Package 'HMMextra0s’

September 17, 2018
Type Package
Title Hidden Markov Models with Extra Zeros
Version 1.0.0
Imports mvtnorm, ellipse
Suggests HiddenMarkov
Depends methods
Date 2018-09-12
Author Ting Wang - I am grateful to Jiancang Zhuang for some helpful suggestions and contributions
Maintainer Ting Wang ting.wang@otago.ac.nz
Description Contains functions for hidden Markov models with observations having extra zeros as defined in the following two publications, Wang, T., Zhuang, J., Obara, K. and Tsu-
ruoka, H. (2016) doi:10.1111/rssc.12194; Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) doi:10.1029/2017JB015360. The observed response variable is either univariate or bivariate Gaussian conditioning on presence of events, and extra ze-
ros mean that the response variable takes on the value zero if nothing is happening. Hence the response is modelled as a mixture distribution of a Bernoulli variable and a continuous variable. That is, if the Bernoulli variable takes on the value 1, then the response variable is Gaussian, and if the Bernoulli variable takes on the value 0 , then the response is zero too. This package includes functions for simulation, parameter estimation, goodness-of-fit, the Viterbi algorithm, and plotting the classified 2-D data. Some of the functions in the package are based on those of the R package 'HiddenMarkov' by David Harte.
License GPL (>=2)
URL http://www.stats.otago.ac.nz/?people=ting_wang
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-09-17 15:30:07 UTC

R topics documented:

HMMextra0s-package 2
cumdist.hmm0norm 4
hmm0norm 5
hmm0norm2d 7
plotVitloc2d 10
plotVitpath2d 11
sim.hmm0norm 13
sim.hmm0norm2d 14
Viterbi.hmm0norm 15
Viterbi.hmm0norm2d 16
Index 18

Description

The DESCRIPTION file:

Package:
Type:
Title:
Version:
Imports:
Suggests:
Depends:
Date:
Author: Maintainer:
Description:
License:
URL:
Packaged:
NeedsCompilation:

HMMextra0s
Package
Hidden Markov Models with Extra Zeros
1.0.0
mvtnorm, ellipse
HiddenMarkov
methods
2018-09-12
Ting Wang - I am grateful to Jiancang Zhuang for some helpful suggestions and contributions
Ting Wang ting.wang@otago.ac.nz
Contains functions for hidden Markov models with observations having extra zeros as defined in the fol GPL $(>=2)$
http://www.stats.otago.ac.nz/?people=ting_wang
2018-09-12 01:56:30 UTC; twang
yes

Index of help topics:

HMMextra0s-package	Hidden Markov Models with Extra Zeros Hidden Markov Models (HMMs) with Extra Zeros
Viterbi.hmm0norm	Viterbi Path of a 1-D HMM with Extra Zeros
Viterbi.hmm0norm2d	Viterbi Path of a Bivariate HMM with Extra Zeros
cumdist.hmm0norm	Cumulative distribution of an HMM with Extra Zeros
hmm0norm	Parameter Estimation of an HMM with Extra Zeros
hmm0norm2d	Parameter Estimation of a bivariate HMM with Extra Zeros

```
plotVitloc2d Plot the Classified 2-D Data of a Bivariate HMM
    With Extra Zeros
plotVitpath2d Plot the Viterbi Path of a Bivariate HMM With
    Extra Zeros
sim.hmm0norm Simulation of a 1-D HMM with Extra Zeros
sim.hmm0norm2d Simulation of a Bivariate HMM with Extra Zeros
```

This package contains functions to estimate the parameters of the HMMs with extra zeros using hmm0norm (1-D HMM) and hmm0norm2d (2-D HMM), to calculate the cumulative distribution of the 1-D HMM using cumdist. hmm0norm, to estimate the Viterbi path using Viterbi.hmm0norm (1-D HMM) and Viterbi . hmm0norm2d (2-D HMM), to simulate this class of models using sim. hmm0norm (1-D HMM) and sim.hmm0norm2d (2-D HMM), to plot the classified 2-D data with different colours representing different hidden states using plotVitloc2d, and to plot the Viterbi path using plotVitloc2d.

Details

This package is used to estimate the parameters, carry out simulations, and estimate the Viterbi path for 1-D and 2-D HMMs with extra zeros as defined in the two publications in the reference (also briefly defined below). It contains examples using simulated data for how to set up initial values for a data analysis and how to plot the results.
An HMM is a statistical model in which the observed process is dependent on an unobserved Markov chain. A Markov chain is a sequence of states which exhibits a short-memory property such that the current state of the chain is dependent only on the previous state in the case of a first-order Markov chain. Assume that the Markov chain has m states, where m can be estimated from the data. Let $S_{t} \in\{1, \cdots, m\}$ denote the state of the Markov chain at time t. The probability of a first-order Markov chain in state j at time t given the previous states is $P\left(S_{t}=j \mid S_{t-1}, \cdots, S_{1}\right)=P\left(S_{t}=j \mid S_{t-1}\right)$. These states are not observable. The observation Y_{t} at time t depends on the state S_{t} of the Markov chain.
In this framework, we are interested in estimating the transition probability matrix $\Gamma=\left(\gamma_{i j}\right)_{m \times m}$ of the Markov chain that describes the migration pattern and the density function $f\left(y_{t} \mid S_{t}=i\right)$ that gives the distribution feature of observations in state i, where $\gamma_{i j}=P\left(S_{t}=j \mid S_{t-1}=i\right)$.

Let Z_{t} be a Bernoulli variable, with $Z_{t}=1$ if an event is present at t, and $Z_{t}=0$, otherwise. Let \mathbf{X}_{t} be the response variable (e.g., location of the tremor cluster in 2D space) at time t. We set $P\left(Z_{t}=0 \mid S_{t}=i\right)=1-p_{i}$ and $P\left(Z_{t}=1 \mid S_{t}=i\right)=p_{i}$. We assume that, given $Z_{t}=1$ and $S_{t}=i, \mathbf{X}_{t}$ follows a univariate or bivariate normal distribution, e.g. for a bivariate normal,

$$
f\left(\mathbf{x}_{t} \mid Z_{t}=1, S_{t}=i\right)=\frac{1}{2 \pi\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\right)
$$

The joint probability density function of Z_{t} and \mathbf{X}_{t} conditional on the system being in state i at time t is

$$
f\left(\mathbf{x}_{t}, z_{t} \mid S_{t}=i\right)=\left(1-p_{i}\right)^{1-z_{t}}\left[p_{i} \frac{1}{2 \pi\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\right)\right]^{z_{t}}
$$

where $p_{i}, \boldsymbol{\mu}_{i}=E\left(\mathbf{X}_{t} \mid S_{t}=i, Z_{t}=1\right)$ and $\boldsymbol{\Sigma}_{i}=\operatorname{Var}\left(\mathbf{X}_{t} \mid S_{t}=i, Z_{t}=1\right)$ are parameters to be estimated.

Author(s)

Ting Wang - I am grateful to Jiancang Zhuang for some helpful suggestions and contributions
Maintainer: Ting Wang ting.wang@otago.ac.nz

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C, Applied Statistics, 66, Part 4, 691-715.
Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.
Some of the functions in the package are based on those of the R package "HiddenMarkov":
Harte, D. (2017) HiddenMarkov: Hidden Markov Models. R package version 1.8-11. Statistics Research Associates, Wellington. URL: http://www.statsresearch.co.nz/dsh/sslib/
cumdist. hmm0norm Cumulative distribution of an HMM with Extra Zeros

Description

Calculates the cumulative distribution of an HMM with extra zeros.

Usage
 cumdist. hmm0norm($\mathrm{x}, \mathrm{HMMest)}$

Arguments

\times
HMMest is a list which contains pie, gamma, sig, mu, and delta (the HMM parameter estimates).

Value

prob is the calculated cumulative distribution.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C, Applied Statistics, 66, Part 4, 691-715.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
            0.02,0.97,0.01,
            0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
HMMEST <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
xx <- seq(0,1,0.05)
cumdist <- apply(t(xx),2,cumdist.hmm0norm,HMMest=HMMEST)
```

hmm0norm Parameter Estimation of an HMM with Extra Zeros

Description

Calculates the parameter estimates of a 1-D HMM with observations having extra zeros.

Usage

hmm@norm(R, Z, pie, gamma, mu, sig, delta, tol=1e-6, print.level=1, fortran = TRUE)

Arguments

R
Z
pie \quad is a vector of length m, the j th element of which is the probability of $Z=1$ when the process is in state j.
gamma is the transition probability matrix $(m * m)$ of the hidden Markov chain.
mu
sig is a $1 * m$ matrix, the j th element of which is the standard deviation of the (Gaussian) distribution of the observations in state j.
delta is a vector of length m, the initial distribution vector of the Markov chain.
tol is the tolerance for testing convergence of the iterative estimation process. The default tolerance is $1 \mathrm{e}-6$. For initial test of model fit to your data, a larger tolerance (e.g., 1e-3) should be used to save time.
print.level controls the amount of output being printed. Default is 1. If print.level=1, only the log likelihoods and the differences between the log likelihoods at each step of the iterative estimation process, and the final estimates are printed. If print. level=2, the log likelihoods, the differences between the log likelihoods, and the estimates at each step of the iterative estimation process are printed.
fortran is logical, and determines whether Fortran code is used; default is TRUE.

Value

pie is the estimated probability of $Z=1$ when the process is in each state.
$\mathrm{mu} \quad$ is the estimated mean of the (Gaussian) distribution of the observations in each state.
sig is the estimated standard deviation of the (Gaussian) distribution of the observations in each state.
gamma is the estimated transition probability matrix of the hidden Markov chain.
delta is the estimated initial distribution vector of the Markov chain.
LL is the log likelihood.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C, Applied Statistics, 66, Part 4, 691-715.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
yn <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
yn
```


Description

Calculates the parameter estimates of an HMM with bivariate observations having extra zeros.

Usage

hmm0norm2d(R, Z, pie, gamma, mu, sig, delta, tol=1e-6, print.level=1, fortran = TRUE)

Arguments

$\mathrm{R} \quad$ is the observed data. R is a $T * 2$ matrix, where T is the number of observations.
$\mathrm{Z} \quad$ is the binary data with the value 1 indicating that an event was observed and 0 otherwise. Z is a vector of length T.
pie \quad is a vector of length m, the j th element of which is the probability of $Z=1$ when the process is in state j.
gamma is the transition probability matrix $(m * m)$ of the hidden Markov chain.
mu is an $m * 2$ matrix, the j th row of which is the mean of the bivariate (Gaussian) distribution of the observations in state j.
sig is a $2 * 2 * m$ array. The matrix $\operatorname{sig}[,, \mathrm{j}]$ is the variance-covariance matrix of the bivariate (Gaussian) distribution of the observations in state j.
delta is a vector of length m, the initial distribution vector of the Markov chain.
tol is the tolerance for testing convergence of the iterative estimation process. Default is $1 \mathrm{e}-6$. For initial test of model fit to your data, a larger tolerance (e.g., $1 \mathrm{e}-3$) should be used to save time.
print.level controls the amount of output being printed. Default is 1. If print.level=1, only the log likelihoods and the differences between the log likelihoods at each step of the iterative estimation process, and the final estimates are printed. If print.level=2, the log likelihoods, the differences between the log likelihoods, and the estimates at each step of the iterative estimation process are printed.
fortran is logical, and determines whether Fortran code is used; default is TRUE.

Details

Setting up initial values for the real world data can be challenging, especially when the model is large (the number of states is big). In the example below, we include a simple way to set up initial values. If the model is large, the model fitting process should be repeated for many different initial values. In the example below, we set the number of initial values to be $N=2$ for the ease of compilation. For real-world data analysis, taking the 2D model for the tremor data in Wang et al. (2018) for example, we used at least $N=1000$ initial values for the large models with more than 15 hidden states.

Value

pie \quad is the estimated probability of $Z=1$ when the process is in each state.
$\mathrm{mu} \quad$ is the estimated mean of the bivariate (Gaussian) distribution of the observations in each state.
sig is the estimated variance-covariance matrix of the bivariate (Gaussian) distribution of the observations in each state.
gamma is the estimated transition probability matrix of the hidden Markov chain.
delta is the estimated initial distribution vector of the Markov chain.
LL is the log likelihood.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
            0.02,0.97,0.01,
            0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(35.03,137.01,
                            35.01,137.29,
                            35.15,137.39),byrow=TRUE, nrow=3)
sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,
                            -0.001,0.01),byrow=TRUE, nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,
                            -0.0002,0.0006),byrow=TRUE, nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,
                            0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
yn <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
yn
# Setting up initial values when analysing real-world data
## nk is the number of states for the fitted model
### In this example we use nk=3
LL <- -10^200 ## A very small value to compare with
    ## the log likelihood from the model
```

```
nk = 3
gamma <- array(NA,dim=c(nk,nk))
mu <- array(NA,dim=c(nk,2))
sig <- array(NA,dim=c(2,2,nk))
pie <- array(NA,dim=c(1,nk))
kk <- 1
N <- 2
while(kk<N)
{
        temp <- matrix(runif(nk*nk,0,1),ncol=nk)
        diag(temp) = diag(temp) + rpois(1,6) * apply(temp, 1, sum)
        temp <- temp * matrix(rep(1/apply(temp, 1, sum), ncol(temp)), ncol=ncol(temp), byrow=FALSE)
        gamma <- temp
    R1min <- min((R[,1])[R[,1]>=1e-6])
    R1max <- max((R[,1])[R[,1]>=1e-6])
    R2min <- min((R[,2])[R[,2]>=1e-6])
    R2max <- max((R[,2])[R[,2]>=1e-6])
    temp <- cbind(runif(nk,R1min,R1max),runif(nk,R2min,R2max))
    temp <- temp[order(temp[,2]),]
    mu <- temp
    sdR1 <- sd((R[,1])[R[,1]>=1e-6])
    sdR2 <- sd((R[,2])[R[,2]>=1e-6])
    for (j in 1:nk){
        temp <- matrix(runif(4,0.0001,max(sdR1,sdR2)), ncol=2)
        temp[1,2] <- temp[2,1] <- runif(1,-1,1)* sqrt(prod(diag(temp)))
        sig[, ,j] <- temp
    }
    pie <- matrix(sort(c(runif(1, 0, 0.01),runif(nk-1, 0, 1))), nrow = 1, byrow = TRUE )
    delta <- c(6,runif(nk-1, 0,1))
    delta <- delta/sum(delta)
    tryCatch({
        temp <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
        kk<-kk+1
        if( LL <= temp$LL){
            HMMest <- temp
            LL =HMMest$LL
            eval(parse(text=paste('HMM',kk,'est = HMMest',sep="")))
            eval(parse(text=paste('save(HMM',kk,'est, file="HMM',kk,'est.image")',sep='')))
        }
    }, error=function(e){})
    print(kk)
}
```


Description

Plot the classified 2-D data with different colours representing different hidden states (or different clusters) obtained from the Viterbi path and confidence contours.

Usage

plotVitloc2d(object, R, Z, HMMest, CI.level=0.95, npoints=100, cols=NA,
cex.lab=1.5, cex.axis=1.5, cex=1, cex.text=2)

Arguments

object is a list containing y (the estimated Viterbi path) and v (the estimated probability of each time point being in each state). This object is returned from running Viterbi.hmm0norm2d(R, Z, HMMest).
$\mathrm{R} \quad$ is the observed data. R is a $T * 2$ matrix, where T is the number of observations.
Z is the binary data with the value 1 indicating that an event was observed and 0 otherwise. Z is a vector of length T.
HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM parameter estimates).
CI.level is a scalar or a vector, the confidence level for the ellipse contour of each state. Default is 0.95 .
npoints is the number of points used in the ellipse. Default is 100.
cols is a vector defines the colors to be used for different states. If col=NA, then the default colors will be used.
cex.lab specifies the size of the axis label text.
cex.axis specifies the size of the tick label numbers/text.
cex specifies the size of the points.
cex.text specifies the size of the text indicting the state number.

Author(s)

Ting Wang and Jiancang Zhuang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.

Examples

```
pie <- c(0.008,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
                    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(35.03,137.01,
                35.01,137.29,
    35.15,137.39),byrow=TRUE, nrow=3)
sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,
                            -0.001,0.01),byrow=TRUE, nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,
                            -0.0002,0.0006),byrow=TRUE, nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,
                0.0018,0.003),byrow=TRUE, nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
plotVitloc2d(Viterbi3, R, Z,HMMEST)
```

plotVitpath2d

Description

Plot the 2-D data, Viterbi path and the probability of each time point being in each state over time.

Usage

plotVitpath2d(object, R, Z, HMMest, len.dat=96432, varb=8780, yearstart=2005, yearend=2012, cols=NA, cex.lab=1.5, cex.axis=1.5)

Arguments

object is a list containing y (the estimated Viterbi path) and v (the estimated probability of each time point being in each state). This object is returned from running Viterbi.hmm0norm2d(R, Z, HMMest).
$\mathrm{R} \quad$ is the observed data. R is a $T * 2$ matrix, where T is the number of observations.
Z
is the binary data with the value 1 indicating that an event was observed and 0 otherwise. Z is a vector of length T.
HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM parameter estimates).
len.dat is the length of the data, that is, the number of time points. Default is 96432.

varb	is an integer indicating the length of data that will be ploted on each page. The default is 8780.
yearstart	is the starting year of the data used. Default is 2005. yearend
is the end year of the data used. Default is 2012. cols a vector defines the colors to be used for different states. If col=NA, then the is default colors will be used.	
cex.lab	specifies the size of the axis label text. cex.axis
specifies the size of the tick label numbers/text.	

Details

The returned object has four panels. Top two panels: Observed latitudes and longitudes with the center $\hat{\mu}_{i}$ of each state overlaid as the red lines; third panel: tracked most likely state sequence of the HMM; bottom panel: the estimated probability of the data being in each state, with blank representing the probability of being in the last state (typically the plot looks better if the last state represents the background state with the minimum proportion of tremor occurrence). Some example plots are in the supplementary file of the reference Wang et al. (2018).

Author(s)

Ting Wang and Jiancang Zhuang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.

Examples

```
pie <- c(0.008,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(35.03,137.01,
    35.01,137.29,
    35.15,137.39),byrow=TRUE,nrow=3)
sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,
    -0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,
    -0.0002,0.0006),byrow=TRUE, nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,
            0.0018,0.003),byrow=TRUE,nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R <- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
```

```
plotVitpath2d(Viterbi3, R, Z,HMMEST,len.dat=5000,varb=5000,yearstart=2005, yearend=2005)
```

sim. hmm0norm Simulation of a 1-D HMM with Extra Zeros

Description

Simulates the observed process and the associated binary variable of a 1-D HMM with extra zeros.

Usage

sim.hmm0norm(mu, sig, pie, gamma, delta, nsim = 1, seed = NULL)

Arguments

pie \quad is a vector of length m, the j th element of which is the probability of $Z=1$ when the process is in state j.
gamma is the transition probability matrix $(m * m)$ of the hidden Markov chain.
mu \quad is a $1 * m$ matrix, the j th element of which is the mean of the (Gaussian) distribution of the observations in state j.
sig is a $1 * m$ matrix, the j th element of which is the standard deviation of the (Gaussian) distribution of the observations in state j.
delta is a vector of length m, the initial distribution vector of the Markov chain.
nsim is an integer, the number of observations to simulate.
seed is the seed for simulation. Default seed=NULL.

Value

$x \quad$ is the simulated observed process.
z is the simulated binary data with the value 1 indicating that an event was observed and 0 otherwise.
mcy is the simulated hidden Markov chain.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C, Applied Statistics, 66, Part 4, 691-715.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
    mu <- matrix(c(0.3,0.7,0.2),nrow=1)
    sig <- matrix(c(0.2,0.1,0.1),nrow=1)
    delta <- c(1,0,0)
    y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
```

sim.hmm0norm2d Simulation of a Bivariate HMM with Extra Zeros

Description

Simulates the observed process and the associated binary variable of a bivariate HMM with extra zeros.

Usage

sim.hmm0norm2d(mu, sig, pie, gamma, delta, nsim $=1$, seed $=$ NULL)

Arguments

pie \quad is a vector of length m, the j th element of which is the probability of $Z=1$ when the process is in state j.
gamma is the transition probability matrix $(m * m)$ of the hidden Markov chain.
mu \quad is an $m * 2$ matrix, the j th row of which is the mean of the bivariate (Gaussian) distribution of the observations in state j.
$\operatorname{sig} \quad$ is a $2 * 2 * m$ array. The matrix $\operatorname{sig}[,, \mathrm{j}]$ is the variance-covariance matrix of the bivariate (Gaussian) distribution of the observations in state j.
delta is a vector of length m, the initial distribution vector of the Markov chain.
nsim is an integer, the number of observations to simulate.
seed is the seed for simulation. Default seed=NULL.

Value
x
Z
is the simulated observed process.
is the simulated binary data with the value 1 indicating that an event was observed and 0 otherwise.
mcy is the simulated hidden Markov chain.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(35.03,137.01,
    35.01,137.29,
    35.15,137.39),byrow=TRUE,nrow=3)
sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,
    -0.001,0.01),byrow=TRUE,nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,
        -0.0002,0.0006),byrow=TRUE , nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,
        0.0018,0.003),byrow=TRUE, nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
```

```
Viterbi .hmm0norm Viterbi Path of a 1-D HMM with Extra Zeros
```


Description

Finds the most probable sequence of hidden states of an observed process.

Usage

Viterbi.hmm0norm(R, Z, HMMest)

Arguments

$\mathrm{R} \quad$ is the observed data. R is a $T * 1$ matrix, where T is the number of observations.
$Z \quad$ is the binary data with the value 1 indicating that an event was observed and 0 otherwise. Z is a vector of length T.
HMMest is a list which contains pie, gamma, sig, mu, and delta (the HMM parameter estimates).

Value

$y \quad$ is the estimated Viterbi path.
v
is the estimated probability of each time point being in each state.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Obara, K. and Tsuruoka, H. (2016) Hidden Markov Modeling of Sparse Time Series from Non-volcanic Tremor Observations. Journal of the Royal Statistical Society, Series C, Applied Statistics, 66, Part 4, 691-715.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
                    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(0.3,0.7,0.2),nrow=1)
sig <- matrix(c(0.2,0.1,0.1),nrow=1)
delta <- c(1,0,0)
y <- sim.hmm0norm(mu,sig,pie,gamma,delta, nsim=5000)
R <- as.matrix(y$x,ncol=1)
Z <- y$z
HMMEST <- hmm0norm(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm(R,Z,HMMEST)
```

Viterbi.hmm0norm2d Viterbi Path of a Bivariate HMM with Extra Zeros

Description

Finds the most probable sequence of hidden states of an observed process of a bivariate HMM with extra zeros.

Usage

Viterbi.hmm0norm2d(R, Z, HMMest)

Arguments

$\mathrm{R} \quad$ is the observed data. R is a $T * 2$ matrix, where T is the number of observations.
Z is the binary data with the value 1 indicating that an event was observed and 0 otherwise. Z is a vector of length T.
HMMest is a list which contains pie, gamma, sig, mu, and delta (the bivariate HMM parameter estimates).

Value

$y \quad$ is the estimated Viterbi path.
$v \quad$ is the estimated probability of each time point being in each state.

Author(s)

Ting Wang

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360.

Examples

```
pie <- c(0.002,0.2,0.4)
gamma <- matrix(c(0.99,0.007,0.003,
    0.02,0.97,0.01,
    0.04,0.01,0.95),byrow=TRUE, nrow=3)
mu <- matrix(c(35.03,137.01,
    35.01,137.29,
    35.15,137.39),byrow=TRUE,nrow=3)
sig <- array(NA,dim=c(2,2,3))
sig[,,1] <- matrix(c(0.005, -0.001,
    -0.001,0.01),byrow=TRUE, nrow=2)
sig[,,2] <- matrix(c(0.0007,-0.0002,
                            -0.0002,0.0006),byrow=TRUE,nrow=2)
sig[,,3] <- matrix(c(0.002,0.0018,
    0.0018,0.003), byrow=TRUE , nrow=2)
delta <- c(1,0,0)
y <- sim.hmm0norm2d(mu,sig,pie,gamma,delta, nsim=5000)
R<- y$x
Z <- y$z
HMMEST <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
Viterbi3 <- Viterbi.hmm0norm2d(R,Z,HMMEST)
```


Index

*Topic goodness-of-fit
cumdist.hmm0norm, 4
*Topic inversion
Viterbi.hmm0norm, 15
Viterbi.hmm@norm2d, 16
$*$ Topic methods
hmmenorm, 5
hmm0norm2d, 7
*Topic optimize
hmmenorm, 5
hmmenorm2d, 7
*Topic package
HMMextra0s-package, 2
*Topic plot,2-D classification,Viterbi
plotVitloc2d, 10
*Topic plot,classification,Viterbi
plotVitpath2d, 11
$*$ Topic simulation
sim.hmm0norm, 13
sim. hmm0norm2d, 14
cumdist.hmm0norm, 3, 4
hmm0norm, 3, 5
hmm0norm2d, 3, 7
HMMextra0s (HMMextra0s-package), 2
HMMextra0s-package, 2
plotVitloc2d, 3, 10
plotVitpath2d, 11
sim.hmm0norm, 3, 13
sim.hmm0norm2d, 3, 14
Viterbi.hmm0norm, 3, 15
Viterbi.hmm0norm2d, 3, 16

