set
of uo to three processes.

Usage

uniongentri.fun(posx, posy, posz=NULL, info = FALSE, PA = FALSE,
procName=c('X"','Y"','Z'),...)

Arguments
posx Numeric vector. Position of the occurrence points in the first process.
posy Numeric vector. Position of the occurrence points in the second process.
posz Optional. Numeric vector. Position of the occurrence points in the third process.
Only used when three processes are involved.
info Optional. Logical flag. If it is TRUE, information about the generated points is
shown on the screen and dotcharts and bivariate charts of the occurrence points
in the processes are displayed.
procName Vector of character strings. Names for the processes.
PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.
Further arguments to be passed to plot if info=T.
Details

A point in a process is close to a point in another process, if their time intervals overlap; the time
interval of a point is the time interval between itself and the previous point. If there are three
processes, the set of close points of ¢, , Su,.4y- is defined as the set of the pairs of points (tyj ta)
such that ¢, is close to ¢, and ¢, is close to ¢, . If there are two processes, Sa.say 1S the set of
points ¢, such that ¢, is close to t,,..

The algortihm to calculate the sets of close points (in the case of three processes) is the following,
see Abaurrea et al. (2015) for details: First, given two processes, the pairs of close points in
those processes are calculated. If the last point occurs in the first process, there is a censored time
interval in the second process (the point overlaps a time interval whose occurrence point has not
been observed) and that pair is not considered). This step is performed for all the combinations
of pairs of processes. The basic close point relation is commutative, and only three different pairs
(XY, YZ, XZ) must be considered. This is not the case of the broadened definition, where two more

uniongentri.fun 49

points (the previous and the following ones) are added to the set; in that case, the six pairs (XY, YX,
YZ,ZY, XZ, ZX) must be calculated.

Once all the pairs of close points are obtained, the set of close points for each point ¢, is obtained
by concatenating the adequate pairs of points from all the possible orders of the three processes:
XYZ, XZY and YXZ for the basic definition, and the six possible permutations for the broadened
definition. The final set of close points of ¢, is the union of the different pairs from all the possible
permutations.

Value

A list with elements

X First elements of the 3-tuples of points (¢,,,%,,,t.,) in the sets of close points

iX Position i (=1,2,3....) of the point ¢, in the first process

Y Second elements of the 3-tuples of points (¢, , t,,, .,) in the sets of close points

iy Position i (=1,2,3....) of the point ¢, in the second process

YA Third elements of the 3-tuples of points (¢,,,1,,,t.,) in the sets of close points.

It is NULL if posz=NULL.

iz Positioni (=1,2,3....) of the point ¢, in the third process. It is NULL if posz=NULL.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2014). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

TestIndNH.fun,DistSim.fun, DistObs.fun

Examples

set.seed(123)

posx<-sort(runif(20,0,1000))
posy<-sort(runif(25,0,1000))
posz<-sort(runif(40,0,1000))
aux<-uniongentri.fun(posx, posy, posz, info=TRUE)

Index

+Topic Tests of Independence Between

Point Processes in Time
IndTestPP-package, 2

BarTxTn, 3
buscar (simNHPc. fun), 41

calcdist.fun, 19
calcdist.fun (DistObs.fun), 19
calcNmu (CondTest.fun), 5
ComplPos. fun, 4
CondTest.fun, 5, 12, 25, 44,47
CPSPpoints.fun, 7, 10
CPSPPOTevents.fun, 8, 8

depchi. fun, 10
DepMarkedNHPP. fun, 12, 14, 16, 18, 43
DepNHCPSP. fun, 13, 13, 16, 18
DepNHNeyScot. fun, 13, 14, 15, 18, 27
DepNHPPqueue. fun, 13, 14, 16, 17
DistObs.fun, 19, 23,47, 49
DistShift. fun, 20, 44
DistSim.fun, 20, 21, 22,47, 49
DistSimfix.fun (DistSim.fun), 22
dotchart, 20, 23
DutilleulPlot.fun, 6, 12,24, 28, 44,47

fn2 (TestIndNH. fun), 45
fn2B (TestIndLS. fun), 43
fn2fix (TestIndNH. fun), 45
fn3 (DutilleulPlot.fun), 24

genbiPos. fun (uniongentri.fun), 48
GenSons. fun (DepNHNeyScot. fun), 15
gentriPos. fun (uniongentri.fun), 48

HDFaux (NHD. fun), 29

IndNHNeyScot. fun, 16, 23, 25, 28
IndNHPP. fun, 13, 18, 27,27, 40, 42
IndTestPP (IndTestPP-package), 2

50

IndTestPP-package, 2
Jenv (NHJ. fun), 33
Kenv (NHK. fun), 37

miKS. fun (TestIndNH. fun), 45
mirank.fun (TestIndNH.fun), 45

nearestD (NHD. fun), 29
nearestdist. fun, 25, 28
NHD. fun, 4, 29, 33, 36, 39
NHDaux (NHD. fun), 29
NHDFaux (NHJ. fun), 33
NHF . fun, 4, 30, 31, 36, 39
NHFaux (NHF . fun), 31

NHJ . fun, 4, 30, 32, 33, 33, 39
NHJaux (NHJ. fun), 33
NHK. fun, 4, 30, 33, 36, 37
NHKaux (NHK. fun), 37
NHKaux2 (NHK. fun), 37
NHKaux3 (NHK. fun), 37
nMenr (NHD. fun), 29

par, 34

pdist.fun (nearestdist.fun), 28
plot, 5, 19, 20, 23, 24, 48
prodN2 (NHD. fun), 29

rexp, 17

simHPc. fun, 40, 42
simNHPc. fun, 23, 27, 28, 40, 41
SpecGap.fun, 13,42

TestIndLS.fun, 21,43, 46, 47
TestIndNH.fun, 6, 12, 20, 23, 25, 44, 45, 49

uniongentri.fun, 19, 20,47, 48

	IndTestPP-package
	BarTxTn
	ComplPos.fun
	CondTest.fun
	CPSPpoints.fun
	CPSPPOTevents.fun
	depchi.fun
	DepMarkedNHPP.fun
	DepNHCPSP.fun
	DepNHNeyScot.fun
	DepNHPPqueue.fun
	DistObs.fun
	DistShift.fun
	DistSim.fun
	DutilleulPlot.fun
	IndNHNeyScot.fun
	IndNHPP.fun
	nearestdist.fun
	NHD.fun
	NHF.fun
	NHJ.fun
	NHK.fun
	simHPc.fun
	simNHPc.fun
	SpecGap.fun
	TestIndLS.fun
	TestIndNH.fun
	uniongentri.fun
	Index

