Methods for addressing uncertainty in risk assessments using hybrid representations of uncertainty (probability distributions, fuzzy numbers, intervals, probability distributions with imprecise parameters). The uncertainty propagation procedure combines random sampling using Monte Carlo method with fuzzy interval analysis of Baudrit et al. (2007) <doi:10.1109/TFUZZ.2006.876720>. The sensitivity analysis is based on the pinching method of Ferson and Tucker (2006) <doi:10.1016/j.ress.2005.11.052>.
Version: | 1.2 |
Depends: | R (≥ 3.2.0) |
Imports: | datasets, utils, grDevices, graphics, stats, sets, pbapply, reliaR, kerdiest, triangle, rgenoud |
Published: | 2017-04-04 |
Author: | Jeremy Rohmer, Jean-Charles Manceau, Dominique Guyonnet, Faiza Boulahya |
Maintainer: | Jeremy Rohmer <j.rohmer at brgm.fr> |
License: | GPL-3 |
NeedsCompilation: | no |
CRAN checks: | HYRISK results |
Reference manual: | HYRISK.pdf |
Package source: | HYRISK_1.2.tar.gz |
Windows binaries: | r-devel: HYRISK_1.2.zip, r-release: HYRISK_1.2.zip, r-oldrel: HYRISK_1.2.zip |
macOS binaries: | r-release: HYRISK_1.2.tgz, r-oldrel: HYRISK_1.2.tgz |
Please use the canonical form https://CRAN.R-project.org/package=HYRISK to link to this page.