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CHAPTER 7

Logistic Regression and Generalised
Linear Models: Blood Screening,
Women’s Role in Society, Colonic
Polyps, and Driving and Back Pain

7.1 Introduction

7.2 Logistic Regression and Generalised Linear Models

7.3 Analysis Using R

7.3.1 ESR and Plasma Proteins

We can now fit a logistic regression model to the data using the glm func-
tion. We start with a model that includes only a single explanatory variable,
fibrinogen. The code to fit the model is

R> plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma,

+ family = binomial())

The formula implicitly defines a parameter for the global mean (the intercept
term) as discussed in Chapter 5 and Chapter 6. The distribution of the re-
sponse is defined by the family argument, a binomial distribution in our case.
(The default link function when the binomial family is requested is the logistic
function.)

From the results in Figure 7.2 we see that the regression coefficient for
fibrinogen is significant at the 5% level. An increase of one unit in this vari-
able increases the log-odds in favour of an ESR value greater than 20 by an
estimated 1.83 with 95% confidence interval

R> confint(plasma_glm_1, parm = "fibrinogen")

2.5 % 97.5 %

0.339 3.998

These values are more helpful if converted to the corresponding values for the
odds themselves by exponentiating the estimate

R> exp(coef(plasma_glm_1)["fibrinogen"])

fibrinogen

6.22

and the confidence interval

R> exp(confint(plasma_glm_1, parm = "fibrinogen"))

3
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R> data("plasma", package = "HSAUR2")

R> layout(matrix(1:2, ncol = 2))

R> cdplot(ESR ~ fibrinogen, data = plasma)

R> cdplot(ESR ~ globulin, data = plasma)
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Figure 7.1 Conditional density plots of the erythrocyte sedimentation rate (ESR)
given fibrinogen and globulin.

2.5 % 97.5 %

1.4 54.5

The confidence interval is very wide because there are few observations overall
and very few where the ESR value is greater than 20. Nevertheless it seems
likely that increased values of fibrinogen lead to a greater probability of an
ESR value greater than 20.
We can now fit a logistic regression model that includes both explanatory

variables using the code

R> plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin,

+ data = plasma, family = binomial())

and the output of the summary method is shown in Figure 7.3.
The coefficient for gamma globulin is not significantly different from zero.

Subtracting the residual deviance of the second model from the corresponding
value for the first model we get a value of 1.87. Tested using a χ2-distribution
with a single degree of freedom this is not significant at the 5% level and so
we conclude that gamma globulin is not associated with ESR level. In R, the
task of comparing the two nested models can be performed using the anova

function
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R> summary(plasma_glm_1)

Call:

glm(formula = ESR ~ fibrinogen, family = binomial(), data = plasma)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.930 -0.540 -0.438 -0.336 2.479

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.845 2.770 -2.47 0.013

fibrinogen 1.827 0.901 2.03 0.043

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 24.840 on 30 degrees of freedom

AIC: 28.84

Number of Fisher Scoring iterations: 5

Figure 7.2 R output of the summarymethod for the logistic regression model fitted
to ESR and fibrigonen.

R> summary(plasma_glm_2)

Call:

glm(formula = ESR ~ fibrinogen + globulin, family = binomial(),

data = plasma)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.968 -0.612 -0.346 -0.212 2.264

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.792 5.796 -2.21 0.027

fibrinogen 1.910 0.971 1.97 0.049

globulin 0.156 0.120 1.30 0.193

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 22.971 on 29 degrees of freedom

AIC: 28.97

Number of Fisher Scoring iterations: 5

Figure 7.3 R output of the summarymethod for the logistic regression model fitted
to ESR and both globulin and fibrinogen.

R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq")

Analysis of Deviance Table

Model 1: ESR ~ fibrinogen

Model 2: ESR ~ fibrinogen + globulin

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
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1 30 24.8

2 29 23.0 1 1.87 0.17

Nevertheless we shall use the predicted values from the second model and plot
them against the values of both explanatory variables using a bubbleplot to
illustrate the use of the symbols function. The estimated conditional proba-
bility of a ESR value larger 20 for all observations can be computed, following
formula (??), by

R> prob <- predict(plasma_glm_2, type = "response")

and now we can assign a larger circle to observations with larger probability
as shown in Figure 7.4. The plot clearly shows the increasing probability of
an ESR value above 20 (larger circles) as the values of fibrinogen, and to a
lesser extent, gamma globulin, increase.

7.3.2 Women’s Role in Society

Originally the data in Table ?? would have been in a completely equivalent
form to the data in Table ?? data, but here the individual observations have
been grouped into counts of numbers of agreements and disagreements for the
two explanatory variables, gender and education. To fit a logistic regression
model to such grouped data using the glm function we need to specify the
number of agreements and disagreements as a two-column matrix on the left
hand side of the model formula. We first fit a model that includes the two
explanatory variables using the code

R> data("womensrole", package = "HSAUR2")

R> fm1 <- cbind(agree, disagree) ~ gender + education

R> womensrole_glm_1 <- glm(fm1, data = womensrole,

+ family = binomial())

From the summary output in Figure 7.5 it appears that education has a
highly significant part to play in predicting whether a respondent will agree
with the statement read to them, but the respondent’s gender is apparently
unimportant. As years of education increase the probability of agreeing with
the statement declines. We now are going to construct a plot comparing the
observed proportions of agreeing with those fitted by our fitted model. Because
we will reuse this plot for another fitted object later on, we define a function
which plots years of education against some fitted probabilities, e.g.,

R> role.fitted1 <- predict(womensrole_glm_1, type = "response")

and labels each observation with the person’s gender:

1 R> myplot <- function(role.fitted) {

2 + f <- womensrole$gender == "Female"

3 + plot(womensrole$education, role.fitted, type = "n",

4 + ylab = "Probability of agreeing",

5 + xlab = "Education", ylim = c(0,1))

6 + lines(womensrole$education[!f], role.fitted[!f], lty = 1)
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R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6),

+ ylim = c(25, 55), pch = ".")

R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob,

+ add = TRUE)
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Figure 7.4 Bubbleplot of fitted values for a logistic regression model fitted to the
plasma data.

7 + lines(womensrole$education[f], role.fitted[f], lty = 2)

8 + lgtxt <- c("Fitted (Males)", "Fitted (Females)")

9 + legend("topright", lgtxt, lty = 1:2, bty = "n")

10 + y <- womensrole$agree / (womensrole$agree +

11 + womensrole$disagree)

12 + text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"),

13 + family = "HersheySerif", cex = 1.25)

14 + }

In lines 3–5 of function myplot, an empty scatterplot of education and fitted
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R> summary(womensrole_glm_1)

Call:

glm(formula = fm1, family = binomial(), data = womensrole)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.7254 -0.8630 -0.0652 0.8434 3.1332

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.5094 0.1839 13.65 <2e-16

genderFemale -0.0114 0.0841 -0.14 0.89

education -0.2706 0.0154 -17.56 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 64.007 on 38 degrees of freedom

AIC: 208.1

Number of Fisher Scoring iterations: 4

Figure 7.5 R output of the summarymethod for the logistic regression model fitted
to the womensrole data.

probabilities (type = "n") is set up, basically to set the scene for the following
plotting actions. Then, two lines are drawn (using function lines in lines 6
and 7), one for males (with line type 1) and one for females (with line type 2,
i.e., a dashed line), where the logical vector f describes both genders. In line
9 a legend is added. Finally, in lines 12 and 13 we plot ‘observed’ values, i.e.,
the frequencies of agreeing in each of the groups (y as computed in lines 10
and 11) and use the Venus and Mars symbols to indicate gender.

The two curves for males and females in Figure 7.6 are almost the same
reflecting the non-significant value of the regression coefficient for gender in
womensrole_glm_1. But the observed values plotted on Figure 7.6 suggest
that there might be an interaction of education and gender, a possibility that
can be investigated by applying a further logistic regression model using

R> fm2 <- cbind(agree,disagree) ~ gender * education

R> womensrole_glm_2 <- glm(fm2, data = womensrole,

+ family = binomial())

The gender and education interaction term is seen to be highly significant,
as can be seen from the summary output in Figure 7.7.

We can obtain a plot of deviance residuals plotted against fitted values using
the following code above Figure 7.9. The residuals fall into a horizontal band
between −2 and 2. This pattern does not suggest a poor fit for any particular
observation or subset of observations.
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R> myplot(role.fitted1)
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Figure 7.6 Fitted (from womensrole_glm_1) and observed probabilities of agree-
ing for the womensrole data.

7.3.3 Colonic Polyps

The data on colonic polyps in Table ?? involves count data. We could try to
model this using multiple regression but there are two problems. The first is
that a response that is a count can take only positive values, and secondly
such a variable is unlikely to have a normal distribution. Instead we will apply
a GLM with a log link function, ensuring that fitted values are positive, and
a Poisson error distribution, i.e.,

P(y) =
e−λλy

y!
.

This type of GLM is often known as Poisson regression. We can apply the
model using
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R> summary(womensrole_glm_2)

Call:

glm(formula = fm2, family = binomial(), data = womensrole)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3910 -0.8806 0.0153 0.7278 2.4526

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0982 0.2355 8.91 <2e-16

genderFemale 0.9047 0.3601 2.51 0.0120

education -0.2340 0.0202 -11.59 <2e-16

genderFemale:education -0.0814 0.0311 -2.62 0.0089

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 57.103 on 37 degrees of freedom

AIC: 203.2

Number of Fisher Scoring iterations: 4

Figure 7.7 R output of the summarymethod for the logistic regression model fitted
to the womensrole data.

R> data("polyps", package = "HSAUR2")

R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps,

+ family = poisson())

(The default link function when the Poisson family is requested is the log
function.)
We can deal with overdispersion by using a procedure known as quasi-

likelihood, which allows the estimation of model parameters without fully
knowing the error distribution of the response variable. McCullagh and Nelder
(1989) give full details of the quasi-likelihood approach. In many respects it
simply allows for the estimation of φ from the data rather than defining it
to be unity for the binomial and Poisson distributions. We can apply quasi-
likelihood estimation to the colonic polyps data using the following R code

R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps,

+ family = quasipoisson())

R> summary(polyps_glm_2)

Call:

glm(formula = number ~ treat + age, family = quasipoisson(),

data = polyps)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.22 -3.05 -0.18 1.45 5.83

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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R> role.fitted2 <- predict(womensrole_glm_2, type = "response")

R> myplot(role.fitted2)
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Figure 7.8 Fitted (from womensrole_glm_2) and observed probabilities of agree-
ing for the womensrole data.

(Intercept) 4.5290 0.4811 9.41 3.7e-08

treatdrug -1.3591 0.3853 -3.53 0.0026

age -0.0388 0.0195 -1.99 0.0628

(Dispersion parameter for quasipoisson family taken to be 10.7)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

The regression coefficients for both explanatory variables remain significant
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R> res <- residuals(womensrole_glm_2, type = "deviance")

R> plot(predict(womensrole_glm_2), res,

+ xlab="Fitted values", ylab = "Residuals",

+ ylim = max(abs(res)) * c(-1,1))

R> abline(h = 0, lty = 2)
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Figure 7.9 Plot of deviance residuals from logistic regression model fitted to the
womensrole data.

but their estimated standard errors are now much greater than the values
given in Figure 7.10. A possible reason for overdispersion in these data is that
polyps do not occur independently of one another, but instead may ‘cluster’
together.

7.3.4 Driving and Back Pain

A frequently used design in medicine is the matched case-control study in
which each patient suffering from a particular condition of interest included
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R> summary(polyps_glm_1)

Call:

glm(formula = number ~ treat + age, family = poisson(), data = polyps)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.22 -3.05 -0.18 1.45 5.83

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.52902 0.14687 30.84 <2e-16

treatdrug -1.35908 0.11764 -11.55 <2e-16

age -0.03883 0.00596 -6.52 7e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: 273.9

Number of Fisher Scoring iterations: 5

Figure 7.10 R output of the summary method for the Poisson regression model
fitted to the polyps data.

in the study is matched to one or more people without the condition. The most
commonly used matching variables are age, ethnic group, mental status etc. A
design with m controls per case is known as a 1 : m matched study. In many
cases m will be one, and it is the 1 : 1 matched study that we shall concentrate
on here where we analyse the data on low back pain given in Table ??. To
begin we shall describe the form of the logistic model appropriate for case-
control studies in the simplest case where there is only one binary explanatory
variable.
With matched pairs data the form of the logistic model involves the proba-

bility, ϕ, that in matched pair number i, for a given value of the explanatory
variable the member of the pair is a case. Specifically the model is

logit(ϕi) = αi + βx.

The odds that a subject with x = 1 is a case equals exp(β) times the odds
that a subject with x = 0 is a case.
The model generalises to the situation where there are q explanatory vari-

ables as

logit(ϕi) = αi + β1x1 + β2x2 + . . . βqxq.

Typically one x is an explanatory variable of real interest, such as past
exposure to a risk factor, with the others being used as a form of statistical
control in addition to the variables already controlled by virtue of using them
to form matched pairs. This is the case in our back pain example where it is
the effect of car driving on lower back pain that is of most interest.
The problem with the model above is that the number of parameters in-
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creases at the same rate as the sample size with the consequence that maxi-
mum likelihood estimation is no longer viable. We can overcome this problem
if we regard the parameters αi as of little interest and so are willing to forgo
their estimation. If we do, we can then create a conditional likelihood function

that will yield maximum likelihood estimators of the coefficients, β1, . . . , βq,
that are consistent and asymptotically normally distributed. The mathematics
behind this are described in Collett (2003).
The model can be fitted using the clogit function from package survival;

the results are shown in Figure 7.11.

R> library("survival")

R> backpain_glm <- clogit(I(status == "case") ~

+ driver + suburban + strata(ID), data = backpain)

The response has to be a logical (TRUE for cases) and the strata command
specifies the matched pairs.

R> print(backpain_glm)

Call:

clogit(I(status == "case") ~ driver + suburban + strata(ID),

data = backpain)

coef exp(coef) se(coef) z p

driveryes 0.658 1.931 0.294 2.24 0.025

suburbanyes 0.255 1.291 0.226 1.13 0.258

Likelihood ratio test=9.55 on 2 df, p=0.00846

n= 434, number of events= 217

Figure 7.11 R output of the print method for the conditional logistic regression
model fitted to the backpain data.

The estimate of the odds ratio of a herniated disc occurring in a driver
relative to a nondriver is 1.93 with a 95% confidence interval of (1.09, 3.44).
Conditional on residence we can say that the risk of a herniated disc occurring
in a driver is about twice that of a nondriver. There is no evidence that where
a person lives affects the risk of lower back pain.

7.4 Summary

Generalised linear models provide a very powerful and flexible framework for
the application of regression models to a variety of non-normal response vari-
ables, for example, logistic regression to binary responses and Poisson regres-
sion to count data.
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