1 Data Generation

Load the necessary libraries:

library(HTLR)
library(bayesplot)
#> This is bayesplot version 1.7.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting

The description of the dataset generating scheme is found from Li and Yao (2018).

There are 4 groups of features:

SEED <- 101

n <- 510
p <- 2000

means <- rbind(
  c(0, 1, 0),
  c(0, 0, 0),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1),
  c(0, 0, 1)
) * 2

means <- rbind(means, matrix(0, p - 10, 3))

A <- diag(1, p)

A[1:10, 1:3] <-
  rbind(
    c(1, 0, 0),
    c(2, 1, 0),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1),
    c(0, 0, 1)
  )

set.seed(SEED)
dat <- gendata_FAM(n, means, A, sd_g = 0.5, stdx = TRUE)
str(dat)
#> List of 4
#>  $ X  : num [1:510, 1:2000] -1.174 1.262 -0.752 -0.483 1.929 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ muj: num [1:2000, 1:3] -0.456 0 -0.456 -0.376 -0.376 ...
#>  $ SGM: num [1:2000, 1:2000] 0.584 0.597 0 0 0 ...
#>  $ y  : int [1:510] 1 2 3 1 2 3 1 2 3 1 ...

Look at the correlation between features:

# require(corrplot)
cor(dat$X[ , 1:11]) %>% corrplot::corrplot(tl.pos = "n")

Split the data into training and testing sets:

set.seed(SEED)
dat <- split_data(dat$X, dat$y, n.train = 500)
str(dat)
#> List of 4
#>  $ x.tr: num [1:500, 1:2000] -0.2476 0.0789 -1.5571 1.1904 -0.8982 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ y.tr: int [1:500] 1 2 1 1 1 2 1 3 1 1 ...
#>  $ x.te: num [1:10, 1:2000] 0.136 -0.634 -1.132 -0.283 0.188 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2000] "V1" "V2" "V3" "V4" ...
#>  $ y.te: int [1:10] 2 2 3 3 3 1 1 3 2 3

2 Model Fitting

Fit a HTLR model with all default settings:

set.seed(SEED)
system.time(
  fit.t <- htlr(dat$x.tr, dat$y.tr)
)
#>    user  system elapsed 
#> 104.999   0.070  18.780
print(fit.t)
#> Fitted HTLR model 
#> 
#>  Data:
#> 
#>   response:  3-class
#>   observations:  500
#>   predictors:    2001 (w/ intercept)
#>   standardised:  TRUE 
#> 
#>  Model:
#> 
#>   prior dist:    t (df = 1, log(w) = -10.0)
#>   init state:    lasso 
#>   sample:    1000 (posterior sample size) 
#> 
#>  Estimates:
#> 
#>   model size:    5 (w/ intercept)
#>   coefficients: see help('summary.htlr.fit')

With another configuration:

set.seed(SEED)
system.time(
  fit.t2 <- htlr(X = dat$x.tr, y = dat$y.tr, 
                 prior = htlr_prior("t", df = 1, logw = -20, sigmab0 = 1500), 
                 iter = 4000, init = "bcbc")
)
#>    user  system elapsed 
#> 186.408   0.387  32.896
print(fit.t2)
#> Fitted HTLR model 
#> 
#>  Data:
#> 
#>   response:  3-class
#>   observations:  500
#>   predictors:    2001 (w/ intercept)
#>   standardised:  TRUE 
#> 
#>  Model:
#> 
#>   prior dist:    t (df = 1, log(w) = -20.0)
#>   init state:    bcbc 
#>   sample:    2000 (posterior sample size) 
#> 
#>  Estimates:
#> 
#>   model size:    6 (w/ intercept)
#>   coefficients: see help('summary.htlr.fit')

3 Model Inspection

Look at the point summaries of posterior of selected parameters:

summary(fit.t2, features = c(1:10, 100, 200, 1000, 2000), method = median)
#>                class 2       class 3
#> Intercept -3.300316223 -1.9070412107
#> V1        10.350593648 -0.4020897215
#> V2        -6.277168943  0.1162428743
#> V3         0.104563626  3.0794342376
#> V4        -0.008132072 -0.0066356093
#> V5        -0.002126039 -0.0021705510
#> V6         0.003971248  0.0012639359
#> V7        -0.346893064  1.6136516173
#> V8         0.012365796  1.0173655539
#> V9        -0.004739610  0.0014478780
#> V10        0.006284849 -0.0008267156
#> V100       0.000832599 -0.0074730025
#> V200       0.002518865  0.0132492986
#> V1000     -0.011929868 -0.0138085483
#> V2000     -0.002381775 -0.0047217161
#> attr(,"stats")
#> [1] "median"

Plot interval estimates from posterior draws using bayesplot:

post.t <- as.matrix(fit.t2, k = 2)
## signal parameters
mcmc_intervals(post.t, pars = c("Intercept", "V1", "V2", "V3", "V1000"))

Trace plot of MCMC draws:

mcmc_trace(post.t, c("V1", "V1000"), facet_args = list("nrow" = 2))

The coefficient of unrelated features (noise) are not updated during some iterations due to restricted Gibbs sampling Li and Yao (2018), hence the computational cost is greatly reduced.

4 Make Predictions

A glance at the prediction accuracy:

y.class <- predict(fit.t, dat$x.te, type = "class")
y.class
#>       y.pred
#>  [1,]      2
#>  [2,]      2
#>  [3,]      3
#>  [4,]      3
#>  [5,]      3
#>  [6,]      1
#>  [7,]      1
#>  [8,]      3
#>  [9,]      2
#> [10,]      3
print(paste0("prediction accuracy of model 1 = ", 
             sum(y.class == dat$y.te) / length(y.class)))
#> [1] "prediction accuracy of model 1 = 1"

y.class2 <- predict(fit.t2, dat$x.te, type = "class")
print(paste0("prediction accuracy of model 2 = ", 
             sum(y.class2 == dat$y.te) / length(y.class)))
#> [1] "prediction accuracy of model 2 = 1"

More details about the prediction result:

predict(fit.t, dat$x.te, type = "response") %>%
  evaluate_pred(y.true = dat$y.te)

#> $prob_at_truelabels
#>  [1] 0.9835432 0.6796138 0.9995977 0.6352723 0.9041224 0.6537921 0.6312978
#>  [8] 0.7955446 0.6207597 0.9705560
#> 
#> $table_eval
#>    Case ID True Label Pred. Prob 1 Pred. Prob 2 Pred. Prob 3 Wrong?
#> 1        1          2 0.0164547419 9.835432e-01 0.0000020499      0
#> 2        2          2 0.2441853060 6.796138e-01 0.0762008918      0
#> 3        3          3 0.0004023339 1.075147e-11 0.9995976660      0
#> 4        4          3 0.3512558309 1.347191e-02 0.6352722610      0
#> 5        5          3 0.0948079799 1.069570e-03 0.9041224500      0
#> 6        6          1 0.6537920838 3.934170e-02 0.3068662193      0
#> 7        7          1 0.6312978172 1.618725e-01 0.2068296840      0
#> 8        8          3 0.1994720269 4.983390e-03 0.7955445832      0
#> 9        9          2 0.3783598874 6.207597e-01 0.0008803816      0
#> 10      10          3 0.0294153288 2.868652e-05 0.9705559847      0
#> 
#> $amlp
#> [1] 0.2578088
#> 
#> $err_rate
#> [1] 0
#> 
#> $which.wrong
#> integer(0)

Li, Longhai, and Weixin Yao. 2018. “Fully Bayesian Logistic Regression with Hyper-Lasso Priors for High-Dimensional Feature Selection.” Journal of Statistical Computation and Simulation 88 (14). Taylor & Francis: 2827–51.