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Abstract

Testing genetic markers for Hardy-Weinberg equilibrium is an important issue in ge-
netic association studies. The HardyWeinberg package offers the classical autosomal tests
for equilibrium, functions for power computation and for the simulation of marker data
under equilibrium and disequilibrium. Recently, specific frequentist and Bayesian tests
for X-chromosomal markers have been developed and included in the package. Functions
for testing equilibrium in the presence of missing data by using multiple imputation are
provided. The package also supplies various graphical tools such as ternary plots with
acceptance regions, log-ratio plots and Q-Q plots for exploring the equilibrium status of a
large set of diallelic markers. Classical tests for equilibrium and graphical representations
for diallelic marker data are reviewed. Several data sets illustrate the use of the package.

Keywords: ternary plot, Q-Q plot, chi-square test, exact test, permutation test, power, log-
ratio.

1. Introduction

The HardyWeinberg package (Graffelman 2015) consists of a set of tools for analyzing diallelic
genetic markers in the R environment (R Core Team 2014), and is particularly focused on
the graphical representation of their (dis)equilibrium condition in various ways. The package
is mainly aimed at researchers working in the fields of genetics, statistics, epidemiology, bio-
informatics and bio-statistics and is available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=HardyWeinberg. This paper describes
the state of the art of version 1.6.0 of the package. If you appreciate this software and wish to
cite it, please cite the corresponding paper in the Journal of Statistical Software (Graffelman
2015). The structure of this paper is as follows. In Section 2 we briefly introduce Hardy-
Weinberg equilibrium. Section 3 reviews the classical statistical tests and power computation
for Hardy-Weinberg equilibrium. Section 4 briefly presents the X-chromosomal tests for equi-
librium. Section 6 treats graphical representations of Hardy-Weinberg equilibrium for sets of
markers. Section 7 is an example session showing how to analyze genetic markers with the
functions of the package. Finally, a discussion (Section 8) with some comments on related
packages completes the paper.


http://CRAN.R-project.org/package=HardyWeinberg
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2. Hardy-Weinberg equilibrium

A diallelic genetic marker with alleles A and B with respective frequencies p and ¢ (p + ¢ =
1) is said to be in Hardy-Weinberg equilibrium if the relative genotype frequencies faa4,
fap and fgp are given by p?, 2pq and ¢° respectively. This law, independently formulated
by Hardy (1908) and Weinberg (1908), is a fundamental principle of modern genetics (Crow
1988). The term “Hardy-Weinberg equilibrium” was proposed by Stern (1943). The law
is easily extended to a system with multiple alleles Ay,...A; with frequencies pi, ..., pk,
giving genotype frequencies p? for homozygotes and 2p;p; for heterozygotes. An alternative
formulation of the law for the diallelic case is obtained by squaring the heterozygote frequency:

fip =4faafBb. (1)

Hardy-Weinberg equilibrium (HWE) is achieved in one generation of random mating. In
the absence of disturbing forces (migration, mutation, selection, among other possibilities)
the law predicts that genotype and allele frequencies will remain in their equilibrium state
over the generations. We refer to genetic textbooks (Crow 1988; Hartl 1980) for a more
detailed treatment of the long list of assumptions that underlie HWE. The law plays an
important role in the context of genetic association studies for various reasons. Disequilibrium
may be the result of genotyping error, most typically the confusion of heterozygotes and
homozygotes. Tests for HWE may thus help to detect (gross) genotyping error. On the
other hand, disequilibrium among cases in a case-control study may be indicative of disease
association. Thus, tests for HWE may also provide clues in marker-disease association studies.

3. Classical autosomal tests for Hardy-Weinberg equilibrium

There are several statistical tests available for investigating whether a genetic marker can
be considered to be in equilibrium or not. The classical chi-square test for goodness-of-fit
has been the most popular test for HWE for decades, though nowadays exact procedures are
more and more often employed. A likelihood ratio test is also available. A description of
the different tests is given by Weir (1996, Chapter 3). Bayesian inference for HWE (Lindley
1988; Ayres and Balding 1998; Shoemaker, Painter, and Weir 1998; Wakefield 2010; Consonni,
Moreno, and Venturini 2010) is not considered here. In the following sections we summarize
the chi-square test (Section 3.1), the likelihood ratio test (Section 3.2), the exact test (Section
3.3) and the permutation test (3.4), and also describe the computation of power for HWE
tests (Section 3.5). Testing for HWE with missing genotype data is addressed in Section 3.6.

3.1. Chi-square test

The chi-square test is the classical test for HWE and is typically explained in genetic text-
books (Hedrick 2005; Hartl 1980). Let naa, nap and npp represent the observed genotype
counts, and eqq = np?, ean = 2npq and epp = ng’> the expected genotype counts under
HWE. The chi-square statistic X? can be computed as

2 2 2
n — € n — e n — e

%2 _ (naa —ean) Jr( AB — €AB) +( BB — €BB) ’ @)
CAA €AB €BB

and compared with a x? reference distribution. Alternatively, the chi-square statistic may be
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Table 1: Three genotype counts na4, nap and npp represented in a two-way table.
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Table 2: Allele counts represented in a two-way table.

expressed as

2
X? = 21)72’ (3)
p g n

where D = %(n AB—eap) indicates the deviation from independence for the heterozygote. The
computation of D (or other disequilibrium statistics) is recommended because X? itself is not
informative about the nature of disequilibrium (excess or lack of heterozygotes). A chi-square
test for HWE can be carried out by using function HWChisq of the package, and supplying the
vector of the three genotype counts. However, in R standard chi-square tests for independence
are typically carried out on tables or matrices. If the genotype counts are re-organized in a
two-way layout given in Table 1, then a standard chi-square test for independence (function
chisq.test in R) applied to this table is the same as a chi-square test for HWE.

The total of Table 1 is the number of individuals, and the margins are half the allele counts.
If the table is multiplied by 2 then the margins of the table have a more substantive interpre-
tation as allele counts n4 = 2n44 + nap and ng = 2ngp + nap, and the total of the table
is the total number of alleles, as shown in Table 2.

We note that, due to the multiplication by 2, the latter table has a chi-square statistic that
doubles the chi-square statistic of Table 1. It is well known that the chi-square statistic is
related to the sample correlation coefficient (r) between two indicator variables for the row
and column categories by the expression

X2 = nr3.

(4)

The indicator matrix corresponding to contingency Table 2 is given in Table 3.

The patterns for AA, AB and BB in this table are repeated naa, nap and ngp times re-
spectively. In this table each individual is decomposed into its two constituent genes. The
indicator variables Iop and I ;5 show whether the corresponding individual received a B al-
lele from their mother or their father respectively. The sample correlation coefficient between
the two indicator variables is an estimate for what is known as the inbreeding coefficient in
population genetics (Crow and Kimura 1970, Chapter 3). The inbreeding coefficient, usually
denoted by f, is the probability that the pair of alleles of an individual is identical by descent.
In the statistical literature, f is better known as the intraclass correlation coefficient. f can
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Maternal Paternal

Individual Allele Allele  Iop I

Q d'B
AA A A 0 0
A A 0 0
AB A B 0 1
B A 1 0
BB B B 1 1
B B 1 1

Table 3: Coding of genotype data by indicator variables.

be estimated by maximum likelihood (ML) as

A 4nAAnBBfn2
f= AB (5)
nanpg

and this is identical to the aforementioned sample correlation coefficient r in Equation 4.
Function HWf of the package computes this statistic.

3.2. Likelihood ratio test

In general, the likelihood of a sample of genotype counts is given by the multinomial distri-
bution

n

L(Paa, Pap, Ppp) = <nAA g nEE

n 23 n
)rav i
and the ML estimator is given by the relative sample genotype frequencies. We thus obtain

L ( n >(nAA>”AA(nAB)"AB<nBB)nBB
1= '
NAA;MAB, BB n n n

Under the assumption of HWE, the likelihood is

I n (nA>2nAA(2nAnB)nAB<nB)2nBB
0= NAA,MAB,NBB/) \2n 2n 2n 2n '

The logarithm of the likelihood ratio of the latter two is given by

L
In <LO> =—-2nln(2) —nln(n)+napln(2) + naln(na) +npln(ng)
1

—naaln(naa) —napln(nap) —nppln(npp), (6)
and the statistic G2 = —21In <%) has, asymptotically, a X% distribution. The likelihood ratio
1

test for HWE can be carried out using the function HWLratio of the package. Asymptotically,
the likelihood ratio test is equivalent to a chi-square test for HWE.

3.3. Exact test
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Exact test procedures for HWE are based on the conditional distribution of the number
of heterozygotes (N4p) given the minor allele count (N4). This distribution was derived
by Levene (1949) and Haldane (1954) and is given by Equation 7.

nalngInl2nAB

P(Nap|N4) = :
( | ) %(nA—nAB)!nAB!%(TLB—nAB)!(2n)!

(7)

The standard way to compute the p value of an exact test is to sum probabilities according to
Equation 7 for all samples that are as likely or less likely than the observed sample. This way
to compute the p value has been termed the SELOME p value (select equally likely or more
extreme samples). The function HWExact provides the standard exact test for HWE, even
though it also implements alternative definitions of the p value. In particular, the function
also offers the possibility to do a one-sided test, or to use the mid p value (Lancaster 1961).
The mid p value is defined as half the probability of the observed sample plus the probabilities
of all possible samples that are less likely than the observed sample. The mid p value is less
conservative, has a type I error rate that is closer to the nominal level, and has been shown
to have better power (Graffelman and Moreno 2013).

The exact test for HWE is often confused with Fisher’s exact test for a two-way table. Whereas
the chi-square test on the two-way Table 1 is equivalent to a chi-square test for HWE, Fisher’s
exact test (implemented in the R function fisher.test) applied to Table 1 or 2 is not equiv-
alent to an exact test for HWE. We note in this respect that the off-diagonal element in
Table 1 may be non-integer for an odd number of heterozygotes, and that the exact test is
thus not applicable to this table. With regard to Table 2 we note that in Fisher’s exact test,

nap would be allowed to take on any integer value in the range 0, ..., min (n4,np), since all
tables with the same marginal counts are considered. However, in the exact test for HWE,
nap can only take the values (0,2,...,n4p5) if ny is even, or (1,3,...,n4p) if n4 is odd, and

thus the results differ from Fisher’s test on a two-way table.

3.4. Permutation test

Hardy-Weinberg equilibrium refers to the statistical independence of alleles within individuals.
This independence can also be assessed by a permutation test, where all 2n alleles of all
individuals are written out as a single sequence (E.g. AAAAABABBBAA....). This sequence
is then permuted many times, and for each permuted sequence pairs of successive alleles
are taken as individuals. For each permutation a test statistic (the pseudo-statistic) for
disequilibrium is computed. The test statistic for the original observed sample is compared
against the distribution of the pseudo-statistic, where the latter was generated under the null
hypothesis. The p value of the test is calculated as the fraction of permuted samples for which
the pseudo-statistic is equal to or exceeds the test statistic. Such a test is computer intensive
but has the advantage that it does not rely on asymptotic assumptions. Function HWPerm
performs this test.

3.5. Power calculations

The power of the chi-square test or of an exact test can be calculated if the sample size,
minor allele count and significance level («) are known, and if the degree of deviation from
equilibrium (the effect size) is specified. The effect size can be specified by providing a
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disequilibrium parameter 6, given by

2
PAB

"~ PaaPpp’

(8)

When there is exact equilibrium 6 = 4. The situation 8 > 4 refers to heterozygote excess,
and the situation 6 < 4 refers to heterozygote dearth. Alternatively, the degree of disequilib-
rium may also be parametrized by using the inbreeding coefficient f. Under inbreeding, the
population genotype frequencies are given by

Paa = p% + papsf,
Pap =2papp(1— f), 9)
Ppp = ph + papsf,

with —lfﬁ < f <1, and py, is the minor allele frequency min(pa, pg). If f = 0 then the
genotype frequencies correspond to the Hardy-Weinberg proportions. Both specifications of
disequilibrium are interrelated (Rohlfs and Weir 2008). Power calculations are made possible

by the HWPower function of the package.

3.6. Missing data

Genotype data often have missing values. If missing values are not missing completely at ran-
dom, inference with respect to HWE may be biased (Graffelman, Sdnchez, Cook, and Moreno
2013). Multiple imputation (Little and Rubin 2002) of missing values, taking information
from allele intensities and/or neighboring markers and into account, can improve inference
for HWE. Function HWMissing of the package does inference for HWE in the presence of
missing data. The multiple imputation part is resolved by the package mice (van Buuren
and Groothuis-Oudshoorn 2011). In brief, HWMissing computes the inbreeding coefficient
(see Equation 5) for each imputed data set, and combines all estimates according to Rubin’s
pooling rules. A confidence interval for f and a p value for a test for HWE can then be com-
puted. Alternatively, exact inference for equilibrium when there are missings is also possible
by combining the exact p values of the imputed data sets (Graffelman, Nelson, Gogarten, and
Weir 2015). An example of inference for HWE with missing values is given in Section 7.

4. X-chromosomal tests for Hardy-Weinberg equilibrium

Recently, Graffelman and Weir (2016) have proposed specific tests for HWE for bi-allelic
markers on the X-chromosome. These tests take both males and females into account. The
X-chromosomal tests can be carried out by the same functions mentioned in the previous
Section (HWChisq, HWLratio, HWExact, HWPerm) and adding the argument x.1linked=TRUE
to the function call. For a detailed treatment of frequentist X-chromosomal tests, see Graf-
felman and Weir (2016). The frequentist X-chromosomal procedures are omnibus tests that
simultaneously test equality of allele frequencies in males and females and Hardy-Weinberg
proportions in females. Recently, a Bayesian method for testing bi-allelic X-chromosomal
variants has been proposed by Puig, Ginebra and Graffelman (2017). Examples of frequentist
and Bayesian testing of X-chromosomal markers for HWE are given below in Section 7.
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5. HWE and gender allele frequencies

Testing HWP for a genetic variant is contingent on the assumption of equality of allele fre-
quencies in the sexes. Likewise, a chi-square of exact test for equality of allele frequencies
assumes HWP. Recently, Graffelman and Weir (2017) proposed exact and likelihood ratio
procedures that can test HWP and equality of allele frequencies (EAF) jointly or indepen-
dently, using different scenarios for a bi-allelic variant. Function HWLRtest compares different
scenarios with a likelihood ratio test (LRT). Puig, Ginebra and Graffelman (2019) describe
ten different scenarios for autosomal variants that allow for sex-specific allele frequencies and
inbreeding coefficients. The different scenarios can be compared using Bayesian model se-
lection implemented in function HWPosterior. Alternatively, function HWAIC can be used to
calculate Akaike’s information criterion (AIC), which can also be used to decide which model
best fits the data. Examples are given in Section 7.

6. Graphics for Hardy-Weinberg equilibrium

Several graphics can complement statistical tests for HWE, in particular if many markers are
tested simultaneously. The package HardyWeinberg provides several graphical routines which
are briefly discussed in the following subsections, where we consider scatter plots (Section 6.1),
ternary plots (Section 6.2), log-ratio plots (Section 6.3) and Q-Q plots (Section 6.4). We
will use two data sets to illustrate the different graphics. The first data set, HapMapCHBChr1,
concerns 225 single nucleotide polymorphisms (SNPs) with no missing data from chromosome
1 for a sample of 84 individuals from the Han Chinese population in Beijing, compiled from
the publicly available datasets of the HapMap project (http://hapmap.ncbi.nlm.nih.gov/,
The International HapMap Consortium 2007). The second data set, Mourant, consists of
the genotype counts for the MN blood group locus for 216 samples from different human
populations. This data set was compiled by Mourant, Kopeé¢, and Domaniewska-Sobczak
(1976, Table 2.5). We will refer to these data sets as the HapMap and the Mourant data set
respectively.

6.1. Scatter plots of genotype frequencies

Relationships between the genotype frequencies can be explored by making scatter plots of
the frequencies, such as fap versus faa or fgp versus faas. In these scatter plots, genetic
markers tend to follow a particular curve described by the Hardy-Weinberg law. Any scatter
plot of two of the three genotype frequencies will reveal structure if the law holds. In a plot
of fap versus faa, the Hardy-Weinberg law is given by Equation 10,

fap =2 (\/m - fAA) ; (10)

and in a plot of fpp versus fa4 the law is described by Equation 11,

BB = (1—\/ﬂTA)2- (11)

These relationships are easily derived from Equation 1. Examples of both plots using the
HapMapCHBChr1 data set are shown in Figure 1. Both graphs show that all samples cluster
closely around the HWE curve. The function HWGenotypePlot can be used to create these
plots.


http://hapmap.ncbi.nlm.nih.gov/
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Figure 1: Genotype frequency scatter plots and HWE for 225 SNPs on chromosome 1 of a
Han Chinese population. Significant markers (according to a chi-square test) are indicated
by red points, non-significant markers by green points. The blue curves in the plots indicate
perfect HWE.

6.2. The ternary plot

The Italian statistician Bruno De Finetti (1926) represented genotype frequencies in a ternary
diagram. This diagram is known as a de Finetti diagram in the genetics literature (Cannings
and Edwards 1968). The HWE condition defines a parabola in the ternary plot. A ternary
plot of the genotype frequencies with the HWE parabola is an information-rich graphical
display. From this plot one can recover genotype frequencies, allele frequencies, and infer the
equilibrium status of a genetic marker at a glance (see Figure 2).

The ternary plot is most useful for plotting data consisting of multiple samples that have all
been genotyped for the same genetic marker. In that case the three vertices of the display
are fully identified. An example is shown in Figure 3 where the genotype counts for the MN
blood group locus are shown for 216 samples of various human populations from different
geographical origin (Mourant et al. 1976, Table 2.5). The plot shows relatively higher allele
frequencies for the N allele for samples from Oceania, and lower allele frequencies for this
allele for the Eskimo samples. African, American, European and Asian populations have
intermediate allele frequencies. Most samples clearly cluster around the HWE parabola,
though there are several deviating samples as well.

The ternary plot may also be used to represent multiple markers, though this is a bit tricky
because the obtained display is no longer uniquely determined. In this case, one vertex, usu-
ally the top vertex, is chosen to represent the heterozygote frequency of each marker. The two
bottom vertices are used for one of the two homozygote frequencies. It is arbitrary to place
AA on the right and BB on the left or the other way round. Representing multiple markers
amounts to overplotting all ternary diagrams for each individual marker in such a way that
the axes for the heterozygotes always coincide. Despite the indeterminacy of the homozygote
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Figure 2: Ternary plot of a genetic marker, showing the recovery of genotype frequencies
(faa = 0.30, fap = 0.60 and fpp = 0.10) and allele frequencies (pp = 0.40). The parabola
represents Hardy-Weinberg equilibrium.
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Figure 3: Left panel: ternary plot for one marker: MN blood group genotype frequencies
for 216 samples from different human populations. Right panel: ternary plot for multiple
markers: 225 SNPs on chromosome 1 of a sample of 84 individuals from the Han Chinese
population. HWE parabola and acceptance region for a chi-square test are shown in the latter
plot.

vertices, the plot remains highly informative, as now minor allele frequency, genotype fre-
quencies and equilibrium status are visualized simultaneously for many markers in just one
plot. Graffelman and Morales-Camarena (2008) amplified the ternary plot by representing
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the acceptance regions of chi-square and exact tests inside the plot. An example with mul-
tiple markers is shown in the right panel of Figure 3. This figure shows 225 SNPs of the
dataset HapMapCHBChr1. The function HWTernaryPlot of the package allows the construction
of ternary plots with the equilibrium parabola and various acceptance regions.

6.3. Log-ratio plots

A vector of genotype counts (AA, AB, BB) can be seen as a composition, where these counts
form parts of a whole. Compositional data analysis (Aitchison 1986) is a branch of statistics
dedicated to the analysis of compositions. Some of the tools employed in compositional
data analysis such as ternary diagrams and log-ratio transformations can be useful for the
analysis of genotype counts. Currently, three types of log-ratio transformations are in use:
the additive log-ratio (alr) transformation, the centered log-ratio (clr) transformation and the
isometric log-ratio (ilr) transformation (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and
Barcelé-Vidal 2003). Starting with a vector of genotype counts (x = (ng4,n48,n88)), the
log-ratio transformations for diallelic markers were given by Graffelman and Egozcue (2011),
and are also detailed below:

In fAA .In IBB

fag )
alr(x) ={ (In jﬁﬁ In482) (12)
i I
In fozo I Foz )
clr(x) = <ln faa ,In fas ,In fos >, (13)
gm(x)" gm(X) gm(x)
L1 faa faafen
(\[lnfBB fln i ),
. B 1 ! faBf
ilr(x) = <\[ln o, \[ln AJ%;B) , (14)

L 1n faa faafap

\[ fAB \/éln f?gB ’

where gy, (+) denotes the geometric mean of its argument. Note that there exist 3 alr and 3 ilr
transformations depending on which genotype count is used as the divisor in the log-ratios. We
will use the first of the three ilr transformations, because the isometric log-ratio transformation
yields a space with an orthonormal basis, and because HWE is in these coordinates represented
by a simple horizontal line. With this transformation, HWE implies that the second ilr
coordinate is constant (—/2/31n(2)) and the first coordinate is v/2 times the log odds of
the allele frequency. The package includes some standard routines for computing additive,
centered and isometric log-ratio coordinates for vectors of genotype counts (HWAlr, HWClr and
HWIlr), and also graphical routines that display markers in log-ratio coordinates (HWAlrPlot,
HWC1rPlot and HWIlrPlot). HWE is represented in log-ratio coordinates by a perfect linear
relationship between the first and second log-ratio coordinate. Examples of the log-ratio plots
for the Mourant data and the HapMap data are given in Figure 4.

6.4. Q-Q plots

Genetic association studies nowadays investigate many markers for their possible relation with
diseases. The equilibrium status of the markers is important, since deviation from HWE may
be indicative of genotyping error. Moreover, disequilibrium for cases in a case-control study
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Figure 4: Left panel: ilr plot of MN blood group genotype frequencies for 216 samples from
different human populations. Right panel: ilr plot for 225 SNPs on chromosome 1 of a sample
of 84 individuals from a Han Chinese population. HWE is represented by the horizontal line
with ordinate —+/2/31n(2) = —0.57. Markers are colored according to a chi-square test for
HWE (red points significant, green points not significant).
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Figure 5: Left panel: Q-Q plot for 225 SNPs on chromosome 1 of a sample of 84 individuals
from the Han Chinese population. Right panel: Q-Q plot for simulated data (225 SNPs, 84
individuals) with inbreeding (f = 0.05).

is indicative for disease association. Given that so many markers are tested, it is cumbersome
to do this all in a numerical manner only, and it is known beforehand that false positives
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will arise. Even if we find that 5% of the markers is significant when we use a significance
level of v = 0.05, this does not imply that the database as a whole can be considered to be
“in equilibrium”. The distribution of the test results (chi-square statistics or p values) then
becomes interesting to look at. One way to do this is to compare the sample percentiles of
the chi-square statistics of all markers with the theoretical percentiles of a x? distribution in
a chi-square quantile-quantile plot (Q-Q plot). For exact tests, Q-Q plots of the p values are
used. Often the uniform distribution is chosen as the reference distribution. However, with
discrete data the p value distribution under the null is not uniform. The function HWQgplot
of the package plots the p values against samples from the null distribution rather than the
uniform distribution. The function takes into account that sample size and allele frequency
can vary over markers. Figure 5 shows Q-Q plots for the HapMap data (left panel) and also
for simulated data under moderate inbreeding (right panel, f = 0.05). The green line is the
reference line passing through the origin with slope 1. Each grey line plots a sample from
the null distribution against the empirical quantiles of the p values. Deviation of the green
line from the grey zone is taken as evidence that HWE is violated. The HapMap data set is
seen to be in good agreement with what is expected under the null. This is not surprising, as
the markers of the project undergo a quality control filter, and markers that strongly deviate
from HWE (p value of an exact test < 0.001) are discarded from the project. For the dataset
simulated under inbreeding, a manifest deviation from HWE is found. Q-Q plots assume
independent observations. We note that this assumption will be violated if the markers under
study are closely neighboring markers from the same region of a single chromosome.

7. An example session

This section shows the basic use of the package for testing and plotting genetic markers.
We consider installation (Section 7.1), testing of markers (Section 7.2), power computations
(Section 7.5), simulation of marker data (Section 7.6) and graphics for HWE (Section 7.7).
7.1. Installation

The HardyWeinberg package can be installed as usual via the command line or graphical user

interfaces, e.g., the package can be installed and loaded by:

R> install.packages ("HardyWeinberg")
R> library("HardyWeinberg")

This will make, among others, the functions HiChisq, HWData, HWExact, HWLratio, HWMissing,
HWPower, HWQqgplot, and HWTernaryPlot available. The document describing the package
(this paper) can be consulted from inside R by typing:

R> vignette ("HardyWeinberg")

7.2. Testing autosomal markers for HWE

We show how to perform several classical tests for Hardy-Weinberg equilibrium. As an ex-
ample we use a sample of 1000 individuals genotyped for the MN blood group locus described
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by Hedrick (2005, Table 2.4). We store the genotype counts (298, 489 and 213 for MM, MN
and NN respectively) in a vector x:

R> library("HardyWeinberg")
R> x <- c(MM = 298, MN = 489, NN
R> HW.test <- HWChisq(x, verbose

213)
TRUE)

Chi-square test with continuity correction for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 0.1789563 DF = 1 p-value = 0.6722717 D = -3.69375 £ = 0.01488253

This shows that the chi-square statistic has value 0.179, and that the corresponding p value
for the test is 0.6723. Taking Taking a significance level of @ = 0.05, we do not reject HWE
for the MN locus. When verbose is set to FALSE (default) the test is silent, and HW.test is
a list object containing the results of the test (chi-square statistic, the p value of the test,
half the deviation from HWE (D) for the heterozygote (D = 3(fap — eap)), the minor allele
frequency (p) and the inbreeding coefficient £). By default, HWChisq applies a continuity
correction. This is not recommended for low minor allele frequencies. In order to perform a
chi-square test without Yates’ continuity correction, it is necessary to set the cc parameter
to zero:

R> HW.test <- HWChisq(x, cc = 0, verbose = TRUE)

Chi-square test for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 0.2214896 DF = 1 p-value = 0.6379073 D = -3.69375 £ = 0.01488253

The test with correction gives a smaller y?-statistic and a larger p value in comparison with
the ordinary x? test. The likelihood ratio test for HWE can be performed by typing

R> HW.lrtest <- HWLratio(x, verbose = TRUE)

Likelihood ratio test for Hardy-Weinberg equilibrium
G2 = 0.2214663 DF = 1 p-value = 0.637925

Note that the G?-statistic and the p value obtained are very close to the chi-square statistic
and its p value. An exact test for HWE can be performed by using routine HWExact.

R> HW.exacttest <- HWExact(x, verbose = TRUE)

Haldane Exact test for Hardy-Weinberg equilibrium (autosomal)
using SELOME p-value

sample counts: nMM = 298 nMN = 489 nNN = 213

HO: HWE (D==0), H1: D <> O

D = -3.69375 p-value = 0.6556635

The exact test leads to the same conclusion, we do not reject HWE (p value = 0.6557). Both
one-sided and two-sided exact tests are possible by using the argument alternative, which
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can be set to "two.sided", "greater", or "less". Three different ways of computing the
p value of an exact test are implemented, and can be specified by the pvaluetype argument,
which can be set to dost (double one-sided tail probability), selome (sum equally likely or
more extreme) or midp (the mid p value). The exact test is based on a recursive algorithm.
For very large samples, R may give an error message “evaluation nested too deeply: infinite
recursion”. This can usually be resolved by increasing R’s limit on the number of nested
expressions with options(expressions = 10000) prior to calling HWExact. See THWExact
for more information on this issue. The permutation test for HWE is activated by:

R> set.seed(123)
R> HW.permutationtest <- HWPerm(x, verbose = TRUE)

Permutation test for Hardy-Weinberg equilibrium
Observed statistic: 0.2214896 17000 permutations. p-value: 0.6551765

and the number of permutations can be specified via the nperm argument. By default the
chi-square statistic will be used as the test statistic, but alternative statistics may be supplied
by the FUN argument.

All routines HWChisq, HWExact, HWLratio and HWPerm assume that the data are supplied
as a vector of genotype counts listed in order (AA, AB, BB). The genotype counts may be
specified in a different other, but in that case the elements of the count vector must be
appropriately labeled. E.g., the HWChisq function may also be called with:

R> x <- c(MN = 489, NN = 213, MM
R> HW.test <- HWChisq(x, verbose

298)
TRUE)

Chi-square test with continuity correction for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 0.1789563 DF = 1 p-value = 0.6722717 D = -3.69375 f = 0.01488253

Often many markers are tested for HWE. If the genotype counts AA, AB, BB are collected in
a m x 3 matrix, with each row representing a marker, then HWE tests can be run over each
row in the matrix by the routines HWChisqMat and HWExactMat. These routines return a list
with the p values and test statistics for each marker.

If, for some reason, the equilibrium status of a particular marker is at stake, you may wish to
perform all tests to see to what extent they do agree or disagree. You can use HWAlltests in
order to perform all tests with one call and obtain a table of all p values.

R> HW.results <- HWAlltests(x, verbose = TRUE, include.permutation.test = TRUE)

Statistic  p-value

Chi-square test: 0.2214896 0.6379073
Chi-square test with continuity correction: 0.1789563 0.6722717
Likelihood-ratio test: 0.2214663 0.6379250
Exact test with selome p-value: NA 0.6556635
Exact test with dost p-value: NA 0.6723356
Exact test with mid p-value: NA 0.6330965
Permutation test: 0.2214896 0.6422941
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The MN data concern a large sample (n = 1000) with an intermediate allele frequency (p =
0.4575), for which all test results closely agree. For smaller samples and more extreme allele
frequencies, larger differences between the tests are typically observed.

We also indicate how to test for HWE when there is missing genotype data. We use the data
set Markers for that purpose.

R> data(Markers)
R> Markers[1:12,]

SNP1 iG ~ iT SNP2 SNP3

1 TT 641 1037 AA GG
2 GT 1207 957 AC AG
3 TT 1068 1686 AA GG
4 GG 1348 466 CC AA
5 GT 1176 948 AC AG
6 GG 1906 912 CC  AA
7 GG 1844 705 CC AA
8 GG 2007 599 CC AA
9 GT 1369 1018 AC AG
10 GG 1936 953 CC  AA

11 GG 1952 632 AC AG
12 <NA> 947 920 AC AG

Note that this data is at the level of each individual. Dataframe Markers contains one SNP
with missings (SNP1), the two allele intensities of that SNP (iG and iT) and two covariate
markers (SNP2 and SNP3). Here, the covariates have no missing values. We first test SNP1 for
HWE using a chi-square test and ignoring the missing genotypes:

R> Xt <- table(Markers[,1])

R> Xv <- as.vector(Xt)

R> names(Xv) <- names (Xt)

R> HW.test <- HWChisq(Xv,cc=0,verbose=TRUE)

Chi-square test for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 8.67309 DF = 1 p-value = 0.003229431 D = -6.77551 £ = 0.297491

This gives a significant result (p value = 0.0032). If data can be assumed to be missing
completely at random (MCAR), then we may impute missings by randomly sampling the
observed data. This can be done by supplying the method = "sample" argument, and we
create 50 imputed data sets (m = 50).

R> set.seed(123)
R> Results <- HWMissing(Markers[,1], m = 50, method = "sample", verbose=TRUE)
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Test for Hardy-Weinberg equilibrium in the presence of missing values
Inbreeding coefficient £ = 0.2936

95 % Confidence interval ( 0.1058 , 0.4813 )

p-value = 0.0022

Relative increase in variance of f due to missings: r = 0.3351
Fraction of missing information about f: lambda = 0.2529

As could be expected, the conclusion is the same: there is significant deviation from HWE
(p = 0.0022). It will make more sense to take advantage of variables that are correlated
with SNP1, and use multiple imputation of the missings of SNP1 using a multinomial logit
model. The multinomial logit model will be used when we set method = "polyreg" or leave
the method argument out, since "polyreg" is the default for imputation of factor variables
by means of a multinomial logit model used by package mice. We test SNP1 (with missings)
for HWE, using a multinomial logit model to impute SNP1 using information from the allele
intensities iG and iT and the neighboring markers SNP2 and SNP3.

R> set.seed(123)
R> Results <- HWMissing(Markers[, 1:5], m = 50, verbose = TRUE)

Test for Hardy-Weinberg equilibrium in the presence of missing values
Inbreeding coefficient £ = 0.0608

95 % Confidence interval ( -0.1061 , 0.2278 )

p-value = 0.4751

Relative increase in variance of f due to missings: r = 0.0596
Fraction of missing information about f: lambda = 0.0564

Note the sharp drop of the inbreeding coefficient, and the missing data statistics A and 7.
The test is now not significant (p value = 0.4751). Exact inference for HWE with missings is
possible by setting the argument statistic="exact". This gives the result

R> set.seed(123)
R> Results <- HWMissing(Markers[, 1:5], m = 50, statistic = "exact", verbose = TRUE)

Two-sided Exact test for Hardy-Weinberg equilibrium in the presence of missing values
p-value = 0.4426941

and a similar p-value is obtained. See Graffelman et al. (2013) for more details on testing for
HWE with missing data.

Autosomal tests for HWP assume equality of allele frequencies in the sexes. When sex is
taken into account, several scenarios are possible. The function HWPosterior can be used
to perform Bayesian model selection using the posterior probability of each scenario. We
consider an example using an SNP of the JPT sample taken from the 1000G project.

R> data(JPTsnps)
R> Results <- HWPosterior(JPTsnps[1,],x.linked=FALSE,precision=0.05)
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M_11 M_12 M_13 M_14 M_15 M_21 M_22 M_23 M_24 M_25
0.6065 0.0061 0.0032 0.2595 0.0010 0.0675 0.0230 0.0246 0.0002 0.0084
Best fitting M_11 0.606523

The results show that for this variant, equality of allele frequencies in the sexes and HWP for
both sexes (model M) is the model with the largest probability. For more accurate results,
higher precision of posterior probabilities can be obtained by specifying precision=0.005,
at the expense of increasing the computation time.

We analyse the same variant by calculating the AIC for each scenario. This is achieved by

R> data(JPTsnps)
R> AICs <- HWAIC(JPTsnps[1,1:3],JPTsnps[1,4:6])

Best fitting M_11 99.54001

R> AICs
M_11 M_12 M_13 M_14 M_15 M_21 M_22
99.54001 100.81297 100.55911 99.83219 101.83219 101.51680 102.78852
M_23 M_24 M_25

102.53483 101.83219 103.80656

In this case, the AIC criterion identifies the same M7; model as the best fitting model.

7.3. Testing X-chromosomal markers for HWE

We show here how to perform HWE tests for X-chromosomal markers. We use a vector of 5
elements, containing male and female genotype counts.

R> SNP1 <- ¢(A=399,B=205,AA=230,AB=314,BB=107)
R> HWChisq(SNP1,cc=0,x.1inked=TRUE, verbose=TRUE)

Chi-square test for Hardy-Weinberg equilibrium (X-chromosomal)
Chi2 = 7.624175 DF = 2 p-value = 0.022102 D = NA f = -0.0003817242

When males are excluded from the test we get:
R> HWChisq(SNP1[3:5],cc=0)

Chi-square test for Hardy-Weinberg equilibrium (autosomal)
Chi2 = 9.485941e-05 DF = 1 p-value = 0.9922291 D = 0.05990783 £ = -0.0003817242

Note that the test including males is significant, whereas the test excluding males is not.

The exact test for HWE for an X-chromosomal marker can be performed by adding the
x.1linked=TRUE option:
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R> HWExact (SNP1,x.1inked=TRUE)

Graffelman-Weir exact test for Hardy-Weinberg equilibrium on the X-chromosome
using SELOME p-value
Sample probability 5.682963e-05 p-value = 0.02085798

which gives a p-value similar to the y? test. When the mid p-value is used we obtain
R> HWExact (SNP1,x.1linked=TRUE, pvaluetype="midp")

Graffelman-Weir exact test for Hardy-Weinberg equilibrium on the X-chromosome
using MID p-value
Sample probability 5.682963e-05 p-value = 0.02082957

These exact tests show that the joint null of Hardy-Weinberg proportions and equality of
allele frequencies has to be rejected. An exact test using the females only gives again a
non-significant result:

R> HWExact (SNP1[3:5])

Haldane Exact test for Hardy-Weinberg equilibrium (autosomal)
using SELOME p-value

sample counts: nAA = 230 nAB = 314 nBB = 107

HO: HWE (D==0), H1: D <> 0

D = 0.05990783 p-value = 1

The permutation test for X-linked markers gives
R> HWPerm(SNP1,x.1inked=TRUE)

Permutation test for Hardy-Weinberg equilibrium of an X-linked marker
Observed statistic: 7.624175 17000 permutations. p-value: 0.02152941

And an X-chromosomal likelihood ratio test givs
R> HWLratio(SNP1,x.1linked=TRUE)

Likelihood ratio test for Hardy-Weinberg equilibrium for an X-linked marker
G2 = 7.693436 DF = 2 p-value = 0.02134969

Finally, a summary of all frequentist X-chromosomal tests is obtained by

R> HWAlltests(SNP1,x.linked=TRUE, include.permutation.test=TRUE)
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Statistic p-value
Chi-square test: 7.624175 0.02210200
Chi-square test with continuity correction: 7.242011 0.02675576
Likelihood-ratio test: 7.693436 0.02134969
Exact test with selome p-value: NA 0.02085798
Exact test with dost p-value: NA NA
Exact test with mid p-value: NA 0.02082957
Permutation test: 7.624175 0.02129412

Results of all tests are similar. Finally we test equality of allele frequencies in males and
females with:

R> AFtest (SNP1)
Fisher Exact test for equality of allele frequencies for males and females.
Table of allele counts:
A B
M 399 205
F 774 528

Sample of 1255 indivduals with 1906 alleles. p-value = 0.006268363

For this SNP, there is a significant difference in allele frequency between males and females.

Puig, Ginebra and Graffelman (2017) have proposed a Bayesian test for HWE for variants on
the X-chromosome which is implemented in the function HWPosterior.

A Bayesian analysis of the same SNP is obtained by:
R> HWPosterior (SNP1,x.1inked=TRUE)
Bayesian test for Hardy-Weinberg equilibrium of X-chromosomal variants.

Posterior_Prob loglO(Bayes Factor)

MO (HWE) : 0.3384 0.1859
M1 (£!=0): 0.0138 -1.3774
M2 (d!=1): 0.6222 0.6939
M3 (f!=0 & d!=1:) 0.0256 -1.1035

and shows that a model with Hardy-Weinberg proportions for females and different allele
frequencies for both sexes has the largest posterior probability, and the largest Bayes factor.

7.4. Testing sets of markers for HWE

Functions HWCHisq, HWLratio, HWExact, HWPerm test a single diallelic marker for HWE.
Large sets of markers can be tested most efficiently with the functions HWiChisqStats for the
chi-square test, and with HWExactStats for the exact tests. Both these functions allow for X-
linked markers via the x.linked argument. Exact tests that rely on exhaustive enumeration
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are slow in R, and HWExactStats now uses by default faster C+4 code generously shared by
Christopher Chang. The same C++ code is used in the current version (2.0) of Plink (Purcell
et al. (2007)).

7.5. Power computation

Tests for HWE have low power for small samples with a low minor allele frequency, or samples
that deviate only moderately from HWE. It is therefore important to be able to compute
power. The function HWPower can be used to compute the power of a test for HWE. If its
argument 6 is set to 4 (the default value), then the function computes the type I error rate
for the test. Function mac is used to compute the minor allele count. E.g.,:

R> x <- ¢(MM = 298, MN = 489, NN = 213)
R> n <- sum(x)
R> nM <- mac(x)

R> pw4 <- HWPower(n, nM, alpha = 0.05, test = "exact", theta = 4,
+ pvaluetype = "selome")

R> print (pw4)

[1] 0.04822774

R> pw8 <- HWPower (n, nM, alpha = 0.05, test = "exact'", theta = 8,

+ pvaluetype = "selome")
R> print (pw8)

[1] 0.9996853

These computations show that for a large sample like this one, the type I error rate (0.0482) is
very close to the nominal rate, 0.05, and that the standard exact test has good power (0.9997)
for detecting deviations as large § = 8, which is a doubling of the number of heterozygotes
with respect to HWE. Type I error rate and power for the chi-square test can be calculated
by setting test="chisq". With the allele frequency of this sample (0.5425), § = 8 amounts
to an inbreeding coefficient of -0.1698.

7.6. Simulating data

The package HardyWeinberg allows for the simulation of genetic markers under equilibrium
and disequilibrium conditions. This enables the user to create simulated data sets that match
the observed data set in sample size and allele frequency. The comparison of graphics and
statistics for observed and simulated datasets is helpful when assessing the extent of HWE
for a large set of markers. We simulate m = 100 markers for n = 100 individuals by
taking random samples from a multinomial distribution with 644 = p?, a4 = 2pq, and
Opp = ¢*>. This is done by routine HWData, which can generate data sets that are in or out
of Hardy-Weinberg equilibrium. Routine HWData can generate data that are in exact equi-
librium (exactequilibrium = TRUE) or that are generated from a multinomial distribution
(default). The markers generated by HWData are independent (there is no linkage disequilib-
rium). HWData returns a list with both the matrix of genotype counts Xt and the matrix with
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Figure 6: Ternary plots for markers simulated under different conditions. (a) multinomial
sampling with p = 0.5. (b) multinomial sampling with a random uniform allele frequency. (c)
multinomial sampling with p = 0.5 and with inbreeding (f = 0.5). (d) multinomial sampling
with a random allele frequency with inbreeding (f = 0.5). (e) sampling from the Levene-
Haldane distribution with fixed allele frequencies. (f) a data set in exact equilibrium with
a uniform allele frequency. Red points represent markers that are significant in a chi-square
test for HWE, green points represent non-significant markers.
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genotype compositions Xc with the relative frequencies of AA, AB and BB. Routine HWData
can simulate genotype counts under several conditions. A fixed allele frequency can be spec-
ified by setting pfixed = TRUE, and setting p to a vector with the desired allele frequencies.
Sampling is then according to Levene-Haldane’s exact distribution in Equation 7. If pfixed
is FALSE, the given vector p of allele frequencies will be used in sampling from the multinomial
distribution. If p is not specified, p will be drawn from a uniform distribution, and genotypes
are drawn from a multinomial distribution with probabilities p?,2pq and ¢ for AA, AB and
BB respectively. It is also possible to generate data under inbreeding, by specifying a vector
of inbreeding coefficients £. We illustrate the use of HWData by simulating several data sets
as shown below. Each simulated dataset is plotted in a ternary diagram in Figure 7 in order
to show the effect of the different simulation options. We subsequently simulate 100 markers
under HWE with allele frequency 0.5 (X1), 100 markers under HWE with a random uniform
allele frequency (X2), 100 markers under inbreeding (f = 0.5) with allele frequency 0.5 (X3),
100 markers under inbreeding (f = 0.5) with a random uniform allele frequency (X4), 100
markers with fixed allele frequencies of 0.2, 0.4, 0.6 and 0.8 (25 each, X5) and 100 markers in
exact equilibrium with a random uniform allele frequency (X6).

R> set.seed(123)

R> n <- 100

R> m <- 100

R> X1 <- HWData(m, n, p
R> X2 <- HWData(m, n)
R> X3 <- HWData(m, n, p
R> X4 <- HWData(m, n, f = rep(0.5, m))

R> X5 <- HWData(m, n, p = rep(c(0.2, 0.4, 0.6, 0.8), 25), pfixed = TRUE)
R> X6 <- HWData(m, n, exactequilibrium = TRUE)

R> opar <- par(mfrow = c(3, 2),mar = c(1, 0, 3, 0) + 0.1)

R> par(mfg = c(1, 1))

rep(0.5, m))

rep(0.5, m), £ = rep(0.5, m))

R> HWTernaryPlot (X1, main = "(a)", vbounds = FALSE)
R> par(mfg = c(1, 2))
R> HWTernaryPlot (X2, main = "(b)", vbounds = FALSE)
R> par(mfg = c(2, 1))
R> HWTernaryPlot (X3, main = "(c)", vbounds = FALSE)
R> par(mfg = c(2, 2))
R> HWTernaryPlot (X4, main = "(d)", vbounds = FALSE)
R> par(mfg = c(3, 1))
R> HWTernaryPlot (X5, main = "(e)", vbounds = FALSE)
R> par(mfg = c(3, 2))
R> HWTernaryPlot (X6, main = "(f)", vbounds = FALSE)

R> par(opar)
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Figure 7: Ternary plots for markers simulated under different conditions. (a) multinomial
sampling with p = 0.5. (b) multinomial sampling with a random uniform allele frequency. (c)
multinomial sampling with p = 0.5 and with inbreeding (f = 0.5). (d) multinomial sampling
with a random allele frequency with inbreeding (f = 0.5). (e) sampling from the Levene-
Haldane distribution with fixed allele frequencies, (f) a data set in exact equilibrium with a
uniform allele frequency. Red points represent markers that are significant in a chi-square
test for HWE, green points represent non-significant markers.
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7.7. Graphics for HWE

Genetic association studies, genome-wide association studies in particular, use many genetic
markers. In this context graphics such as ternary plots, log-ratio plots and Q-Q plots become
particularly useful, because they can reveal whether HWE is a reasonable assumption for the
whole data set. We begin to explore the Han Chinese HapMap data set by making a ternary
plot shown in Figure 8.

R> data("HapMapCHBChrl", package = "HardyWeinberg")
R> HWTernaryPlot (HapMapCHBChrl, region = 1, vbounds
R> HWTernaryPlot (HapMapCHBChrl, region = 7, vbounds

FALSE)
FALSE)

For large databases of SNPs, drawing the ternary plot can be time consuming. Usually the
matrix with genotype counts contains several rows with the same counts. The ternary plot
can be constructed faster by plotting only the unique rows of the count matrix. Function
UniqueGenotypeCounts extracts the unique rows of the count matrix and also counts their
frequency. Figure 8 shows 10 significant SNPs (two significant markers overlap). A ternary
plot with the acceptance region of the exact test is shown in the right panel of Figure 8. This
plot only shows 4 significant markers, and illustrates that the exact test is more conservative.
A log-ratio plot of the same data was already shown in Figure 4, and can be created with
HWIlrPlot (HapMapCHBChrl). We proceed to make a Q-Q plot of the exact p values. At the
same time, we construct a simulated database that matches the HapMapCHBChr1 database in
allele frequency distribution. This is achieved by setting argument p of HWData equal to the
allele frequencies of the observed data, where the latter are computed with function af.

R> set.seed(123)
R> data("HapMapCHBChrl", package = "HardyWeinberg")

Figure 8: Ternary plots of 225 SNPs on chromosome 1 of a sample of 84 individuals from a
Han Chinese population. Left panel: ternary plot with the acceptance region of a chi-square
test. Right panel: ternary plot with the acceptance region of an exact test.
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Figure 9: Left panel: Q-Q plot for 225 SNPs on chromosome 1 of a sample of 84 individuals
from the Han Chinese population. Right panel: Q-Q plot for simulated data (225 SNPs, 84
individuals, matched in allele frequency).

R> HWQqplot (HapMapCHBChr1)

R> dev.off()

R> set.seed(123)

R> SimulatedData <- HWData(nm = 225, n = 84, p = af (HapMapCHBChr1))
R> HWQqgplot(SimulatedData)

The Q-Q plots in Figure 9 show that both the HapMap dataset and its simulated counterpart
are in agreement with HWE.

8. Discussion

The package HardyWeinberg offers functions and graphics for analyzing the Hardy-Weinberg
equilibrium status of diallelic genetic markers. There are several other packages for the R
environment that implement functionality for investigating genetic markers for HWE. The
package genetics by Warnes (2011) offers data structures for genetic markers, and also includes
several functions for testing markers for HWE and for linkage equilibrium. Bayesian tests
for HWE are implemented in the package HWEBayes of Wakefield (2010) and the package
HWEintrinsic of Venturini (2011). A loglinear modeling approach to HWE is available in the
package hwde from Maindonald and Johnson (2011). The PLINK software by Purcell et al.
(2007) is a standard in genetic data analysis, and can interact with R by means of the package
Rserve (Urbanek 2013).

We briefly enumerate and comment some features of the HardyWeinberg package not pro-
vided by the aforementioned R packages: the package provides several graphics for HWE
(ternary plots with acceptance regions, log-ratio plots and Q-Q plots against the truly null
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distribution). These graphics are useful for analyzing datasets of multiple markers (e.g., a set
of markers used in a candidate gene study, or the study of a specific genomic region), and
can shed light on the question if the HWE assumption is tenable for the dataset as a whole.
The functions provided for the simulation of marker data under HWE (and under disequilib-
rium) are also useful in this respect. They allow to create datasets that are similar to the
observed data in terms of sample size and allele frequency distribution. The comparison of
HWE graphics for simulated and observed data can help to rule out or confirm the HWE
assumption. Functions for power calculation make it possible to compute the power to detect
deviation from HWE for the data at hand. The exact tests of the package are apparently
the only ones available that implement several types of p values, and HardyWeinberg is ap-
parently the only software package that performs inference for HWE with missing genotype
information using multiple imputation. Future versions of the package may incorporate func-
tions for testing for HWE with multiple alleles. All tests of the package assume homogeneous
samples of individuals from one population. Testing for HWE with individuals from different
populations (stratification) may also be addressed in future versions of the package.
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