
Package ‘IFC’
July 24, 2020

Encoding UTF-8

Type Package

Title Tools for Imaging Flow Cytometry

Version 0.0.9

Date 2020-07-22

Maintainer Yohann Demont <git.demont@gmail.com>

BugReports https://github.com/gitdemont/IFC/issues

Description Contains several tools to treat imaging flow cytometry data from 'Im-
ageStream®' and 'FlowSight®' cytometers ('Amnis®', part of 'Luminex®'). Pro-
vides an easy and simple way to read, write and subset .rif, .cif and .daf files. Informa-
tion such as masks, features, regions and populations set within these files can be re-
trieved. In addition, raw data such as images stored can also be accessed. Users, may hope-
fully increase their productivity thanks to dedicated functions to extract, visualize and ex-
port 'IFC' data. Toy data example can be installed through the 'IFCdata' package of approxi-
mately 32 MB, which is available in a 'drat' reposi-
tory <https://gitdemont.github.io/IFCdata>. See file 'COPYRIGHTS' and file 'AU-
THORS' for a list of copyright holders and authors.

Copyright file inst/COPYRIGHTS

License GPL-3

Depends R (>= 3.4.0)

Imports Rcpp (>= 0.10.0), RcppProgress, xml2, png, tiff, jpeg, utils,
grid, gridExtra, lattice, latticeExtra, KernSmooth, DT,
visNetwork

Suggests IFCdata, shiny, reticulate

LinkingTo Rcpp, RcppProgress

Additional_repositories https://gitdemont.github.io/IFCdata

RoxygenNote 7.1.0

NeedsCompilation yes

Author Yohann Demont [aut, cre],
Gautier Stoll [ctb],

1

https://github.com/gitdemont/IFC/issues

2 R topics documented:

Guido Kroemer [ldr],
Jean-Pierre Marolleau [ldr],
Loïc Garçon [ldr]

Repository CRAN

Date/Publication 2020-07-24 09:52:10 UTC

R topics documented:
IFC-package . 3
autoplot . 4
buildBatch . 6
buildFeature . 8
buildGraph . 8
buildPopulation . 12
buildRegion . 13
checksumIFC . 14
data_add_features . 15
data_add_pops . 16
data_add_regions . 17
data_to_DAF . 18
DisplayGallery . 20
ExportToBATCH . 22
ExportToDAF . 23
ExportToGallery . 25
ExportToNumpy . 27
ExportToReport . 29
ExportToXIF . 31
ExtractFromDAF . 33
ExtractFromXIF . 35
ExtractImages_toBase64 . 37
ExtractImages_toFile . 38
ExtractImages_toMatrix . 39
ExtractMasks_toMatrix . 40
getAborted . 41
getFullTag . 42
getIFD . 43
getInfo . 44
getOffsets . 46
inv_smoothLinLog . 47
objectCleanse . 48
objectDisplay . 49
objectExtract . 50
objectParam . 52
paletteIFC . 54
plotGraph . 55
popsCopy . 56
popsGetObjectsIds . 58

IFC-package 3

popsNetwork . 59
readIFC . 60
smoothLinLog . 61
subsetOffsets . 61
writeIFC . 62

Index 64

IFC-package Tools for Imaging Flow Cytometry

Description

Contains several tools to treat Imaging Flow Cytometry data from ImageStream(R) and FlowSight(R)
cytometers (Amnis(R), part of Luminex(R)). Provides an easy and simple way to read or write .rif,
.cif and .daf files. Information such as masks, features, regions and populations set within these
files can be retrieved. In addition, raw data such as images stored can also be accessed. Users, may
hopefully increase their productivity thanks to dedicated functions to extract, visualize and export
IFC data.

Details

The IFC package provides several categories of functions:
- to read / write / export / visualize:
readIFC, writeIFC, ExtractFromDAF, ExportToDAF, data_to_DAF, ExtractFromXIF, ExportToXIF,
ExportToBATCH, ExportToReport, ExportToGallery, ExportToNumpy, DisplayGallery, ExtractImages_toBase64,
ExtractImages_toFile, ExtractImages_toMatrix, ExtractMasks_toMatrix, objectExtract,
popsNetwork, plotGraph, paletteIFC, autoplot
- to transform features values
smoothLinLog, inv_smoothLinLog
- to deeply extract information from files:
getInfo, getOffsets, getIFD, getFullTag, getAborted
- dedicated to populations:
popsCopy, popsGetObjectsIds, popsNetwork
- for adding features, regions, populations:
data_add_features, data_add_regions, data_add_pops
- to allow several coercion:
buildBatch, buildFeature, buildGraph, buildPopulation, buildRegion

Author(s)

Maintainer: Yohann Demont <git.demont@gmail.com>

4 autoplot

autoplot Automatic Parameters Detection for IFC Graphs

Description

Function intended to generate IFC graphs with minimal inputs from users.
It is essentially based on automatic detection of graphical parameters thanks to ’shown_pops’ argu-
ment.

Usage

autoplot(
obj,
shown_pops = NULL,
subset = NULL,
x = NULL,
x_trans = NULL,
y = NULL,
y_trans = NULL,
type = NULL,
smoothingfactor = NULL,
normalize = NULL,
bin,
viewport = "ideas",
precision = c("light", "full")[1],
color_mode = c("white", "black")[1],
draw = TRUE,
...

)

Arguments

obj an ‘IFC_data‘ object extracted by ExtractFromDAF(extract_features = TRUE)
or ExtractFromXIF(extract_features = TRUE).

shown_pops one or several populations present in ’obj’. Default is NULL.
If provided, autoplot will try to display these populations. See details when
not provided.

autoplot will try to determine x and y and their transformations based on
’shown_pops’ parameter. If all populations provided in ’shown_pops’ are sib-
lings, region(s) from which ’shown_pops’ were defined will be displayed.
In case ’shown_pops’ are not siblings, they will be treated as populations and
a graph will be generating with an overlay of these populations. Order of this
overlay is given by order of ’shown_pops’.
Finally, changing any of the following arguments (x, x_trans, y, y_trans, type)
to something else than the one detected from ’shown_pops’ will prevent from
displaying region(s) and ’shown_pops’ populations will be displayed as overlay.

autoplot 5

However, please concider that if original type is ’histogram’ changing x_trans
transformation will have no impact on this.

subset a population present in ’obj’. Default is NULL. Background population that
will be used to generate graph. This argument will not be used when graph is
an histogram. If this argument is filled with a different population than what
can be determined thanks to ’shown_pops’, Then ’shown_pops’ will be treated
as overlay. However, ’shown_pops’ argument can still be used to determine x, y
axis and their transformation

x feature for x-axis. Default is NULL. When empty, autoplot will try to deter-
mine if automatically from ’shown_pops’ argument. If provided, x feature has to
be a name from ’obj’ features. Note that providing x feature : - takes precedence
on automatic x-axis detection. - will reset x-axis transformation to "P" except if
’x_trans’ is filled.

x_trans parameter for x-axis transformation. Default is NULL. If not provided, trans-
formation will be determined thanks to ’shown_pops’. It takes precedence when
provided and If provided it has to be be either ’P’ or coercible to a positive nu-
meric. "P’ will leave x-axis as is but a positive numeric will be passed has hyper
argument of smoothLinLog to transform x-axis.

y feature for y-axis. Default is NULL. When empty, autoplot will try to deter-
mine it automatically from ’shown_pops’ argument. If provided, y feature has
to be a name from obj features. Note that providing y feature - takes precedence
on automatic y-axis detection. - will reset y-axis transformation to "P" except if
’y_trans’ is filled.

y_trans parameter for y-axis transformation. Default is NULL. If not provided, trans-
formation will be determined thanks to ’shown_pops’. It takes precedence when
provided and has to be be either ’P’ or coercible to a positive numeric. "P’ will
leave y-axis as is but a positive numeric will be passed has hyper argument of
smoothLinLog to transform y-axis. Note that it is irrelevant for "histogram".

type type of plot. Default is NULL to allow autoplot to detemine ’type’ automati-
cally. If provided it has to be either "histogram", "scatter", "density". Note that
when "histogram" is choosen, ’subset’ parameter will not be used. Note that
"density" will be possible only when ’subset’ will be automatically determined
or filled with only one population. Note that when autoplot has determined,
thanks to ’shown_pops’ that original plot is an "histogram", "Object Number"
will be used as y-axis by default when ’type’ is forced to "scatter" or "density".

smoothingfactor

when type of graph is "histogram", whether to smooth it or not. Default is
NULL. Should be an integer [0:20] Note that 0 means no smoothing and other
values will produce smoothing

normalize when type of graph is "histogram", whether to normalize it or not. Default is
NULL. Should be a logical.

bin number of bins when graph’s type is "histogram" / number of equally spaced
grid points for density. Default is missing to allow autoplot to determine it by
itself.

viewport Either "ideas", "data" or "max" defining limits used for the graph. Default is
"ideas".

6 buildBatch

-"ideas" will use same limits as the one defined in ideas.
-"data" will use data to define limits.
-"max" will use data and regions drawn to define limits.

precision when graphs is a 2D scatter with population overlay, this argument controls
amount of information displayed. Default is "light".
-"light", the default, will only display points of same coordinates that are amoung
the other layers.
-"full" will display all the layers.

color_mode Whether to extract colors from obj in white or black mode. Default is "white".

draw whether to draw plot. Default is TRUE.

... Other arguments to be passed.

Details

when ’shown_pops’ are not provided, autoplot can’t determine anything.
So, if not provided default values will be used:
-’subset’ = "All"
-’x’ = "Object Number"
-’x_trans’ = "P"
-’y’ = "Object Number"
-’y_trans’ = "P"
-’type’ = "histogram"

Value

an lattice trellis object

buildBatch Batch Builder

Description

Prepares XML node for ExportToBATCH.

Usage

buildBatch(
files,
compensation,
analysis,
default_batch_dir,
config_file,
name = "Batch1",
use_acquisition = FALSE,
suffix = "",
allow_channels_dissimilarity = FALSE,

buildBatch 7

overwrite = TRUE,
segment_rif = "None",
options

)

Arguments

files path of files to batch.

compensation path to compensation file.

analysis path to analysis file.
default_batch_dir

directory where batches are stored.
It can be found in IDEAS(R) software, under Options -> Application Defaults
-> Directories -> Default Batch Report Files Directory.
If missing, the default, it will be deduced from IDEAS(R) config file, However,
if it can’t be deduced then tempdir(check = TRUE) from base will be used.
This argument takes precedence over ’config_file’ and filling ’default_batch_dir’
prevents the use of ’config_file’ argument.

config_file path to IDEAS(R) config file.
It may depends on IDEAS(R) software installation but one may use "C:/Users/%USER%/AppData/Roaming/Amnis
Corporation/userconfig.xml".

name name of batch. Default is "Batch1".
use_acquisition

whether to use acquisition as analysis template. Default is FALSE.

suffix suffix to add to files when batched. Default is "".
allow_channels_dissimilarity

whether to allow building batch when all files were not acquired with same
channels. Default is FALSE.

overwrite whether to overwrite files or not. Default is TRUE.

segment_rif size of file segmentation. Default is "None", for no segmentation.
Allowed are "None", "100", "1K", "5K", "10K", "50K", "100K".

options A list of arguments to be passed.
If missing, the default, options will be set to:
-"Brightfield compensation"=TRUE,
-"EDF deconvolution"=TRUE,
-"Camera background"=TRUE,
-"Spatial alignment"=TRUE.
Allowed are TRUE or FALSE for all, excepted for ’Spatial aligment’ which can
also be path to .rif file.

Value

a list containing batch information:
-xml, the xml object to be written,
-batch_dir, the directory where xml file is desired to be saved according to ’default_batch_dir’ and
’config_file’.

8 buildGraph

buildFeature IFC Feature Coercion

Description

Helper to build a list to allow feature export.

Usage

buildFeature(
name,
type = c("single", "combined", "computed")[1],
def = "Camera Line Number",
val = NULL,
...

)

Arguments

name feature’s name. If missing, it will be determined thanks to def.

type feature’s type. Default is "single". Allowed are "single", "combined", "com-
puted".

def definition of the feature. Default is "Camera Line Number".

val a coercible to numeric vector of feature values. Default is NULL.
Note that although not mandatory for buildFeatureit has to be provided to
allow feature export in ExportToDAF and data_add_features.

... Other arguments to be passed.

Value

a list containing all feature information.

buildGraph IFC Graph Coercion

Description

Helper to build a list to allow graph export.

buildGraph 9

Usage

buildGraph(
type = c("histogram", "scatter", "density")[3],
xlocation = 0,
ylocation = 0,
f1 = "Object Number",
f2 = "Object Number",
scaletype = 1,
xmin = -1,
xmax = 1,
ymin = 0,
ymax = 1,
title = paste0(c(unlist(lapply(BasePop, FUN = function(x) x$name)),
unlist(lapply(GraphRegion, FUN = function(x) x$name))), collapse = ", "),

xlabel = f1,
ylabel = f2,
axislabelsfontsize = 10,
axistickmarklabelsfontsize = 10,
graphtitlefontsize = 12,
regionlabelsfontsize = 10,
bincount = 0,
freq = c("T", "F")[1],
histogramsmoothingfactor = 0,
xlogrange = "P",
ylogrange = "P",
splitterdistance = 120,
stats = c("true", "false")[2],
xsize = c(320, 480, 640)[1],
ysize = xsize + ifelse(stats == "true", splitterdistance, 0),
xstats = "Count|%Gated|Mean",
ystats = xstats,
order,
xstatsorder,
Legend,
BasePop = list(list()),
GraphRegion = list(list()),
ShownPop = list(list()),
...

)

Arguments

type Graph’s type. Either "histogram", "scatter" or "density". Default is "density".

xlocation Integer. Graph’s x location. Default is 0.

ylocation Integer. Graph’s x location. Default is 0.

f1 Character. Graph x axis parameter. Default is "Object Number".

10 buildGraph

f2 Character. Graph y axis parameter. Default is "Object Number". Only used
when ’type’ is not "histogram".

scaletype Integer. Graph scale. Either 0 (auto), 1 (manual). Default is 1.

xmin Double. Graph’s xmin. Default -1.

xmax Double. Graph’s xmax. Default 1.

ymin Double. Graph’s xmin. Default 0.

ymax Double. Graph’s xmax. Default 1.

title Character. Graph title label. Default wil use names of BasePop followed by
names of ShownPop collapse with ’, ’.

xlabel Character. Graph x axis label.

ylabel Character. Graph y axis label.
axislabelsfontsize

Integer. Axis label font size. Default is 10. Allowed are: 8, 9, 10, 11, 12, 14,
16, 18, 20, 22, 24, 26, 28.
Checked but not yet implemented.

axistickmarklabelsfontsize

Integer. Axis tick font size. Default is 10. Allowed are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28.
Checked but not yet implemented.

graphtitlefontsize

Integer. Axis title font size. Default is 12. Allowed are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28.
Checked but not yet implemented.

regionlabelsfontsize

Integer. Axis region font size. Default is 10. Allowed are: 8, 9, 10, 11, 12, 14,
16, 18, 20, 22, 24, 26, 28.
Checked but not yet implemented.

bincount Integer. Histogram bin count. Default is 0. Allowed are: 0, 8, 16, 32, 64, 128,
256, 512, 1024.

freq Character. Histogram with frequency normalization of not. Default is "T", al-
lowed are "T" or "F".

histogramsmoothingfactor

Integer. Histogram smoothing factor. Allowed are [0-20]. Only partly imple-
mented, default is 0 for no smoothing other values will produce same smoothing.

xlogrange determines hyper parameter of smoothLinLog transformation for x-axis. Default
is "P" for no transformation.

ylogrange determines hyper parameter of smoothLinLog transformation for y-axis. Default
is "P" for no transformation.

splitterdistance

Integer. Default is 120. Checked but not yet implemented.

stats Character. Either "true" or "false" to display stats. Default is "false".

xsize Integer. Graph’s x size. Default is 320 for small. Regular are: 320 (small), 480
(medium), 640 (big). Checked but not yet implemented.

buildGraph 11

ysize Integer. Graph’s y size. Default is ’ysize’ + ’splitterdistance’ when ’stats’ is set
to "true". Checked but not yet implemented.

xstats Character. x stats to be computed. Default is ’Count|%Gated|Mean’. It has
to be a filled with the concatenation of ’Count’, ’%Total’, ’%Gated’, ’%Plot-
ted’, ’Objects/mL’, ’Mean’, ’Median’, ’Std. Dev.’, ’MAD’, ’CV’, ’Minimum’,
’Maximum’, ’Geo. Mean’, ’Mode’, ’Variance’ and /or ’NaN’, collapse with ’|’.
Checked but not yet implemented.

ystats Character. y stats to be computed. Should be identical to ’xstats’. Default is
xstats. Checked but not yet implemented.

order Character. Order to display populations. When ’type’ is "density" it will be
BasePop[[1]]$name. When ’type’ is "histogram" or "density" ’ShownPop’ are
not allowed Otherwise, it will use each of ’GraphRegion’, ’BasePop’ and ’Shown-
Pop’ names, collapse with ’|’.

xstatsorder Character. Order of stat rows. It will use each of ’GraphRegion’ names & each
of ’BasePop’ names, reverted and collapse with ’|’.

Legend Default is list(onoff=’false’,x=’0’,y=’0’,witdh=’96’,height=’128’). Not yet im-
plemented.

BasePop Default is list(list()). See details.
GraphRegion Default is list(list()). Only allowed member are sub-list(s) with only one char-

acter component named ’name’.
ShownPop Default is list(list()). Only allowed member are sub-list(s) with only one char-

acter component named ’name’.
... Other arguments to be passed.

Details

Many parameters are not used or are only partly implemented, but most are checked in order to be
compatible for further export.
For ’BasePop’, if left as is "All" will be used as default.
This parameter will be built / checked according to ’type’ argument.
’BasePop’ has to be a list of list(s) and each sub-list should can contain several elements, but only
"name" is mandatory.
The sublist mebers ar:
-"name", "linestyle", "fill",
and only when ’type’ is "density"
-"densitybincount", "densitymin", "densitymax",
-"densitycolors", "densitycolorslightmode", "densitycolorsdarkmode".
Each sub-list will be created automatically with the following default values (except if explicitly
provided):
-linestyle=’Solid’,
-fill=’true’,
-densitybincount=’128’,densitymin=’0’,densitymax=’0’,
-densitycolors=’-16776961|-13447886|-256|-23296|-65536|’,
-densitycolorslightmode=’-16776961|-13447886|-256|-23296|-65536|’,
-densitycolorsdarkmode=’-16776961|-13447886|-256|-23296|-65536|’
Note that when ’type’ is "density", ’BasePop’ should be of length one.
and fill will be overwritten to ’true’.

12 buildPopulation

Value

a list containing all graph information.

buildPopulation IFC Population Coercion

Description

Helper to build a list to allow population export.

Usage

buildPopulation(
name,
type,
base = "All",
color,
lightModeColor,
style,
region,
fx,
fy,
definition,
obj,
...

)

Arguments

name name of the population.

type type of population. Either "B", "C", "G" or "T" for Base, Combined, Graphical
or Tagged, respectively.
If missing, the default, ’type’ will be deduced from other parameters. If ’name’
is "All" type will be "B". Otherwise, if ’fx’ is given type will be "G". Otherwise,
"T", if ’definition’ is missing but not ’obj’ or "C" if ’definition’ is not missing.

base which population is base on. Default is base=’All’. Only needed when type =
"T".

color color of the population. See paletteIFC for allowed colors. If not provided,
will be sampled.

lightModeColor lightModeColor of the population. See paletteIFC for allowed colors. If not
provided, will be sampled.

style style of the population. Either 20, 4, 3, 1, 5, 0, 2, 18, 15, 17, respectively
for: "Simple Dot", "Cross", "Plus", "Empty Circle", "Empty Diamond", "Empty
Square", "Empty Triangle", "Solid Diamond", "Solid Square", "Solid Triangle".

region Only if type=’G’. Name of the region defining the population.

buildRegion 13

fx Only needed if type=’G’. Name of the x-feature defining the population.

fy Only needed if type=’G’ and only if region is defined in 2D. Name of the y-
feature defining the population.

definition Only needed if type=’C’. Parameters defining the population.

obj Only needed if type=’T’. Either a:
-Logical vector of same length as ’All’ population indicating if a cell belongs to
the population or not.
-Numeric Vector of indices of cells that belongs to the population.

... Other arguments to be passed.

Value

a list containing all population information.

buildRegion IFC Region Coercion

Description

Helper to build a list to allow region export.

Usage

buildRegion(
type,
label,
cx,
cy,
color,
lightcolor,
ismarker = "false",
doesnotoverride = "false",
xlogrange,
ylogrange,
x,
y,
...

)

Arguments

type Region’s type. Either "line", "rect" or "poly".

label label of the region.

cx x label’s position. If not provided x center will be used.

cy y label’s position. If not provided y center will be used.

14 checksumIFC

color color of the region. See paletteIFC for allowed colors.

lightcolor lightcolor of the region. See paletteIFC for allowed colors.

ismarker Default is ’false’. Allowed are ’true’ or ’false’. Used for compatibility with
amnis file but role remains unknown.

doesnotoverride

Default is ’false’. Allowed are ’true’ or ’false’. Used for compatibility with
amnis file but role remains unknown.

xlogrange determines hyper parameter of smoothLinLog transformation for x-axis. Default
is "P" for no transformation.

ylogrange determines hyper parameter of smoothLinLog transformation for y-axis. Default
is "P" for no transformation.

x vector of x vertices values.

y vector of y vertices values.

... Other arguments to be passed.

Value

a list containing all region information.

checksumIFC IFC Files Checksum

Description

This function returns RIF/CIF checksum. Checksum is the sum of img IFDs (Image Field Directory)
offsets of objects 0, 1, 2, 3 and 4.

Usage

checksumIFC(fileName, ...)

Arguments

fileName path to file.

... arguments to pass to checksumDAF or checksumXIF.

Details

if fileName is a DAF file, then CIF checksum is computed from images values found in DAF.

Value

an integer corresponding to IFC file checksum.

data_add_features 15

data_add_features Add Feature to IFC_data Object

Description

Adds features to an already existing ‘IFC_data‘ object.

Usage

data_add_features(obj, features, ...)

Arguments

obj an ‘IFC_data‘ object extracted by ExtractFromDAF(extract_features = TRUE)
or ExtractFromXIF(extract_features = TRUE).

features a list of features to add to obj. Each element of this list will be coerced by
buildFeature.

... Other arguments to be passed.

Details

A warning will be thrown if a provided feature is already existing in obj.
In such a case this feature will not be added to obj.
If any input feature is not well defined and can’t be created then an error will occur.

Value

an IFC_data object with features added.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)
copy 1st feature found in daf
feat_def <- daf$features_def[[1]]
if(length(feat_def) != 0) {

feat_def_copy <- feat_def
modify name and value of copied features
feat_def_copy$name <- "copied_feature"
feat <- daf$features[, feat_def$name]
feat_copy <- feat
feat_copy <- feat_copy * 10
create new object with this new feature

dafnew <- data_add_features(obj = daf, features = list(c(feat_def_copy, list(val = feat_copy))))
}

} else {

16 data_add_pops

message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',
'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

data_add_pops Add Population to IFC_data Object

Description

Adds populations to an already existing ‘IFC_data‘ object.

Usage

data_add_pops(
obj,
pops,
pnt_in_poly_algorithm = 1,
pnt_in_poly_epsilon = 1e-12,
display_progress = TRUE,
...

)

Arguments

obj an ‘IFC_data‘ object extracted by ExtractFromDAF(extract_features = TRUE)
or ExtractFromXIF(extract_features = TRUE).

pops a list of population(s) to add to ’obj’. Each element of this list will be coerced
by buildPopulation.

pnt_in_poly_algorithm

algorithm used to determine if object belongs to a polygon region or not. Default
is 1.
Note that for the moment only 1(Trigonometry) is available.

pnt_in_poly_epsilon

epsilon to determine if object belongs to a polygon region or not. It only applies
when algorithm is 1. Default is 1e-12.

display_progress

whether to display a progress bar. Default is TRUE.

... Other arguments to be passed.

Details

A warning will be thrown if a provided population is already existing in ’obj’.
In such a case this population will not be added to ’obj’.
If any input population is not well defined and can’t be created then an error will occur.

data_add_regions 17

Value

an IFC_data object with pops added.

Source

For pnt_in_poly_algorithm, Trigonometry, is an adaptation of Jeremy VanDerWal’s code http:
//github.com/jjvanderwal/SDMTools

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)
copy 1st population from existing daf
pop <- daf$pops[[1]]
if(length(pop) != 0) {
pop_copy <- pop
modify name, obj and type of copied population
pop_copy$name <- paste0(pop_copy$name,"_copy")
pop_copy$obj <- (which(pop_copy$obj)-1)[1]
pop_copy$type <- "T"
create new object with this new population
dafnew <- data_add_pops(obj = daf, pops = list(pop_copy))

}
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

data_add_regions Add Region to IFC_data Object

Description

Adds regions to an already existing ‘IFC_data‘ object.

Usage

data_add_regions(obj, regions, ...)

Arguments

obj an ‘IFC_data‘ object extracted by ExtractFromDAF(extract_features = TRUE)
or ExtractFromXIF(extract_features = TRUE).

regions a list of region(s) to add to obj. Each element of this list will be coerced by
buildRegion.

... Other arguments to be passed.

http://github.com/jjvanderwal/SDMTools
http://github.com/jjvanderwal/SDMTools

18 data_to_DAF

Details

A warning will be thrown if a provided region is already existing in ’obj’.
In such a case this region will not be added to ’obj’.
If any input population is not well defined and can’t be created then an error will occur.

Value

an IFC_data object with regions added.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)
copy 1st region found in daf
reg <- daf$regions[[1]]
if(length(reg) != 0) {
reg_copy <- reg
modify region label and x boundaries
reg_copy$label <- paste0(reg_copy$label,"_copy")
reg_copy$x <- reg_copy$x*0.9
create new object with this new region
dafnew <- data_add_regions(obj = daf, regions = list(reg_copy))

}
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

data_to_DAF DAF File Writer

Description

Writes an ‘IFC_data‘ object to a daf file

Usage

data_to_DAF(
obj,
write_to,
viewing_pop = "All",
overwrite = FALSE,
binary = TRUE,
endianness = .Platform$endian,
display_progress = TRUE,

data_to_DAF 19

verbose = FALSE,
fullname = TRUE,
cifdir = dirname(obj$fileName),
ntry = +Inf,
...

)

Arguments

obj an ‘IFC_data‘ object extracted with features extracted.

write_to pattern used to export file. Placeholders, like "%d/%s_fromR.%e", will be sub-
stituted:
-%d: with full path directory of ’obj$fileName’
-%p: with first parent directory of ’obj$fileName’
-%e: with extension of ’obj$fileName’ (without leading .)
-%s: with shortname from ’obj$fileName’ (i.e. basename without extension).
Exported file extension will be deduced from this pattern. Note that it has to be
a .daf.

viewing_pop Character String. Allow user to change displayed population. Default is ’All’.

overwrite whether to overwrite file or not. Default is FALSE. Note that if TRUE, it will
overwrite exported file if path of ’obj$fileName’ and deduced from ’write_to’
arguments are different. Otherwise, you will get an error saying that overwrit-
ting source file is not allowed.
Note also that an original file, i.e. generated by IDEAS(R) or INSPIRE(R), will
never be overwritten. Otherwise, you will get an error saying that overwritting
original file is not allowed.

binary whether to write object to file in binary mode or not. Default is TRUE.
Note that it can represent a convenient way to make file written in binary mode
back-compatible with former version of IDEAS software.
/!\ However unexpected behaviour may happen if features, regions, pops, ... are
depending on masks (e.g. AdaptiveErode, Component, LevelSet, Watershed)
introduced in newer version of IDEAS software.
/!\ Important please note that conversion from binary to non-binary and back to
binary may create some rounding adjustment resulting in some features/image
values changes

endianness The endian-ness ("big" or "little") of the target system for the file. Default is
.Platform$endian.
Endianness describes the bytes order of data stored within the files. This param-
eter may not be modified.

display_progress

whether to display a progress bar. Default is TRUE.

verbose whether to display information (use for debugging purpose). Default is FALSE.

fullname whether to export daf file with full name of its corresponding cif, if found. De-
fault is TRUE. If cif can’t be found, daf file will be exported with the original
cif file name.

20 DisplayGallery

cifdir the path of the directory to initially look to cif file. Default is dirname(obj$fileName).
Only apply when ’fullname’ is set to TRUE.

ntry number of times data_to_DAF will be allowed to find corresponding cif file.
Default is +Inf. Only apply when ’fullname’ is set to TRUE.

... other arguments to be passed.

Value

It invisibly returns full path of exported file.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
tmp <- tempdir(check = TRUE)
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)
add a new population to daf
dafnew <- data_add_pops(daf, list(buildPopulation(name = "test", type = "T", obj = 0)))
export obj to file using binary mode
data_to_DAF(obj = dafnew, write_to = paste0(tmp, "\\test_bin.daf"),

overwrite = TRUE, binary = TRUE)
exporting to non binary mode
data_to_DAF(obj = dafnew, write_to = paste0(tmp, "\\test_notbin.daf"),

overwrite = TRUE, binary = FALSE)
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

DisplayGallery Gallery Display

Description

Displays gallery of ‘IFC_img‘ / ‘IFC_msk‘ objects

Usage

DisplayGallery(
...,
objects,
offsets,
image_type = "img",
layout,
name = "DisplayGallery",
caption = FALSE,

DisplayGallery 21

pageLength = 10L,
pdf_pageSize = "A2",
pdf_pageOrientation = "landscape",
pdf_image_dpi = 96,
extract_max = 10,
sampling = FALSE,
display_progress = TRUE,
mode = c("rgb", "gray")[1]

)

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’export’(="base64") and the above parameters will be
overwritten.
If ’offsets’ are not provided extra arguments can also be passed with ... to
getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

image_type image_type of desired offsets. Either "img" or "msk". Default is "img".

layout a character vector of [acquired channels + ’composite’ images] members to ex-
port. Default is missing to export everything.
Note that members can be missing to be removed from final display.
Note that members not found will be automatically removed and a warning will
be thrown.

name id of the datatable container. Default is DisplayGallery.

caption whether to display caption name or not. Default is FALSE.

pageLength integer, number of objects to display per page. Default is 10.

pdf_pageSize string, page dimension when exporting to pdf. Default is "A2".
pdf_pageOrientation

string, page orientation when exporting to pdf. Default is "landscape". Allowed
are "landscape" or "portrait".

pdf_image_dpi integer, desired image resolution. Default is 96, for full resolution.

extract_max maximum number of objects to extract. Default is 10. Use +Inf to extract all.

sampling whether to sample objects or not. Default is FALSE.
display_progress

whether to display a progress bar. Default is TRUE.

mode (objectParam argument) color mode export. Either "rgb" or "gray". Default is
"rgb".

22 ExportToBATCH

Details

arguments of objectExtract will be deduced from DisplayGallery input arguments.
Please note that PDF export link will be available if ’write_to’ will not result in a "bmp".
Please note that exporting to "tiff" may depend on browser capabilities.
Please note that a warning may be sent if gallery to display contains large amount of data. This is
due to use of datatable() from DT.
Warning message:
In instance$preRenderHook(instance) :
It seems your data is too big for client-side DataTables. You may consider server-side processing:
http://rstudio.github.io/DT/server.html
For these reasons, it may be better to use "png" extension to display images.

Value

it invisibly returns a list whose members are:
-data, data for DT::datatable(),
-args, associated arguments to pass to DT::datatable().

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
cif <- ExtractFromXIF(fileName = file_cif)
info <- getInfo(fileName = file_cif, from = "analysis")
randomly show at most 10 "img" objects from file
DisplayGallery(info = info, image_type = "img", extract_max = 10,

sampling = TRUE, write_to = "example.png")
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExportToBATCH Batch File Writer

Description

Writes an XML file to batch files

Usage

ExportToBATCH(batch)

Arguments

batch list of batch nodes as created by buildBatch.

ExportToDAF 23

Value

It invisibly returns full path of xml batch file.

ExportToDAF DAF File Writer

Description

Writes a new DAF file based on another one and exports new region(s), pop(s), feature(s), graph(s)
and / or mask(s).

Usage

ExportToDAF(
fileName,
write_to,
pops = list(),
regions = list(),
features = list(),
graphs = list(),
masks = list(),
viewing_pop = "All",
endianness = .Platform$endian,
verbose = FALSE,
overwrite = FALSE,
fullname = TRUE,
cifdir = dirname(fileName),
ntry = +Inf,
...

)

Arguments

fileName path of file to read data from.

write_to pattern used to export file. Placeholders, like "%d/%s_fromR.%e", will be sub-
stituted:
-%d: with full path directory of ’fileName’
-%p: with first parent directory of ’fileName’
-%e: with extension of ’fileName’ (without leading .)
-%s: with shortname from ’fileName’ (i.e. basename without extension).
Exported file extension will be deduced from this pattern. Note that has to be a
.daf.

pops list of population(s) to export. Will be coerced to exportable format by build-
Population.

regions list of region(s) to export. Will be coerced to exportable format by buildRegion.

features list of feature(s) to export.

24 ExportToDAF

graphs list of graph(s) to export. Not yet implemented.

masks list of mask(s) to export. Not yet implemented.

viewing_pop Character String. Allow user to change displayed population. Default is ’All’.

endianness The endian-ness ("big" or "little") of the target system for the file. Default is
.Platform$endian.
Endianness describes the bytes order of data stored within the files. This param-
eter may not be modified.

verbose whether to display information (use for debugging purpose). Default is FALSE.

overwrite whether to overwrite file or not. Default is FALSE. Note that if TRUE, it will
overwrite exported file if path of ’fileName’ and deduced from ’write_to’ argu-
ments are different. Otherwise, you will get an error saying that overwritting
source file is not allowed.
Note also that an original file, i.e. generated by IDEAS(R) or INSPIRE(R), will
never be overwritten.
Otherwise, you will get an error saying that overwritting original file is not al-
lowed.

fullname whether to export daf file with full name of its corresponding cif, if found. De-
fault is TRUE. If cif can’t be found, daf file will be exported with the original
cif file name.

cifdir the path of the directory to initially look to cif file. Default is dirname(fileName).
Only apply when ’fullname’ is set to TRUE.

ntry number of times ExportToDAF will be allowed to find corresponding cif file.
Default is +Inf. Only apply when ’fullname’ is set to TRUE.

... other arguments to be passed.

Value

It invisibly returns full path of exported file.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
tmp <- tempdir(check = TRUE)
create a tagged population named test with 1st object
pop <- buildPopulation(name = "test", type = "T", obj = 0)
ExportToDAF(file_daf, write_to = paste0(tmp, "\\test.daf"),

overwrite = TRUE, pops = list(pop))
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExportToGallery 25

ExportToGallery Gallery Export

Description

Exports gallery of ‘IFC_img‘ / ‘IFC_msk‘ objects

Usage

ExportToGallery(
...,
objects,
offsets,
image_type = "img",
layout,
export = c("file", "matrix", "base64")[2],
write_to,
base64_id = FALSE,
base64_att = "",
overwrite = FALSE,
main = "",
add_channels = TRUE,
add_ids = 1,
add_lines = 2,
bg_color = "grey20",
dpi = 300,
scale = list(),
extract_max = 10,
sampling = FALSE,
display_progress = TRUE

)

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’mode’(="rgb") and the above parameters will be over-
written.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

image_type image_type of desired offsets. Either "img" or "msk". Default is "img".

26 ExportToGallery

layout a character vector of [acquired channels + ’composite’ images] members to ex-
port. Default is missing to export everything. Note that members can be missing
to be removed from final gallery export. Note that members not found will be
automatically removed and a warning will be thrown.

export export format. Either "file", "matrix", "base64". Default is "matrix".

write_to used when ’export’ is "file" or "base64" to compute respectively filename or
base64 id attribute. Exported type will be deduced from this pattern. Allowed
export are ’.bmp’, ’.jpg’, ’.jpeg’, ’.png’, ’.tif’, ’.tiff’. Note that ’.bmp’ are faster
but not compressed producing bigger data.
Placeholders, if found, will be substituted:
-%d: with full path directory
-%p: with first parent directory
-%e: with extension (without leading .)
-%s: with shortname (i.e. basename without extension)
-%o: with objects (at most 10, will be collapse with "_", if more than one).
-%c: with channel_id (will be collapse with "_", if more than one, composite in
any will be bracketed). A good trick is to use:
-"%d/%s_gallery_Obj[%o]_Ch[%c].tiff", when ’export’ is "file"
-"%s_gallery.bmp", when ’export’ is "base64".
Note that if missing and ’export’ is not "file", ’write_to’ will be set to "%s_gallery.bmp".

base64_id whether to add id attribute to base64 exported object. Default is TRUE.
Only applied when ’export’ is "base64".

base64_att attributes to add to base64 exported object. Default is "".
Only applied when export is "base64". For example, use "class=draggable".
Note that id (if base64_id is TRUE) and width and height are already used.

overwrite whether to overwrite file or not. Default is FALSE.

main main title that will be displayed on top center of the image. If too large it will
be clipped.

add_channels whether to add channels names. Default is TRUE.

add_ids integer, indice of column to mark objects ids number. Default is 1. If add_ids <
1, no ids are added.

add_lines integer, size of separating lines between objects. Default is 1. If add_lines < 1,
no separating lines are added.

bg_color background color for main, channels and separating lines. Default is "grey20".

dpi integer, the resolution of the image in DPI (dots per inch). Default is 300.
Please note that whetever this parameter is final resolution will be 96 dpi.
However image will be scaled according this parameter and magnification factor
will be equal to this parameter divided by 96.

scale a named list whose members are ’size’, ’style’, ’color’, ’xoff’, ’yoff’. Default is
list() to draw no scale. Otherwise,
-’size’ positive integer. Scale’s bar size in micro-meter. Default is ’7’.
This parameter can’t be lesser than 6px nor higher than image width + scale text.
-’style’ a character string. Scale’s bar style, either "dash" or "line". Default is
"dash".
-’color’ a character string. color of the scale. Default is "white".

ExportToNumpy 27

-’xoff’ positive integer. x offset in image to draw scale, starting from bottom left
corner.
-’yoff’ positive integer. y offset in image to draw scale, starting from bottom left
corner.

extract_max maximum number of objects to extract. Default is 10. Use +Inf to extract all.

sampling whether to sample objects or not. Default is FALSE.
display_progress

whether to display a progress bar. Default is TRUE.

Details

arguments of objectExtract will be deduced from ExportToGallery input arguments. TRICK:
for exporting only ONE ’objects’, set ’add_channels’ = FALSE, ’add_ids’ >= 1, ’force_width’ =
FALSE, ’dpi’ = 96; this allows generating image with its original size incrusted with its id number.

Value

Depending on ’export’:
-"matrix", a rgb array,
-"base64", a data-uri string,
-"file", an invisible vector of ids corresponding to the objects exported.

ExportToNumpy Numpy Export

Description

Exports IFC objects to numpy array [objects,height,width,channels]

Usage

ExportToNumpy(
...,
objects,
offsets,
image_type = "img",
display_progress = TRUE,
python = Sys.getenv("RETICULATE_PYTHON"),
dtype = c("uint8", "int16", "uint16", "double")[3],
mode = c("raw", "gray")[1],
export = c("file", "matrix")[2],
write_to,
overwrite = FALSE

)

28 ExportToNumpy

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided the above parameters will be overwritten.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

image_type image_type of desired offsets. Either "img" or "msk". Default is "img".

display_progress

whether to display a progress bar. Default is TRUE.

python path to python. Default is Sys.getenv("RETICULATE_PYTHON").
Note that this numpy should be available in this python to be able to export to
numpy array file, otherwise ’export’ will be forced to "matrix".

dtype desired array?s data-type. Default is "double". Allowed are "uint8", "int16",
"uint16" or "double". If ’mode’ is "raw", this parameter will be forced to "int16".

mode (objectParam argument) color mode export. Either "raw", "gray" . Default is
"raw".

export export format. Either "file", "matrix". Default is "matrix".
Note that you will need ’reticulate’ package installed to be able to export to
numpy array file, otherwise ’export’ will be forced to "matrix".

write_to used when ’export’ is "file" to compute respectively filename. Exported type
will be deduced from this pattern. Allowed export are ’.npy’.
Placeholders, if found, will be substituted:
-%d: with full path directory
-%p: with first parent directory
-%e: with extension of (without leading .)
-%s: with shortname (i.e. basename without extension)
-%o: with objects (at most 10, will be collapse with "_", if more than one).
-%c: with channel_id (will be collapse with "_", if more than one, composite in
any will be bracketed). A good trick is to use:
-"%d/%s_Obj[%o]_Ch[%c].npy", when ’export’ is "file"

overwrite whether to overwrite file or not. Default is FALSE.

Details

arguments of objectExtract will be deduced from ExportToNumpy input arguments.
ExportToNumpy requires reticulate package, python and numpy installed. to create npy file.
If one of these is missing, ’export’ will be set to "matrix".

ExportToReport 29

Value

Depending on ’export’:
-"matrix", an array whose dimensions are [object, height, width, channel].
-"file", it invisibly returns path of .npy exported file.

ExportToReport Graphical and Statistic Report Generation

Description

Generates report from ‘IFC_data‘ object.

Usage

ExportToReport(
obj,
selection,
write_to,
overwrite = FALSE,
onepage = TRUE,
color_mode = c("white", "black")[1],
add_key = "panel",
precision = c("light", "full")[1],
trunc_labels = 38,
trans = asinh,
bin,
viewport = "ideas",
display_progress = TRUE,
...

)

Arguments

obj an ‘IFC_data‘ object extracted with features extracted.

selection when provided, indices of desired graphs. In such case onepage parameter is set
to FALSE. Note that indices are read from left to right, from top to bottom.

write_to pattern used to export file(s). Placeholders, like c("%d/%s_fromR.pdf", "%d/%s_fromR.csv"),
will be substituted:
-%d: with full path directory of ’obj$fileName’
-%p: with first parent directory of ’obj$fileName’
-%e: with extension of ’obj$fileName’ (without leading .)
-%s: with shortname from ’obj$fileName’ (i.e. basename without extension).
Exported file(s) extension(s) will be deduced from this pattern. Note that has to
be a .pdf and/or .csv.

overwrite whether to overwrite file or not. Default is FALSE. Note that if TRUE, it will
overwrite file. In addition a warning message will be sent.

30 ExportToReport

onepage whether to generate a pdf with all graphs on one page or not. Default is TRUE.

color_mode Whether to extract colors from obj in white or black mode. Default is ’white’.

add_key whether to draw a ’global’ key under title or in the first ’panel’ or ’both’. Default
is ’panel’.
Accepted values are either: FALSE, ’panel’, ’global’, ’both’ or c(’panel’, ’global’).
Note that it only applies when display is seen as overlaying populations.

precision when graphs is a 2D scatter with population overlay, this argument controls
amount of information displayed. Default is "light".
-"light", the default, will only display points of same coordinates that are amoung
the other layers.
-"full" will display all the layers.

trunc_labels maximum number of characters to display for labels. Default is 38.

trans transformation function for density graphs. Default is asinh.

bin default number of bin used for histogram. Default is missing.

viewport Either "ideas", "data" or "max" defining limits used for the graph. Default is
"ideas".
-"ideas" will use same limits as the one defined in ideas.
-"data" will use data to define limits.
-"max" will use data and regions drawn to define limits.

display_progress

whether to display a progress bar. Default is TRUE.

... other parameters to be passed.

Details

depending on ’write_to’, function will create .pdf and/or .csv file(s) report with according to graphs
found in ’obj’.
- csv file if created will contain "Min.","1st Qu.","Median","Mean","3rd Qu.","Max." for each graph
found for x and y (if not histogram) for drawn populations and regions.
- pdf file if created will contain graphs and to a certain extent some stats "Min.", "Median", "Mean",
"Max." (no more than 7 rows).
Note that only graphs will be exported (no images, features values, population stats, ...) in the same
layout they were created and without sizing.

Value

It invisibly returns full path of exported .pdf and/or .csv file(s).

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
tmp <- tempdir(check = TRUE)
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf, extract_images = FALSE,

extract_offsets = FALSE, display_progress = FALSE)
L = length(daf$graphs)

ExportToXIF 31

if(L > 0) {
randomly export at most 5 graphs from daf
sel = sample(1:L, min(5, L))
ExportToReport(obj = daf, selection = sel,

write_to = paste0(tmp, "\\test.pdf"), overwrite = TRUE)
}

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExportToXIF RIF/CIF File Writer

Description

Subsets or merges RIF or CIF files.

Usage

ExportToXIF(
fileName,
write_to,
objects,
offsets,
fast = TRUE,
extract_features = FALSE,
endianness = .Platform$endian,
verbose = FALSE,
verbosity = 1,
overwrite = FALSE,
display_progress = TRUE,
...

)

Arguments

fileName path(s) of file(s) to subset or merge. If multiple files are provided they will be
merged. Otherwise, if only one file is input it will be subsetted. All files have to
be either ’.rif’ or ’.cif’ files. All files should have same channels.

write_to pattern used to export file. Placeholders, like "%d/%s_fromR.%e", will be sub-
stituted:
-%d: with full path directory of first element of ’fileName’
-%p: with first parent directory of first element of ’fileName’
-%e: with extension of first element of ’fileName’ (without leading .)
-%s: with shortname from of first element of ’fileName’ (i.e. basename without
extension).

32 ExportToXIF

Exported file extension will be deduced from this pattern. It has to be the same
as ’fileName’, i.e. .cif or .rif.

objects integer vector, IDEAS objects ids numbers to use. If missing, the default, all
objects will be used. Only apply for subsetting.

offsets object of class ‘IFC_offset‘. If missing, the default, offsets will be extracted
from ’fileName’.
This param is not mandatory but it may allow to save time for repeated XIF
export on same file. Only apply for subsetting.

fast whether to fast extract ’objects’ or not. Default is TRUE. Meaning that ’objects’
will be extracting expecting that objects are stored in ascending order.
Note that a warning will be sent if an ’object’ is found at an unexpected order.
In such a case you may need to rerun function with ’fast’ = FALSE. If set to
FALSE, all object_ids will be scanned from ’fileName’ to ensure extraction of
desired ’objects’.
IMPORTANT: whatever this argument is, features are extracted assuming an
ascending order of storage in file.
Only apply for subsetting.

extract_features

whether to try to extract features. Default is FALSE. IMPORTANT: it is not
clear if how features are stored and which objects they rely to when input file is
already a merge or a subset. For this reason it should be carefully checked. Note
that features extraction is not implemented for merging.

endianness the endian-ness ("big" or "little") of the target system for the file. Default is
.Platform$endian.
Endianness describes the bytes order of data stored within the files. This param-
eter may not be modified.

verbose whether to display information (use for debugging purpose). Default is FALSE.
verbosity quantity of information displayed when verbose is TRUE; 1: normal, 2: rich.

Default is 1.
overwrite whether to overwrite file or not. Default is FALSE.

Note that if TRUE, it will overwrite exported file if path(s) of file(s) in ’file-
Name’ and deduced from ’write_to’ arguments are different. Otherwise, you
will get an error saying that overwritting source file is not allowed.
Note also that an original file, i.e. generated by IDEAS(R) or INSPIRE(R), will
never be overwritten. Otherwise, you will get an error saying that overwritting
original file is not allowed.

display_progress

whether to display a progress bar. Default is TRUE.
... other arguments to be passed.

Details

when ’extract_features’ is set TRUE, only features stored in binary format will be extracted if found.
If the input ’fileName’ is a merged of several files then features will be extracted from these files.
If these files can’t be found, Warning(s) will be thrown and input ’fileName’ will be extracted
without features values.

ExtractFromDAF 33

Value

It invisibly returns full path of exported file.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
tmp <- tempdir(check = TRUE)
use a cif file, but you can also subset rif
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
subset objects 0,1 and 4 from file
exported <- ExportToXIF(fileName = file_cif, write_to = paste0(tmp, "\\test.cif"),

overwrite = TRUE, objects = c(0,1,4))
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExtractFromDAF DAF File Reader

Description

Extracts data from DAF Files.

Usage

ExtractFromDAF(
fileName,
extract_features = TRUE,
extract_images = TRUE,
extract_offsets = TRUE,
extract_stats = TRUE,
endianness = .Platform$endian,
pnt_in_poly_algorithm = 1,
pnt_in_poly_epsilon = 1e-12,
display_progress = TRUE,
...

)

Arguments

fileName path to file.
extract_features

whether to extract features (and graphs, pops and regions) from file. Default is
TRUE.

extract_images whether to extract images information from file. Default is TRUE.

34 ExtractFromDAF

extract_offsets

whether to extract IFDs offsets from corresponding. Default is TRUE.
See getOffsets for further details.

extract_stats whether to extract population statistics. Default is TRUE.

endianness The endian-ness ("big" or "little") of the target system for the file. Default is
.Platform$endian.
Endianness describes the bytes order of data stored within the files. This param-
eter may not be modified.

pnt_in_poly_algorithm

algorithm used to determine if object belongs to a polygon region or not. Default
is 1.
Note that for the moment only 1(Trigonometry) is available.

pnt_in_poly_epsilon

epsilon to determine if object belongs to a polygon region or not. It only applies
when algorithm is 1. Default is 1e-12.

display_progress

whether to display a progress bar. Default is TRUE.

... Other arguments to be passed.

Details

When extract_features is TRUE it allows eatures, graphs, pops, regions to be extracted.
If extract_features is TRUE, extract_stats will be automatically forced to TRUE.
If extract_stats is TRUE, extract_features will be automatically forced to TRUE.
If extract_offsets is TRUE, extract_images will be automatically forced to TRUE.
If extract_images is TRUE, information about images will be extracted.

Value

A named list of class ‘IFC_data‘, whose members are:
-description, a list of descriptive information,
-fileName, path of fileName input,
-fileName_image, path of .cif image fileName is refering to,
-features, a data.frame of features,
-features_def, a describing how features are defined,
-graphs, a list of graphical elements found,
-pops, a list describing populations found,
-regions, a list describing how regions are defined,
-images, a data.frame describing information about images,
-offsets, an integer vector of images and masks IFDs offsets,
-stats, a data.frame describing populations count and percentage to parent and total population,
-checksum, checksum of .cif image fileName is refering to computed from images values found in
current daf.

Source

For pnt_in_poly_algorithm, Trigonometry, is an adaptation of Jeremy VanDerWal’s code http:
//github.com/jjvanderwal/SDMTools

http://github.com/jjvanderwal/SDMTools
http://github.com/jjvanderwal/SDMTools

ExtractFromXIF 35

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExtractFromXIF RIF/CIF File Reader

Description

Extracts data from RIF or CIF Files.

Usage

ExtractFromXIF(
fileName,
extract_features = TRUE,
extract_images = FALSE,
extract_offsets = FALSE,
extract_stats = TRUE,
pnt_in_poly_algorithm = 1,
pnt_in_poly_epsilon = 1e-12,
force_default = TRUE,
verbose = FALSE,
verbosity = 1,
display_progress = TRUE,
fast = TRUE,
recursive = FALSE,
...

)

Arguments

fileName path to file.
extract_features

whether to extract features from file. Default is TRUE.
If TRUE, ExtractFromXIF will try to export features. It it fails a message will
be sent.
Otherwise, graphs, pops and regions will be also extracted.

extract_images whether to extract images information from file. Default is FALSE.

36 ExtractFromXIF

extract_offsets

whether to extract IFDs offsets from corresponding. Default is FALSE.
See getOffsets for further details.

extract_stats whether to extract population statistics. Default is TRUE.
pnt_in_poly_algorithm

algorithm used to determine if object belongs to a polygon region or not. Default
is 1.
Note that for the moment only 1(Trigonometry) is available.

pnt_in_poly_epsilon

epsilon to determine if object belongs to a polygon region or not. It only applies
when algorithm is 1. Default is 1e-12.

force_default when display information can’t be retrieved whether to use default values. De-
fault is TRUE.

verbose whether to display information (use for debugging purpose). Default is FALSE.

verbosity quantity of information displayed when verbose is TRUE; 1: normal, 2: rich.
Default is 1.

display_progress

whether to display a progress bar. Default is TRUE.

fast whether to fast ’extract_offsets’ or not. Default is TRUE.
Meaning that offsets will be extracting expecting that raw object are stored in
ascending order. if extract_images is FALSE, a message will be thrown since
extraction method does not ensure correct mapping between objects and offsets.
if extract_images is TRUE, a warning will be sent if an object is found at an
unexpected order.

recursive whether to recursively apply ExtractFromXIF on files defining input fileName
when it is a merged. Default is FALSE.

... Other arguments to be passed.

Details

If extract_stats is TRUE, extract_features will be automatically forced to TRUE.
If extract_images is TRUE, extract_offsets will be automatically forced to TRUE.
If extract_offsets is TRUE, offsets of images and masks IFDs will be extracted.
If extract_images is TRUE, information about images will be extracted.
If the input fileName is a merged of several files and recursive is set to TRUE, then ExtractFromXIF
will be applied recursively on these files.
/!\ Note that features extraction is mandatory to correctly extract graphs, pops, regions and statistics
values.

Value

A named list of class ‘IFC_data‘, whose members are:
-description, a list of descriptive information,
-fileName, path of fileName input,
-fileName_image, same as fileName,
-features, a data.frame of features,

ExtractImages_toBase64 37

-features_def, a describing how features are defined,
-graphs, a list of graphical elements found,
-pops, a list describing populations found,
-regions, a list describing how regions are defined,
-images, a data.frame describing information about images,
-offsets, an integer vector of images and masks IFDs offsets,
-stats, a data.frame describing populations count and percentage to parent and total population,
-checksum, current file checksum.
If fileName is a merged of several files returned object will be of class ‘IFC_data‘ and ‘Merged‘. If
recursive is set to "TRUE", ExtractFromXIF will be applied recursively on files defining the merged.
and the returned object will be a list of the above-mentionned list for each of these files.

Source

For pnt_in_poly_algorithm, Trigonometry, is an adaptation of Jeremy VanDerWal’s code http:
//github.com/jjvanderwal/SDMTools

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file, but you can also read rif
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
cif <- ExtractFromXIF(fileName = file_cif)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

ExtractImages_toBase64

Shorcut for Batch Images Extraction to Base64

Description

Function to shortcut extraction, normalization and eventually colorization of images to matrix !
excludes mask.

Usage

ExtractImages_toBase64(
...,
objects,
offsets,
display_progress = TRUE,
mode = c("rgb", "gray")[1]

)

http://github.com/jjvanderwal/SDMTools
http://github.com/jjvanderwal/SDMTools

38 ExtractImages_toFile

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’export’(="base64") and ’mode’ will be overwritten.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

display_progress

whether to display a progress bar. Default is TRUE.

mode (objectParam argument) color mode export. Either "rgb", "gray". Default is
"rgb".

Details

arguments of objectExtract will be deduced from ExtractImages_toBase64 input arguments.

Value

A list of base64 encoded images corresponding to objects extracted.

ExtractImages_toFile Shorcut for Batch Images Extraction to Files

Description

Function to shortcut extraction, normalization and eventually colorization of images to matrix !
excludes mask.

Usage

ExtractImages_toFile(
...,
objects,
offsets,
display_progress = TRUE,
mode = c("rgb", "gray")[1],
write_to

)

ExtractImages_toMatrix 39

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’export’(="file"), ’write_to’ and ’mode’ will be overwrit-
ten.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

display_progress

whether to display a progress bar. Default is TRUE.

mode (objectParam argument) color mode export. Either "rgb", "gray" . Default is
"rgb".

write_to (objectParam argument) used to compute exported file name.
Exported "file" extension will be deduced from this pattern. Allowed export are
’.bmp’, ’.jpg’, ’.jpeg’, ’.png’, ’.tif’, ’.tiff’. Note that ’.bmp’ are faster but not
compressed producing bigger data.
Placeholders, if found, will be substituted:
-%d: with full path directory
-%p: with first parent directory
-%e: with extension (without leading .)
-%s: with shortname (i.e. basename without extension)
-%o: with object_id
-%c: with channel_id
A good trick is to use "%d/%s/%s_%o_%c.tiff".

Details

arguments of objectExtract will be deduced from ExtractImages_toFile input arguments.

Value

It invisibly returns a list of exported file path of corresponding to objects extracted.

ExtractImages_toMatrix

Shorcut for Batch Images Extraction to Matrices/Arrays

Description

Function to shortcut extraction, normalization and eventually colorization of images to matrix !
excludes mask.

40 ExtractMasks_toMatrix

Usage

ExtractImages_toMatrix(..., objects, offsets, display_progress = TRUE)

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’export’(="matrix") will be overwritten.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

display_progress

whether to display a progress bar. Default is TRUE.

Details

arguments of objectExtract will be deduced from ExtractImages_toMatrix input arguments.

Value

A list of matrices/arrays of images corresponding to objects extracted.

ExtractMasks_toMatrix Shorcut for Batch Masks Extraction to Matrices/Arrays

Description

Function to shortcut extraction, normalization and eventually colorization of masks to matrix !
excludes image.

Usage

ExtractMasks_toMatrix(..., objects, offsets, display_progress = TRUE)

Arguments

... arguments to be passed to objectExtract with the exception of ’ifd’ and ’by-
pass’(=TRUE).
If ’param’ is provided ’export’(="matrix") will be overwritten.
If ’offsets’ are not provided extra arguments can also be passed with ... getOffsets.
/!\ If not any of ’fileName’, ’info’ and ’param’ can be found in ... then attr(offsets,
"fileName_image") will be used as ’fileName’ input parameter to pass to objectParam.

getAborted 41

objects integer vector, IDEAS objects ids numbers to use. This argument is not manda-
tory, if missing, the default, all objects will be used.

offsets object of class ‘IFC_offset‘. This argument is not mandatory but it may allow to
save time for repeated image export on same file.

display_progress

whether to display a progress bar. Default is TRUE.

Details

arguments of objectExtract will be deduced from ExtractMasks_toMatrix input arguments.

Value

A list of matrices/arrays of masks corresponding to objects extracted.

getAborted Aborted Batch Files Retrieval

Description

Try to retrieve files whose processing failed during batch. This is a very beta version

Usage

getAborted(aborted, default_batch_dir, config_file)

Arguments

aborted path to file containing aborted information.
If missing, the default, a dialog box will be displayed to choose this file. Note,
that if provided ’default_batch_dir’ and ’config_file’ will not be used.

default_batch_dir

directory where batches are stored.
It can be found in IDEAS(R) software, under Options -> Application Defaults
-> Directories -> Default Batch Report Files Directory. If missing, the default,
it will be deduced from IDEAS(R) config file, However, if it can’t be deduced
then current working directory will be used.
This argument takes precedence over ’config_file’ and filling ’default_batch_dir’
prevents the use of ’config_file’ argument.

config_file path to IDEAS(R) config file.
It may depends on IDEAS(R) software installation but one may use "C:/Users/%USER%/AppData/Roaming/Amnis
Corporation/userconfig.xml".

42 getFullTag

Value

a list of 3 elements:
-not_existing: a list of files paths that caused failure because they were not found during batch,
-failed_found: a list of failed files and their unique corresponding paths,
-failed_match: a list of failed files and their all paths that could match.

getFullTag Image Field Directory Full Tag Retrieval

Description

Retrieves full tag value from IFDs (Image Field Directory) extracted by getIFD.

Usage

getFullTag(IFD, which = 1, tag = "256")

Arguments

IFD an object of class ‘IFC_ifd_list‘ extracted by getIFD.

which scalar, integer (index) or the name of ’IFD’ sub-element to extract ’tag’ from.
Default is 1 to extract ’tag’ from the first member of ’IFD’.

tag scalar, integer (index) or the name of the IFD[[which]] of the desired ’tag’.

Details

It may be usefull to extract all information contained in a specific ’tag’ since getIFD is designed to
be run with argument trunc_bytes so as to only extract essential bytes to run faster and save memory.
Nonetheless, thanks to getFullTag users will still be able to get full extraction of specific tag.

Value

the full value of the corresponding IFD tag.

Source

TIFF 6.0 specifications available at https://www.adobe.io/open/standards/TIFF.html

https://www.adobe.io/open/standards/TIFF.html

getIFD 43

getIFD RIF/CIF Image Field Directories Extraction

Description

Extracts IFDs (Image File Directory) in RIF or CIF files.
IFDs contain information about images or masks of objects stored within XIF files.
The first IFD is special in that it does not contain image of mask information but general information
about the file.
Users are highly encouraged to read TIFF specifications to have a better understanding about what
IFDs are.

Usage

getIFD(
fileName,
offsets = "first",
trunc_bytes = 12,
force_trunc = FALSE,
verbose = FALSE,
verbosity = 1,
display_progress = FALSE,
bypass = FALSE,
...

)

Arguments

fileName path to file.

offsets either "all", "first" or an object of class ‘IFC_offset‘. Default is "first".

trunc_bytes a positive integer maximal number of individual scalar to extract BYTE/ASCII/SBYTE/UNDIFINED
for TAGS (1, 2, 6 or 7). Default is 12.
However, if less is found, less is returned in map. Note that, if 0 is provided, it
will be automatically set to 1.

force_trunc whether to force truncation for all TAGS types. Default is FALSE.
If TRUE, ’trunc_bytes’ will be used for TAGS (3, 4, 5, 8, 9, 10, 11 and 12) to
extract desired number of individual scalar corresponding to each types.

verbose whether to display information (use for debugging purpose). Default is FALSE.

verbosity quantity of information displayed when verbose is TRUE; 1: normal, 2: rich.
Default is 1.

display_progress

whether to display a progress bar. Default is FALSE.

bypass whether to bypass checks on ’trunc_bytes’, ’force_trunc’, ’verbose’, ’verbosity’
and ’display_progress’. Default is FALSE.

... other arguments to be passed.

44 getInfo

Details

Function will return IFDs (image, mask or first) from the file using provided offsets argument.
IFDs contain several tags that can be viewed as descriptive meta-information of raw data stored
within RIF or CIF file. For more details see TIFF specifications.
If ’offsets’ == "first" only first IFD will be returned.
If ’offsets’ == "all" all images and masks IFDs will be returned but not "first" one. Be aware that
errors may occur if offsets are not extracted with getOffsets or subsetOffsets.

Value

A list of named lists, each containing:
-tags, a named list whose names are tags found, where each tag is a list of tag, typ, siz, val, byt, len,
off, map information.
-infos, a named list containing essential information about IFDs, IMAGE_LENGTH, IMAGE_WIDTH,
OBJECT_ID, COMPRESSION, TYPE, STRIP_OFFSETS, STRIP_BYTE_COUNTS, BG_MEAN,
BG_STD
-curr_IFD_offset, the position of current IFD offset
-next_IFD_offset, the position of next IFD offset

Source

TIFF 6.0 specifications available at https://www.adobe.io/open/standards/TIFF.html

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
read 1st IFD
IFD_first <- getIFD(fileName = file_cif, offsets = "first")
show information contained in 1st IFD
print(sapply(IFD_first[[1]]$tags, FUN=function(x) x))

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

getInfo IFC File Information Extraction

Description

Retrieves rich information from RIF, CIF and DAF files.

https://www.adobe.io/open/standards/TIFF.html

getInfo 45

Usage

getInfo(
fileName,
from = c("acquisition", "analysis")[2],
verbose = FALSE,
verbosity = 1,
warn = TRUE,
force_default = TRUE,
cifdir = dirname(fileName),
ntry = +Inf,
...

)

Arguments

fileName path to file..

from whether to extract information from ’acquisition’ or ’analysis’. Default is ’anal-
ysis’.

verbose whether to display information (use for debugging purpose). Default is FALSE.

verbosity quantity of information print to console when verbose is TRUE; 1: normal, 2:
rich. Default is 1.

warn whether to send warning message when trying to read ’analysis’ information
from a ’rif’ file. Default is TRUE.

force_default when display information can’t be retrieved whether to use default values. De-
fault is TRUE.

cifdir the path of the directory to initially look to cif file. Default is dirname(fileName).
Only apply when ’fileName’ is a .daf file.

ntry number of times getInfo will be allowed to find corresponding cif file. Default
is +Inf. Only apply when ’fileName’ is a .daf file. If cif can’t be found, but
’ntry’ is reached, then an error will be thrown.

... other arguments to be passed.

Value

a list of information (open .daf file in an text editor for more details) about input fileName of class
‘IFC_info‘ and ‘acquistion‘ or ‘analysis‘, whose members are:
-objcount, number of object in file,
-date, date of file creation,
-instrument, instrument identification,
-sw_raw, version of software for raw data,
-sw_processed, version of software for processed data,
-channelwidth, default channel width in pixel,
-in_use, channels used,
-brightfield, whether brightfield is applied on channels and its intensity,
-illumination, laser illumination parameters,
-collectionmode, the collection mode,

46 getOffsets

-magnification, magnification used,
-coremode, the core mode,
-CrossTalkMatrix. compensation matrix applied,
-ChannelPresets, channel preset,
-ImageDisplaySettings, image display settings,
-Images, information about colors, range and channels,
-masks, masks defined,
-ViewingModes, modes of visualization,
-checksum, checksum computed,
-Merged_rif, character vector of path of files used to create rif, if input file was a merged,
-Merged_cif, character vector of path of files used to create cif, if input file was a merged,
-fileName, path of fileName input,
-fileName_image, path of fileName_image.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
info <- getInfo(fileName = file_daf, from = "analysis")
show some information
print(info$Images)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

getOffsets RIF/CIF File Image Field Directories Offsets Extraction

Description

Extracts offsets of the IFDs (Image Field Directories) within a XIF file. Users are highly encouraged
to read TIFF specifications to have a better understanding about what offsets and IFDs are.

Usage

getOffsets(fileName, fast = TRUE, display_progress = TRUE, verbose = FALSE)

Arguments

fileName path to file.

fast whether to fast extract objects or not. Default is TRUE.
Meaning that offsets will be extracting expecting that objects are stored in as-
cending order.
A message will be thrown since fast extraction method does not ensure correct
mapping between objects and offsets.

inv_smoothLinLog 47

If set to FALSE, all object_ids will be scanned from ’fileName’ to ensure ex-
traction of desired offsets.

display_progress

whether to display a progress bar. Default is TRUE.

verbose whether to display information (use for debugging purpose). Default is FALSE.

Details

Offsets are byte positions of IFDs found within RIF or CIF file. For more details see TIFF specifi-
cations.

Value

an integer vector of class ‘IFC_offset‘ of IFDs offsets found in XIF file. If no offsets is found an
error is thrown.

Source

TIFF 6.0 specifications available at https://www.adobe.io/open/standards/TIFF.html

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
system.time(offsets_fast <- getOffsets(fileName = file_cif, fast = TRUE))
system.time(offsets_slow <- getOffsets(fileName = file_cif, fast = FALSE))
identical(offsets_fast, offsets_slow)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

inv_smoothLinLog Inverse Smooth LinLog Transformation

Description

Gets values back just to their original values before applying smoothLinLog.

Usage

inv_smoothLinLog(x, hyper = 1000, base = 10, lin_comp = log(base))

https://www.adobe.io/open/standards/TIFF.html

48 objectCleanse

Arguments

x A numeric vector.

hyper value where transition between Lin/Log is applied.

base base of Log scale.

lin_comp value that is used to smooth transition between Lin/Log. Default is log(base).

Value

the inverse smoothLinLog transformation of the input.

objectCleanse Object Cleanser

Description

Removes abnormalities (clipped/debris) from image.

Usage

objectCleanse(mat, msk, add_noise = TRUE, random_seed = NULL, bg = 0, sd = 0)

Arguments

mat a numeric matrix (image).

msk a numeric matrix (mask identifying abnormalities).

add_noise if TRUE adds normal noise to background using rnorm(), from Rcpp. Default
is TRUE.

random_seed a single value, interpreted as an integer, or NULL to be used with set.seed() from
base when ’add_noise’ is set to TRUE. Default is NULL.

bg mean value of the background added if add_noise is TRUE. Default is 0.

sd standard deviation of the background added if add_noise is TRUE. Default is 0.

Value

According to msk, pixel values in mat are substituted by either bg [add_noise == FALSE] or
rnorm(n = prod(dim(mat), mean=bg, sd=sd)) [add_noise == TRUE].

objectDisplay 49

objectDisplay Object Display

Description

This function is intended to display object extracted by objectExtract.

Usage

objectDisplay(
image,
input_range = c(0, 4095),
full_range = FALSE,
force_range = FALSE,
gamma = 1,
color = "Green",
dpi = 300

)

Arguments

image An object extracted by objectExtract of class ‘IFC_img‘ or ‘IFC_msk‘.
Note that a matrix with finite values can also be used.

input_range a finite numeric vector of 2 values, sets the range of the input intensity values.
Values exceeding this range are clipped. Default is ’c(0, 4095)’.

full_range if ’full_range’ is TRUE, then ’input_range’ will be set to ’c(0, 4095)’ and ’gamma’
forced to 1. Default is FALSE.

force_range if ’force_range’ is TRUE, then ’input_range’ will be adjusted to object range in
[-4095, +inf] and ’gamma’ forced to 1. Default is FALSE.
Note that this parameter takes the precedence over ’input_range’ and ’full_range’.

gamma gamma correction. Default is 1, for no correction.

color a color. Default is "Green".

dpi display resolution. Default is 300.

Details

If input ’image’ is of class ‘IFC_img‘ or ‘IFC_msk‘, then if ’input_range’, ’full_range’, ’force_range’,
’gamma’ and / or ’color’ parameters is/are missing, it/they will be extracted from ’image’ attributes.
If input ’image’ is not of one of class ‘IFC_img‘ or ‘IFC_msk‘, then force_range will be forced to
TRUE.
An error will be thrown if input image contains non finite values.

Value

it invisibly returns NULL

50 objectExtract

objectExtract Object Extraction

Description

Extracts / Decompress objects stored in RIF or CIF Files.

Usage

objectExtract(ifd, param, verbose = FALSE, bypass = FALSE, ...)

Arguments

ifd list of sub elements of IFD data information extracted by getIFD. This parameter
can’t be missing.

param object of class ‘IFC_param‘, containing extraction parameters defined by objectParam.
This argument is not mandatory but it may allow to save time for repeated image
export on same file. If this parameter is missing, objectExtract will use extra
... to pass arguments to objectParam to control object extraction.
However, if ’param’ is provided, ’...’ will be ignored.

verbose whether to display information (use for debugging purpose). Default is FALSE.

bypass whether to bypass checks on ’ifd’ and ’param’. Default is FALSE.

... other arguments to be passed to objectParam.
If ’param’ is not provided then ’...’ will be used to compute ’param’.
/!\ If not any of ’fileName’, ’info’ can be found in ’...’ then attr(ifd, "file-
Name_image") will be used as ’fileName’ input parameter to pass to objectParam.

Value

A list (for every extracted objects) of list (for every exported channels) depending on "export"
parameter:
-"matrix", a matrix when ’mode’ is set to "raw" or "gray" OR an array when ’mode’ == "rgb",
-"base64", a data-uri string,
-"file", an invisible file path corresponding to the location of exported file(s).

Source

For image decompression, Lee Kamentsky’s code porting from https://github.com/openmicroscopy/
bioformats/blob/4146b9a1797501f0fec7d6cfe69124959bff96ee/components/formats-bsd/
src/loci/formats/in/FlowSightReader.java
cited in https://linkinghub.elsevier.com/retrieve/pii/S1046-2023(16)30291-2

BSD implementations of Bio-Formats readers and writers

Copyright (C) 2005 - 2017 Open Microscopy Environment:
- Board of Regents of the University of Wisconsin-Madison

https://github.com/openmicroscopy/bioformats/blob/4146b9a1797501f0fec7d6cfe69124959bff96ee/components/formats-bsd/src/loci/formats/in/FlowSightReader.java
https://github.com/openmicroscopy/bioformats/blob/4146b9a1797501f0fec7d6cfe69124959bff96ee/components/formats-bsd/src/loci/formats/in/FlowSightReader.java
https://github.com/openmicroscopy/bioformats/blob/4146b9a1797501f0fec7d6cfe69124959bff96ee/components/formats-bsd/src/loci/formats/in/FlowSightReader.java
https://linkinghub.elsevier.com/retrieve/pii/S1046-2023(16)30291-2

objectExtract 51

- Glencoe Software, Inc.
- University of Dundee

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distri-
bution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
cif_offs <- getOffsets(fileName = file_cif, fast = TRUE)
extract infomation
info <- getInfo(fileName = file_cif, from = "analysis")
retrieve number of objects stored
nobj <- as.integer(info$objcount)
randomly subset the offsets of at most 5 "img" objects
sel = sample(0:(nobj-1), min(5, nobj))
sub_offs <- subsetOffsets(cif_offs, objects = sel, image_type = "img")
read IFDs from these "img" objects
IFDs <- getIFD(fileName = file_cif, offsets = sub_offs)
extract raw data of these"img" objects to matrix
raw = objectExtract(ifd = IFDs, info = info, mode = "raw",

export = "matrix")
extract base64 "rgb" colorized version of these "img" objects to base64
b64 = objectExtract(ifd = IFDs, info = info, mode = "rgb",

export = "base64", base64_id = TRUE,
write_to = "example_%o_%c.png")

use DisplayGallery to show the first "img" objects and play with ... extra parameters
force_range, add_noise, selection, composite, see objectParam
DisplayGallery(info = info, offsets = cif_offs, objects = sel,

base64_id = TRUE, write_to = "example_%o_%c.png",
force_range = c(FALSE,TRUE,FALSE,TRUE), add_noise = FALSE,
selection = c(1,2,4,6), composite = "1.7/4.3")

} else {

52 objectParam

message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',
'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

objectParam Object Extraction Parameters Definition

Description

Defines ‘IFC_object‘ object extraction parameters.

Usage

objectParam(
...,
info,
mode = c("rgb", "gray", "raw")[3],
export = c("file", "matrix", "base64")[2],
write_to,
base64_id = FALSE,
base64_att = "",
overwrite = FALSE,
composite = "",
selection = "all",
size = c(0, 0),
force_width = TRUE,
random_seed = NULL,
removal = "none",
add_noise = TRUE,
full_range = FALSE,
force_range = FALSE

)

Arguments

... arguments to be passed to getInfo, only if ’info’ is not provided.

info object of class ‘IFC_info‘, rich information extracted by getInfo. This argu-
ment is not mandatory but it may allow to save time for repeated image export
on same file. If missing, the default, ’info’ will be extracted thanks to ’...’.

mode color mode export. Either "rgb", "gray" or "raw". Default is "raw". Note that
"raw" is only possible when ’export’ is "matrix".

export format mode export. Either "file", "matrix", "base64". Default is "matrix".

write_to used when export is "file" or "base64" to compute respectively exported file
name or base64 id attribute.
Exported "file" extension and "base64" MIME type will be deduced from this

objectParam 53

pattern. Allowed export are ".bmp", ".jpg", ".jpeg", ".png", ".tif", ".tiff". Note
that ’.bmp’ are faster but not compressed producing bigger data.
Placeholders, if found, will be substituted:
-%d: with full path directory
-%p: with first parent directory
-%e: with extension (without leading .)
-%s: with shortname (i.e. basename without extension)
-%o: with object_id
-%c: with channel_id
A good trick is to use:
-"%d/%s/%s_%o_%c.tiff", when ’export’ is "file"
-"%o_%c.bmp", when ’export’ is "base64".
Note that if missing and ’export’ is not "file", ’write_to’ will be set to "%o_%c.bmp".

base64_id whether to add id attribute to base64 exported object. Default is FALSE.
Only applied when export is "base64".

base64_att attributes to add to base64 exported object. Default is "".
Only applied when export is "base64". For example, use "class=draggable".
Note that id (if base64_id is TRUE) and width and height are already used.

overwrite only apply when ’export’ is "file" whether to overwrite file or not. Default is
FALSE.

composite character vector of image composite. Default is "", for no image composite.
Should be like "1.05/2.4/4.55" for a composition of 5 perc. of channel 1, 40
perc. of channel 2 and 50 perc. of channel 55.
Note that channels should have been acquired and final image composition
should be 100 perc., otherwise an error is thrown.
Note that each composite will be appended after ’selection’.

selection physical channels to extract.
Note that this parameter will be ordered.
Default is "all" to extract all acquired channels.
Use "none" to only extract composite.

size a length 2 integer vector of final dimensions of the image, height 1st and width
2nd. Default is c(0,0) for no change.

force_width whether to use information in ’info’ to fill size. Default is TRUE. When set to
TRUE, width of ’size’ argument will be overwritten.

random_seed a single value, interpreted as an integer, or NULL to be used with set.seed() from
base when ’add_noise’ is set to TRUE. Default is NULL.

removal removal method: Either "none", "raw", "clipped", "masked", "MC".
-"none", to keep image as is
-"raw", to keep image as is, it provides a convinient way to retrieve "raw" value
for the mask.
-"clipped", to remove clipped object from image.
-"masked", to only keep masked object from image.
-"MC", to only keep MC masked object from image. This parameter will be
repeated with rep_len() from base for every physical channel that needs to be
extracted according to ’selection’ and ’composite’ parameters.

54 paletteIFC

add_noise if TRUE adds normal noise to background using rnorm(), from Rcpp. Default
is TRUE.
Note that it is better to set it to FALSE when ’removal’ is "masked" or "MC".
Doing so will allow to place masked object in a zero filled background, other-
wise background will still be filled with noise. This parameter will be repeated
with rep_len() from base for every physical channel that needs to be extracted
according to ’selection’ and ’composite’ parameters.

full_range only apply when mode is not "raw", if full_range is TRUE, then [0,4095] range
will be kept. Default is FALSE.
It is like "raw" mode but allowing normalization to [0,1]. This parameter will
be repeated with rep_len() from base for every physical channel that needs to be
extracted according to ’selection’ and ’composite’ parameters.

force_range only apply when mode is not "raw", if force_range is TRUE, then range will be
adjusted to object range in [-4095, +inf] resulting in normalization. Default is
FALSE.
Note that this parameter takes the precedence over ’full_range’.
This parameter will be repeated with rep_len() from base for every physical
channel that needs to be extracted according to ’selection’ and ’composite’ pa-
rameters.

Details

when a mask is detected, ’add_noise’, ’full_range’ and ’force_range’ are set to FALSE.

Value

an object of class ‘IFC_param‘.

paletteIFC R/IDEAS Color Palette Mapping

Description

Maps colors between IDEAS and R.

Usage

paletteIFC(
x = c("", "palette", "palette_R", "to_light", "to_dark")[1],
col = "White"

)

plotGraph 55

Arguments

x either "", "palette","palette_R", to_light, to_dark. Default is "".

col a compatible color to transform to color or lightModeColor. Default is "White".
if ’x’ == to_light, function will convert ’col’ to lightModeColor.
if ’x’ == to_dark, function will convert ’col’ to color.
if ’col’ is not found or ’x’ is anything else then a data.frame of compatible colors
is returned.

Value

IFC palette of available colors.

plotGraph Plot and Stats Computation for IFC Graph

Description

Computes plot and stats from a IFC graph

Usage

plotGraph(
obj,
graph,
draw = FALSE,
stats_print = draw,
color_mode = c("white", "black")[1],
add_key = "panel",
precision = c("light", "full")[1],
trunc_labels = 38,
trans = asinh,
bin,
viewport = "ideas",
...

)

Arguments

obj an ‘IFC_data‘ object extracted with features extracted.

graph a graph from ’obj’ or a list that can be coerced by buildGraph.

draw whether to draw plot or not. Default is FALSE.

stats_print whether to print stats or not. Default is given by ’draw’ argument.

color_mode whether to extract colors from ’obj’ in white or black mode. Default is "white".

56 popsCopy

add_key whether to draw a "global" key under title or in the first "panel" or "both". De-
fault is "panel".
Accepted values are either: FALSE, "panel", "global", "both" or c("panel",
"global").
Note that it only applies when display is seen as overlaying populations.

precision when graphs is a 2D scatter with population overlay, this argument controls
amount of information displayed. Default is "light".
-"light", the default, will only display points of same coordinates that are amoung
the other layers.
-"full" will display all the layers.

trunc_labels maximum number of characters to display for labels. Default is 38.

trans transformation function for density graphs. Default is asinh.

bin number of bin used for histogram / density. Default is missing.

viewport either "ideas", "data" or "max" defining limits used for the graph. Default is
"ideas".
-"ideas" will use same limits as the one defined in ideas.
-"data" will use data to define limits.
-"max" will use data and regions drawn to define limits.

... other arguments to be passed.

Value

it invisibly returns a list whose members are:
-plot, "trellis" object that can be displayed using plot,
-stats, a table of satistics computed for the graph,
-input, a list with input parameters.

popsCopy Copy Populations from One File to Another File

Description

Copies populations from a DAF file into a copy of another DAF file. Only creates new file with
copied population.

Usage

popsCopy(
from,
into,
write_to,
pops,
use_regex = FALSE,
overwrite = FALSE,
append_name = TRUE,

popsCopy 57

offset = 0,
endianness = .Platform$endian,
verbose = FALSE,
...

)

Arguments

from path to file to copy populations from.

into path to file that will be used as a template to copy population into. Caution, it is
mandatory that ’into’ contains ’from’ starting at ’offset’.

write_to pattern used to export file. Placeholders, like "%d/%s_fromR.%e", will be sub-
stituted:
-%d: with full path directory of ’into’
-%p: with first parent directory of ’into’
-%e: with extension of ’into’ (without leading .)
-%s: with shortname from ’into’ (i.e. basename without extension).
Exported file extension will be deduced from this pattern. Note that it has to be
a .daf.

pops regular expression or vector of desired populations present in ’from’.
If missing, the default, all populations found will be copied.
If given but not found, a warning will be sent.

use_regex whether to use regex to pick up population into ’from’. Default is FALSE.

overwrite whether to overwrite existing file or not. Default is FALSE. Note that if TRUE,
it will overwrite exported file if path of ’into’ and deduced from ’write_to’ ar-
guments are different. Otherwise, you will get an error saying that overwritting
source file is not allowed.
Note also that an original file, i.e. generated by IDEAS(R) or INSPIRE(R), will
never be overwritten. Otherwise, you will get an error saying that overwritting
original file is not allowed.

append_name whether to append_name basename(from) to exported populations. Default is
TRUE.

offset Object number of 1st object of ’from’ in ’into’. Default is 0.

endianness The endian-ness ("big" or "little") of the target system for the file. Default is
.Platform$endian.
Endianness describes the bytes order of data stored within the files. This param-
eter may not be modified.

verbose whether to display information (use for debugging purpose). Default is FALSE.

... Other arguments to be passed.

Details

Populations are exported as tagged populations.

58 popsGetObjectsIds

Value

a new file is created containing exported populations.
It invisibly returns full path of exported file.

popsGetObjectsIds IFC_pops Object Numbers

Description

Retrieves objects ids belonging to a population.

Usage

popsGetObjectsIds(obj, pop = "")

Arguments

obj an ‘IFC_data‘ object extracted with features extracted.

pop a population name from ’obj’. Default is "". If left as is or not found an error is
thrown displaying all available population in ’obj’.

Value

An integer vector is returned

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
daf <- ExtractFromDAF(fileName = file_daf)
obj <- popsGetObjectsIds(obj = daf, pop = names(daf$pops)[length(daf$pops)])

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

popsNetwork 59

popsNetwork IFC_pops Network Display

Description

Builds and displays populations network.

Usage

popsNetwork(
obj,
hierarchical = TRUE,
color_mode = "white",
highlight = NULL,
seed = NULL,
direction = "LR",
weighted = TRUE,
...

)

Arguments

obj an ‘IFC_data‘ object extracted with features extracted.

hierarchical whether to display network using a hierarchical layout or not. Default is TRUE.

color_mode Whether to extract colors from ’obj’ in "white" or "black" mode. Default is
"white".

highlight population to permanently highlight. If found in ’obj’, this population will be
displayed with its color. Default is NULL.

seed If you provide a seed manually, the layout will be the same every time. Default
is NULL.

direction The direction of the hierarchical layout. Default is ’LR’.
The available options are: ’UD’, ’DU’, ’LR’, ’RL’. To simplify: up-down,
down-up, left-right, right-left.

weighted whether to scale population’s node size according to count. Default is TRUE.

... other argument to be passed.

Value

a visNetwork object.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")

60 readIFC

daf <- ExtractFromDAF(fileName = file_daf)
popsNetwork(obj = daf)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

readIFC IFC Files Generic Reader

Description

Reads IFC data from IFC files no matter if they are DAF, RIF or CIF.

Usage

readIFC(fileName, ...)

Arguments

fileName path to file.

... arguments to pass to ExtractFromDAF or ExtractFromXIF.

Details

If input ’fileName’ is a DAF file ExtractFromDAF will be used to read the file whereas if it is a CIF
or RIF file readIFC will use ExtractFromXIF.

Value

an object of class ‘IFC_data‘.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a rif file, but you can also read daf or cif
file_rif <- system.file("extdata", "example.rif", package = "IFCdata")
rif <- readIFC(fileName = file_rif)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

smoothLinLog 61

smoothLinLog Smooth LinLog Transformation

Description

Transforms values in lin-log

Usage

smoothLinLog(x, hyper = 1000, base = 10, lin_comp = log(base))

Arguments

x A numeric vector.

hyper value where transition between Lin/Log is applied.

base base of Log scale.

lin_comp value that is used to smooth transition between Lin/Log. Default is log(base).

Value

the smoothLinLog transformation of the input.

subsetOffsets IFC_offset Subsetting

Description

Subsets ‘IFC_offset‘

Usage

subsetOffsets(offsets, objects, image_type = c("img", "msk"))

Arguments

offsets object of class ‘IFC_offset‘ to subset.

objects integer vector, IDEAS objects ids numbers to extract.

image_type image_type of desired offsets. Default is c("img", "msk"). Allowed are "img"
and/or "msk".

Value

a class ‘IFC_offset‘ integer vector or empty list if objects are outside of offsets.

62 writeIFC

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
use a cif file
file_cif <- system.file("extdata", "example.cif", package = "IFCdata")
extract offsets
offsets <- getOffsets(fileName = file_cif)
subset offsets of the 4 first "img" objects
sub_offs <- subsetOffsets(offsets = offsets, objects = 0:3, image_type = "img")
show subsetted offsets' structure
str(sub_offs)

} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

writeIFC IFC Files Generic Writer

Description

Writes IFC data to DAF and subsets or merges RIF/CIF Files.

Usage

writeIFC(fileName, ...)

Arguments

fileName path to file.

... arguments to pass to ExportToDAF or ExportToXIF.

Details

If ’fileName’ is a DAF file ExportToDAF will be used to write file whereas if it is a RIF or CIF file
writeIFC will use ExportToXIF.

Value

it invisible returns the path of exported file.

Examples

if(requireNamespace("IFCdata", quietly = TRUE)) {
tmp <- tempdir(check = TRUE)
use a daf file
file_daf <- system.file("extdata", "example.daf", package = "IFCdata")
create a tagged population named test with 1st object
pop <- buildPopulation(name = "test", type = "T", obj = 0)

writeIFC 63

writeIFC(file_daf, write_to = paste0(tmp, "\\test_write.daf"),
overwrite = TRUE, pops = list(pop))

use a rif file, but you can also use a cif
file_rif <- system.file("extdata", "example.rif", package = "IFCdata")
writeIFC(fileName = file_rif, write_to = paste0(tmp, "\\test_write.rif"),

overwrite = TRUE, objects = 0)
} else {
message(sprintf('Please run `install.packages("IFCdata", repos = "%s", type = "source")` %s',

'https://gitdemont.github.io/IFCdata/',
'to install extra files required to run this example.'))

}

Index

autoplot, 3, 4, 4, 5, 6

buildBatch, 3, 6, 22
buildFeature, 3, 8, 8, 15
buildGraph, 3, 8, 55
buildPopulation, 3, 12, 16
buildRegion, 3, 13, 17

checksumDAF, 14
checksumIFC, 14
checksumXIF, 14

data_add_features, 3, 8, 15
data_add_pops, 3, 16
data_add_regions, 3, 17
data_to_DAF, 3, 18, 20
DisplayGallery, 3, 20, 22

ExportToBATCH, 3, 6, 22
ExportToDAF, 3, 8, 23, 24, 62
ExportToGallery, 3, 25, 27
ExportToNumpy, 3, 27, 28
ExportToReport, 3, 29
ExportToXIF, 3, 31, 62
ExtractFromDAF, 3, 33, 60
ExtractFromXIF, 3, 35, 35, 36, 60
ExtractImages_toBase64, 3, 37, 38
ExtractImages_toFile, 3, 38, 39
ExtractImages_toMatrix, 3, 39, 40
ExtractMasks_toMatrix, 3, 40, 41

getAborted, 3, 41
getFullTag, 3, 42, 42
getIFD, 3, 42, 43, 50
getInfo, 3, 44, 45, 52
getOffsets, 3, 21, 25, 28, 34, 36, 38–40, 44,

46

IFC (IFC-package), 3
IFC-package, 3
inv_smoothLinLog, 3, 47

objectCleanse, 48
objectDisplay, 49
objectExtract, 3, 21, 22, 25, 27, 28, 38–41,

49, 50, 50
objectParam, 21, 25, 28, 38–40, 50, 52

paletteIFC, 3, 12, 14, 54
plotGraph, 3, 55
popsCopy, 3, 56
popsGetObjectsIds, 3, 58
popsNetwork, 3, 59

readIFC, 3, 60, 60

smoothLinLog, 3, 5, 61
subsetOffsets, 44, 61

writeIFC, 3, 62, 62

64

	IFC-package
	autoplot
	buildBatch
	buildFeature
	buildGraph
	buildPopulation
	buildRegion
	checksumIFC
	data_add_features
	data_add_pops
	data_add_regions
	data_to_DAF
	DisplayGallery
	ExportToBATCH
	ExportToDAF
	ExportToGallery
	ExportToNumpy
	ExportToReport
	ExportToXIF
	ExtractFromDAF
	ExtractFromXIF
	ExtractImages_toBase64
	ExtractImages_toFile
	ExtractImages_toMatrix
	ExtractMasks_toMatrix
	getAborted
	getFullTag
	getIFD
	getInfo
	getOffsets
	inv_smoothLinLog
	objectCleanse
	objectDisplay
	objectExtract
	objectParam
	paletteIFC
	plotGraph
	popsCopy
	popsGetObjectsIds
	popsNetwork
	readIFC
	smoothLinLog
	subsetOffsets
	writeIFC
	Index

