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In this vignette we use the package IDE to fit spatio-temporal integro-difference equation (IDE) models, as well as

predict and forecast from spatio-temporal data. We will explore two cases using simulated data where the true model

is known. For this vignette, we need the following packages:

library("dplyr")

library("FRK")

library("ggplot2")

library("IDE")

library("sp")

library("spacetime")

The first-order spatio-temporal IDE process model used in the package IDE is given by

Yt(s) =

∫

Ds

m(s,x;θp)Yt−1(x) dx+ ηt(s); s,x ∈ Ds, (1)

for t = 1, 2, . . ., where m(s,x;θp) is a transition kernel, depending on parameters θp that specify “redistribution

weights” for the process at the previous time over the spatial domain, Ds, and ηt(s) is a time-varying (but statistically

independent in time) continuous mean-zero Gaussian spatial process. Note that it is assumed here that the parameter

vector θp does not vary with time, as one often does, but it could in general. So, the process at location s and time t

is given by the weighted average (integral) of the process throughout the domain at the past time, where the weights

are given by the transition kernel, m(·). The “adjustment,” given by ηt(s), is assumed to be Gaussian and accounts for

spatial dependencies in Yt(·) that are not captured by this weighted average. Another way to think about ηt(·) is that

it adds smaller-scale dependence that is removed in the inherent smoothing that occurs when {Yt−1(·)} is averaged

over space, in order to give Yt(·) a realistic spatial dependence structure. In general,
∫

Ds

m(s,x;θp)dx < 1 for the

process to be stable (non-explosive) in time.

The redistribution kernel m(s,x;θp) used by the package IDE is given by

m(s,x;θp) = θp,1(s) exp

(

−
1

θp,2(s)

[

(x1 − θp,3(s)− s1)
2 + (x2 − θp,4(s)− s2)

2
]

)

, (2)

where the spatially-varying kernel amplitude is given by θp,1(s) and controls the temporal stationarity, the spatially-

varying length-scale (variance) parameter θp,2(s) corresponds to a kernel scale (aperture) parameter (i.e., the kernel

width increases as θp,2 increases), and the mean (shift) parameters θp,3(s) and θp,4(s) correspond to a spatially-varying

shift of the kernel relative to location s. Spatially-invariant kernels (i.e., where the elements of θp are not functions of

space) are also allowed.
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Simulation example with a spatially-invariant kernel

The package IDE contains a function simIDE that simulates the behaviour of a typical dynamic system governed

by linear transport. The function takes just three arguments, the number of time points to simulate, the number of

(spatially fixed) observations to use, and a flag indicating whether to use a spatially-invariant kernel or not.

SIM1 <- simIDE(T = 10, nobs = 100, k_spat_invariant = 1)

The returned list SIM1 contains the simulated process in the data frame s_df, the observed data in the data frame

z_df, and also as an STIDF object z_STIDF. It also contains two ggplot2 plots, g_truth and g_obs which can

be readily plotted as follows.

print(SIM1$g_truth)

print(SIM1$g_obs)

While the transport action is clearly noticeable in the process evolution, there is also a clear spatial trend. Covariates

are included through the use of a standard R formula when calling the function IDE. Additional arguments to IDE

include the dataset, which needs to be of class STIDF, the temporal discretization to use (we will use 1 day) of class

difftime, and the gridsize on which the integrations (as well as predictions) will be carried out. Other arguments

include user-specified basis functions for the process and the transition kernel, which for now we will not specify. By

default, the IDE model will decompose the process using two resolutions of bisquare basis functions, and assume a

spatially-invariant Gaussian transition kernel.

IDEmodel <- IDE(f = z ~ s1 + s2,

data = SIM1$z_STIDF,

dt = as.difftime(1, units = "days"),

grid_size = 41)

The returned object IDEmodel is of class IDE and contains initial parameter estimates, as well as predictions for

αt, t = 1, . . . , T at these initial parameter estimates. The parameters in this case are the measurement-error variance,

the variance of the random disturbance ηt(s) (whose covariance structure is fixed), the kernel parameters, and the

regression coefficients β.

Fitting the IDE is a computationally intensive procedure. The default method currently implemented uses a differ-

ential evolution optimization algorithm from the package DEoptim, which is a global optimization algorithm that can

be easily parallelized. Fitting takes only a few minutes on a 60-core machine but can take an hour or two on a standard

desktop. Fitting can be done by running

fit_results_sim1 <- fit.IDE(IDEmodel,

parallelType = 1)

where parallelType = 1 ensures that all available cores on the machine are used for fitting.

The list fit_results_sim1 contains two fields: optim_results that contains the output of the optimiza-

tion algorithm, and IDEmodel that contains the fitted IDE model. The fitted kernel can be visualized by using the

function show_kernel.

show_kernel(fit_results_sim1$IDEmodel)

The fitted kernel is shifted to the left and upwards, correctly representing the south-easterly transport evident in the

data. The estimated kernel parameters θp are
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fit_results_sim1$IDEmodel$get("k") %>% unlist()

which can be compared to the true values c(150, 0.002, -0.1, 0.1). The estimated amplitude is lower and the

aperture is larger than those values used to simulate the true field, but the shift parameters are remarkably similar. The

estimated regression coefficients are

fit_results_sim1$IDEmodel$get("betahat")

which also compare well to the true values c(0.2, 0.2, 0.2)̧. Also of interest are the modulus of the eigenvalues of

the evolution matrix M. These can be extracted as follows.

abs_ev <- eigen(fit_results_sim1$IDEmodel$get("M"))$values %>% abs()

summary(abs_ev)

Since the largest of these is less than 1, the IDE process exhibits stable behavior.

For prediction, one may either specify a prediction grid, or use the default one used for approximating the inte-

grations set up by IDE. The latter is usually sufficient so we use this without exception for the examples we consider.

When a prediction grid is not supplied, the function predict returns a data frame with predictions spanning the data

temporal horizon (forecasts and hindcasts are explored later).

ST_grid_df <- predict(fit_results_sim1$IDEmodel)

The prediction and prediction standard error can now be plotted using standard ggplot2 commands as follows.

gpred <- ggplot(ST_grid_df) + # Plot the predictions

geom_tile(aes(s1, s2, fill=Ypred)) +

facet_wrap(~t) +

scale_fill_distiller(palette="Spectral", limits = c(-0.1,1.4)) +

coord_fixed(xlim=c(0, 1), ylim = c(0, 1))

gpredse <- ggplot(ST_grid_df) + # Plot the prediction s.es

geom_tile(aes(s1, s2, fill=Ypredse)) +

facet_wrap(~t) +

scale_fill_distiller(palette="Spectral") +

coord_fixed(xlim=c(0, 1), ylim = c(0, 1))

In Figure 1, we show the observations, the true process, the predictions, and the prediction standard errors from the

fitted model. Note how prediction standard errors are high in regions of sparse observations, as expected.

Simulation example with a spatially-varying kernel

In the previous example we considered the case of a spatially-invariant kernel, that is, the case when the kernel

m(s, r;θp) is just a function of ‖r − s‖. In this example we consider the case when one or more of the θp are

allowed to be spatially-referenced. Such models are needed when the spatio-temporal process exhibits, for example,

considerabe spatially-varying drift. One such process can be simulated using the function simIDE and specifying

k_spat_invariant = 0. To model such data we need to have a large nobs and many time points, and we set T

= 15. This is important, as it is difficult to obtain reasonable estimates of spatially distributed parameters unless the

data covers a large part of the spatial domain for at least a few consecutive time points.
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Figure 1: Simulated process (top-left panel), simulated data (top-right panel), predictions following the fitting of the

IDE model (bottom-left panel) and the respective prediction standard errors (bottom-right panel).

SIM2 <- simIDE(T = 15, nobs = 1000, k_spat_invariant = 0)

As above, the process and the data can be plotted through

print(SIM2$g_truth)

print(SIM2$g_obs)

Note how the field appears to rotate quickly anti-clockwise and arrive to a nearly complete standstill towards the lower

part of the domain. The spatially-varying advection that generated this field can be visualized using
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show_kernel(SIM2$IDEmodel, scale = 0.2)

In this command, the argument scale scales the arrow sizes by 0.2, that is, the shift per time point is five times the

displacement indicated by the arrow.

Spatially-varying kernels can be introduced by specifying the argument kernel_basis inside the call to IDE.

The basis functions that IDE uses are the of the same class as those used by FRK. Below we construct 9 bisquare

basis functions that are equally spaced in the domain.

mbasis_1 <- auto_basis(manifold = plane(), # functions on the plane

data = SIM2$z_STIDF, # data

nres = 1, # 1 resolution

type = 'bisquare') # type of functions

Type show_basis(mbasis_1) to plot these basis functions.

Now, recall that θp,1 corresponds to the amplitude of the kernel, θp,2 to the scale or aperture, θp,3 to the x-direction

shift “drift,” and θp,4 to the y-direction shift (drift). Here we decide to let θp,1 and θp,2 be spatially invariant (usually

a reasonable assumption), and decompose θp,3 and θp,4 as sums of basis functions given in mbasis_1.

kernel_basis <- list(thetam1 = constant_basis(),

thetam2 = constant_basis(),

thetam3 = mbasis_1,

thetam4 = mbasis_1)

Modelling proceeds as before, except that now we specify the argument kernel_basis when calling IDE.

IDEmodel <- IDE(f = z ~ s1 + s2 + 1,

data = SIM2$z_STIDF,

dt = as.difftime(1, units = "days"),

grid_size = 41,

kernel_basis = kernel_basis)

Fitting also proceeds by calling the function fit.IDE. Below we use the argument itermax = 400 to specify the

maximum number of iterations for the optimization routine to use.

fit_results_sim2 <- fit.IDE(IDEmodel,

parallelType = 1,

itermax = 400)

As above, be warned that this operation is very computationally intensive. The fitted spatially-varying kernel can be

visualized through

show_kernel(fit_results_sim2$IDEmodel)

and the true and fitted spatially-varying drift parameters are shown side by side in Figure 2. Note how the fitted drifts

capture the broad directions and magnitudes of the true model. Predictions and prediction standard errors can be

obtained and visualized using predict as above.
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Figure 2: True drifts (left panel) and estimated drifts (right panel).
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