
Package ‘ICAFF’
February 19, 2015

Type Package

Title Imperialist Competitive Algorithm

Version 1.0.1

Date 2015-02-06

Depends R (>= 3.0.0), graphics, stats

Author Farimah Houshmand, Farzad Eskandari Ph.D. <Askandari@atu.ac.ir>

Maintainer Farimah Houshmand <hoshmandcomputer@gmail.com>

Description Imperialist Competitive Algorithm (ICA)
<http://en.wikipedia.org/wiki/Imperialist_competitive_algorithm>
is a computational method that is used to solve optimization
problems of different types and it is the mathematical model
and the computer simulation of human social evolution.
The package provides a minimum value for the cost function
and the best value for the optimization variables by
Imperialist Competitive Algorithm.
Users can easily define their own objective function
depending on the problem at hand.
This version has been successfully applied to solve
optimization problems, for continuous functions.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-10 15:56:28

R topics documented:
ICA . 2
plot.ICA . 4

Index 6

1

2 ICA

ICA Finding a minimum value for the optimization variables of a cost func-
tion.

Description

ICA is a function for optimization by Imperialist Competitive Algorithm.

Usage

ICA(cost, nvar, ncountries = 80, nimp = 10, maxiter = 100,
lb = rep(-10, nvar), ub = rep(10, nvar),
beta = 2, P_revolve = 0.3, zeta = 0.02, ...)

Arguments

cost A cost function to be minimized. The function accept the parameter values
as a numerical vector as its principal argument. Additional arguments may be
specified through the ... argument below.

nvar Number of optimization variables of cost function

ncountries Number of initial countries

nimp Number of Initial Imperialists

maxiter Maximum number of iterations allowed.

lb Lower limit of the optimization region; a numeric vector of length nvar. Will
be recycled if necessary.

ub Upper limit of the optimization region; a numeric vector of length nvar. Will be
recycled if necessary.

beta Assimilation coefficient.

P_revolve Revolution is the process in which the socio-political characteristics of a country
change suddenly.

zeta Total Cost of Empire = Cost of Imperialist + Zeta * mean(Cost of All Colonies)

... Additional arguments, if needed, for the function cost.

Details

To use this code, you should only need to prepare your cost function.

Value

An object of class "ICA", a list with components:

call The call used.

postion The vector of components for the position of the minimum value found.

value The minimum value at the optimal position.

ICA 3

nimp The remaining number of imperialists at the conclusion of the procedure.

trace A 1-column matrix of successive minimum values found at each iteration of the
major loop.

time The execution time taken to find the best solution.

Note

The steps can be summarized as the below pseudocode:

0) Define objective function or cost function: f(x, ...), x = (x[1], x[2], . . . , x[nvar]) ;

1) Initialization of the algorithm. Generate some random solution in the search space and create
initial empires.

2) Assimilation: Colonies move towards imperialist states in different in directions.

3) Revolution: Random changes occur in the characteristics of some countries.

4) Position exchange between a colony and imperialist. A colony with a better position than the
imperialist, has the chance to take the control of empire by replacing the existing imperialist.

5) Imperialistic competition: All imperialists compete to take possession of colonies of each other.

6) Eliminate the powerless empires. Weak empires lose their power gradually and they will finally
be eliminated.

7) If the stop condition is satisfied, stop, if not go to 2.

8) End

Assimilation: Movement of colonies toward imperialists (Assimilation Policy) Revolution: A sud-
den change in the socio-political characteristics.

Author(s)

Farimah Houshmand, Farzad Eskandari Ph.D. <Askandari@atu.ac.ir>

Maintainer: Farimah Houshmand <hoshmandcomputer@gmail.com>

References

Atashpaz-Gargari, E. and Lucas, C. (2007). Imperialist Competitive Algorithm: An algorithm for
optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation,
Vol. 7, pp. 4661-4666.

Examples

--------cost function: f(x,y) = x * sin(4 * x) + 1.1 * y * sin(2 * y)
--------search region: -10 <= x, y <= 10

cost <- function(x) {
x[1] * sin(4 * x[1]) + 1.1 * x[2] * sin(2 * x[2])

}

ICAout <- ICA(cost, nvar = 2, ncountries = 80, nimp = 10,
maxiter = 100, lb = -10, ub = 10,

4 plot.ICA

beta = 2, P_revolve = 0.3, zeta = 0.02)

summary(ICAout) ## same as the print method
coef(ICAout) ## get the position of the minimum
cost(coef(ICAout)) ## cost at the minimum
plot(ICAout) ## show the history of the process

plot.ICA Methods for ICA objects.

Description

Provide standard methods for manipulating ICA objects, namely printing, plotting, summarising
and extracting the position of the minimum.

Usage

S3 method for class 'ICA'
plot(x, ..., xlab = "Iteration", ylab = "Value",

main = "ICA History", col = "red")
S3 method for class 'ICA'
print(x, ...)
S3 method for class 'ICA'
summary(object, ...)
S3 method for class 'ICA'
coef(object, ...)

Arguments

x, object An object of class "ICA".
xlab, ylab, main, col

Graphics parameters.

... Additional arguments passed on to the method.

Details

Methods for standard generic functions when dealing with objects of class "ICA"

Value

print method: the value is printed and returned invisibly.

summary method: dummy. Returns the object unchanged.

plot method: a plot of the history of the process is produced with a NULL return value.

coef method: extract the location vector for the minimum value.

plot.ICA 5

Examples

--------cost function: f(x,y) = x * sin(4 * x) + 1.1 * y * sin(2 * y)
--------search region: -10 <= x, y <= 10

cost <- function(x) {
x[1] * sin(4 * x[1]) + 1.1 * x[2] * sin(2 * x[2])

}

ICAout <- ICA(cost, nvar = 2, ncountries = 80, nimp = 10,
maxiter = 100, lb = -10, ub = 10,
beta = 2, P_revolve = 0.3, zeta = 0.02)

summary(ICAout) ## same as the print method
coef(ICAout) ## get the position of the minimum
cost(coef(ICAout)) ## cost at the minimum
plot(ICAout) ## show the history of the process

Index

∗Topic optimize
ICA, 2
plot.ICA, 4

coef.ICA (plot.ICA), 4

ICA, 2

plot.ICA, 4
print.ICA (plot.ICA), 4

summary.ICA (plot.ICA), 4

6

	ICA
	plot.ICA
	Index

