Package 'GreedyExperimentalDesign'

July 15, 2018

Type Package

Title Greedy Experimental Design Construction

Version 1.2

Date 2018-07-15

Author Adam Kapelner, David Azriel and Abba M. Krieger

Maintainer Adam Kapelner <kapelner@qc.cuny.edu>

Description Computes experimental designs for a two-arm experiment with covariates by greedily optimizing a balance objective function. This optimization provides lower variance for the treatment effect estimator (and higher power) while preserving a design that is close to complete randomization. We return all iterations of the designs for use in a permutation test. Additional functionality includes using branch and bound optimization (via Gurobi) and exhaustive enumeration.

License GPL-3

Depends R (>= 3.2.0), rJava (>= 0.9-6), GreedyExperimentalDesignJARs (>= 1.0)

SystemRequirements Java (>= 7.0)

Imports graphics, grDevices, stats

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-15 21:40:10 UTC

R topics documented:

automobile	2	
complete_randomization	3	
complete_randomization_with_balanced_ns	3	
compute_objective_val		
compute_randomization_metrics	4	

automobile

generate_stdzied_design_matrix	5
GreedyExperimentalDesign	6
gurobi_multiple_designs	6
initGreedyExperimentalDesignObject	7
initGurobiNumericalOptimizationExperimentalDesignObject	8
initKarpExperimentalDesignObject	9
initOptimalExperimentalDesignObject	10
initRerandomizationExperimentalDesignObject	10
plot.greedy_experimental_design_search	11
plot_obj_val_by_iter	12
plot_obj_val_order_statistic	13
print.greedy_experimental_design_search	13
print.karp_experimental_design_search	14
print.optimal_experimental_design_search	14
print.rerandomization_experimental_design_search	15
resultsGreedySearch	15
resultsGurobiNumericalOptimizeExperimentalDesign	16
resultsKarpSearch	17
resultsOptimalSearch	17
resultsRerandomizationSearch	18
searchTimeElapsed	18
startSearch	19
stopSearch	19
summary.greedy_experimental_design_search	20
summary.karp_experimental_design_search	20
summary.optimal_experimental_design_search	21
summary.rerandomization_experimental_design_search	21
	• -
	22

Index

automobile

Data concerning automobile prices.

Description

The automobile data frame has 201 rows and 25 columns and concerns automobiles in the 1985 Auto Imports Database. The response variable, price, is the log selling price of the automobile. There are 7 categorical predictors and 17 continuous / integer predictors which are features of the automobiles. 41 automobiles have missing data in one or more of the feature entries. This dataset is true to the original except with a few of the predictors dropped.

Usage

```
data(automobile)
```

Source

K Bache and M Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml/datasets/Automobile

 $complete_randomization$

Implements complete randomization

Description

Implements complete randomization

Usage

complete_randomization(n, r)

Arguments

n	number of observations
r	number of randomized designs you would like

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

Description

Implements complete balanced randomization

Usage

```
complete_randomization_with_balanced_ns(n, r)
```

Arguments

n	number of observations
r	number of randomized designs you would like

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

compute_objective_val Returns the objective value given a design vector as well an an objective function. This is code duplication since this is implemented within Java. This is only to be run if ...

Description

Returns the objective value given a design vector as well an an objective function. This is code duplication since this is implemented within Java. This is only to be run if...

Usage

```
compute_objective_val(X, indic_T, objective = "abs_sum_diff",
  inv_cov_X = NULL)
```

Arguments

Х	The n x p design matrix
indic_T	The n-length binary allocation vector
objective	The objective function to use. Default is abs_sum_diff.
inv_cov_X	Optional: the inverse sample variance covariance matrix. Use this argument if you will be doing many calculations since passing this in will cache this data.

Author(s)

Adam Kapelner

```
compute_randomization_metrics
                         Computes Randomization Metrics (explained in paper) about a design
                         algorithm
```

Description

Computes Randomization Metrics (explained in paper) about a design algorithm

Usage

compute_randomization_metrics(designs)

designs A matrix where each column is one design.

Value

A list of resulting data: the probability estimates for each pair in the design of randomness where estmates close to ~ 0.5 represent random assignment, then the entropy metric and the distance metric.

Author(s)

Adam Kapelner

generate_stdzied_design_matrix Generates a design matrix with standardized predictors. Useful for debugging.

Description

Generates a design matrix with standardized predictors. Useful for debugging.

Usage

```
generate_stdzied_design_matrix(n = 50, p = 1, covariate_gen = rnorm, ...)
```

Arguments

n	Number of rows in the design matrix
р	Number of columns in the design matrix
covariate_gen	The function to use to draw the covariate realizations (assumed to be iid). This defaults to rnorm for $N(0,1)$ draws.
	Optional arguments to be passed to the covariate_dist function.

Value

THe design matrix

Author(s)

GreedyExperimentalDesign

Greedy Experimental Design Search

Description

A tool to find a priori experimental designs with good balance greedily

Author(s)

Adam Kapelner <kapelner@qc.cuny.edu>

References

Kapelner, A

gurobi_multiple_designs

Find multiple designs

Description

This method searches through \$1_T\$ space using Gurobi's optimization many times. It finds many different solutions by permuting the rows of the design matrix and rerunning the optimization.

Usage

```
gurobi_multiple_designs(X, r, ...)
```

Arguments

Х	The design matrix with \$n\$ rows (one for each subject) and \$p\$ columns (one
	for each measurement on the subject). This is the design matrix you wish to search for a more optimal design.
r	The number of vectors that should be returned
	$Additional \ arguments \ to \ be \ passed \ to \ init \ Gurobi \ Numerical \ Optimization \ Experimental \ Design \ Object \ Superimetric \ Superin \ Superin \ Superimet$

Value

A matrix of allocation vectors of dimension $r \times n$.

Author(s)

Kapelner

initGreedyExperimentalDesignObject

This method creates an object of type greedy_experimental_design and will immediately initiate a search through \$1_T\$ space.

Description

This method creates an object of type greedy_experimental_design and will immediately initiate a search through \$1_T\$ space.

Usage

```
initGreedyExperimentalDesignObject(X, max_designs = 10000,
    objective = "abs_sum_diff", wait = FALSE, start = TRUE,
    max_iters = Inf, semigreedy = FALSE, diagnostics = FALSE,
    num_cores = 1)
```

Arguments

X	The design matrix with \$n\$ rows (one for each subject) and \$p\$ columns (one for each measurement on the subject). This is the design matrix you wish to search for a more optimal design.
max_designs	The maximum number of designs to be returned. Default is 10,000. Make this large so you can search however long you wish as the search can be stopped at any time by using the stopSearch method
objective	The objective function to use when greedily searching design space. This is a string "abs_sum_diff" (default) or "mahal_dist."
wait	Should the R terminal hang until all <code>max_designs</code> vectors are found? The deafult is FALSE.
start	Should we start searching immediately (default is TRUE).
<pre>max_iters</pre>	Should we impose a maximum number of greedy switches? The default is Inf which a flag for "no limit."
semigreedy	Should we use a fully greedy approach or the quicker semi-greedy approach? The default is FALSE corresponding to the fully greedy approach.
diagnostics	Returns diagnostic information about the iterations including (a) the initial start- ing vectors, the switches at every iteration and information about the objective function at every iteration (default is FALSE due to speed concerns).
num_cores	The number of CPU cores you wish to use during the search. The default is 1.

Value

An object of type greedy_experimental_design_search which can be further operated upon

Author(s)

Examples

```
## Not run:
library(MASS)
data(Boston)
  #pretend the Boston data was an experiment setting
  #first pull out the covariates
  X = Boston[, 1 : 13]
  #begin the greedy design search
ged = initGreedyExperimentalDesignObject(X,
max_designs = 1000, num_cores = 3, objective = "abs_sum_diff")
#wait
ged
```

End(Not run)

initGurobiNumericalOptimizationExperimentalDesignObject

This method creates an object of type optimal_experimental_design and will immediately initiate a search through \$1_T\$ space.

Description

This method creates an object of type optimal_experimental_design and will immediately initiate a search through \$1_T\$ space.

Usage

```
initGurobiNumericalOptimizationExperimentalDesignObject(X, num_cores = 1,
    time_limit_min = 5, node_limit = NULL, max_solutions = 10,
    verbose = TRUE, log_file = "")
```

Arguments

The design matrix with \$n\$ rows (one for each subject) and \$p\$ columns (one for each measurement on the subject). This is the design matrix you wish to search for a more optimal design.
The number of CPU cores you wish to use during the search. The default is 1.
The maximum amount of time the optimizer can run for in minutes. The default is 5.
The maximum number of nodes Gurobi should explore. Default is NULL for no limit.
The maximum number of solutions Gurobi should retain (if possible given the time limit and constraint of the node limit). The default is NULL for Gurobi's default of 10.
Should Gurobi print its log to screen? Default is TRUE.
Log filename for Gurobi e.g. my_log.txt. Default is "" for no file log.

8

Value

An object of type optimal_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner and Bracha Blau

initKarpExperimentalDesignObject

This method creates an object of type karp_experimental_design and will immediately initiate a search through \$1_T\$ space.

Description

This method creates an object of type karp_experimental_design and will immediately initiate a search through \$1_T\$ space.

Usage

```
initKarpExperimentalDesignObject(X, objective = "abs_sum_diff",
  wait = FALSE, balanced = TRUE, start = TRUE)
```

Arguments

X	The design matrix with \$n\$ rows (one for each subject) and \$p\$ columns (one for each measurement on the subject). This is the design matrix you wish to search for a more karp design.
objective	The objective function to use when greedily searching design space. This is a string "abs_sum_diff" (default) or "mahal_dist."
wait	Should the R terminal hang until all max_designs vectors are found? The deafult is FALSE.
balanced	Should the final vector be balanced? Default and recommended is TRUE.
start	Should we start searching immediately (default is TRUE).

Value

An object of type karp_experimental_design_search which can be further operated upon

Author(s)

initOptimalExperimentalDesignObject

This method creates an object of type optimal_experimental_design and will immediately initiate a search through \$1_T\$ space.

Description

This method creates an object of type optimal_experimental_design and will immediately initiate a search through \$1_T\$ space.

Usage

```
initOptimalExperimentalDesignObject(X, objective = "abs_sum_diff",
  wait = FALSE, start = TRUE, num_cores = 1)
```

Arguments

X	The design matrix with \$n\$ rows (one for each subject) and \$p\$ columns (one for each measurement on the subject). This is the design matrix you wish to search for a more optimal design.
objective	The objective function to use when greedily searching design space. This is a string "abs_sum_diff" (default) or "mahal_dist."
wait	Should the R terminal hang until all $\verb max_designs $ vectors are found? The deafult is FALSE.
start	Should we start searching immediately (default is TRUE).
num_cores	The number of CPU cores you wish to use during the search. The default is 1.

Value

An object of type optimal_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner

initRerandomizationExperimentalDesignObject
 This method creates an object of type rerandomization_experimental_design and will immediately initiate a search through \$1_T\$ space.

Description

This method creates an object of type rerandomization_experimental_design and will immediately initiate a search through \$1_T\$ space.

Usage

```
initRerandomizationExperimentalDesignObject(X, max_designs = 1000,
    obj_val_cutoff_to_include = NULL, objective = "mahal_dist",
    wait = FALSE, start = TRUE, num_cores = 1)
```

Arguments

X	The design matrix with $n\$ rows (one for each subject) and $p\$ columns (one for each measurement on the subject). This is the design matrix you wish to search for a more optimal design.
max_designs	The maximum number of designs to be returned. Default is 10,000. Make this large so you can search however long you wish as the search can be stopped at any time by using the stopSearch method
obj_val_cutoff_to_include	
	Only allocation vectors with objective values lower than this threshold will be returned. The default is NULL which means all vectors are returned.
objective	The objective function to use when searching the design space. This is a string "abs_sum_diff" (default) or "mahal_dist."
wait	Should the R terminal hang until all <code>max_designs</code> vectors are found? The default is FALSE.
start	Should we start searching immediately (default is TRUE).
num_cores	The number of CPU cores you wish to use during the search. The default is 1.

Value

An object of type rerandomization_experimental_design_search which can be further operated upon.

Author(s)

Adam Kapelner

 $\verb"plot.greedy_experimental_design_search"$

Plots a summary of a greedy_experimental_design_search object

Description

Plots a summary of a greedy_experimental_design_search object

Usage

```
## S3 method for class 'greedy_experimental_design_search'
plot(x, ...)
```

x	The greedy_experimental_design_search object to be summarized in the plot
	Other parameters to pass to the default plot function

Value

An array of order statistics from plot_obj_val_order_statistic as a list element

Author(s)

Adam Kapelner

plot_obj_val_by_iter Plots the objective value by iteration

Description

Plots the objective value by iteration

Usage

plot_obj_val_by_iter(res, runs = NULL)

Arguments

res	Results from a greedy search object
runs	A vector of run indices you would like to see plotted (default is to plot the first up to 9)

Author(s)

plot_obj_val_order_statistic

Plots an order statistic of the object value as a function of number of searches

Description

Plots an order statistic of the object value as a function of number of searches

Usage

```
plot_obj_val_order_statistic(obj, order_stat = 1, skip_every = 5,
    type = "o", ...)
```

Arguments

obj	The greedy_experimental_design_search object whose search history is to be visualized
order_stat	The order statistic that you wish to plot. The default is 1 for the minimum.
skip_every	Plot every nth point. This makes the plot generate much more quickly. The default is 5.
type	The type parameter for plot.
	Other arguments to be passed to the plot function.

Value

An array of order statistics as a list element

Author(s)

Adam Kapelner

Description

Prints a summary of a greedy_experimental_design_search object

Usage

```
## S3 method for class 'greedy_experimental_design_search'
print(x, ...)
```

х	The greedy_experimental_design_search object to be summarized in the console
	Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.karp_experimental_design_search

Prints a summary of a karp_experimental_design_search object

Description

Prints a summary of a karp_experimental_design_search object

Usage

S3 method for class 'karp_experimental_design_search'
print(x, ...)

Arguments

Х	The karp_experimental_design_search object to be summarized in the con- sole
	Other parameters to pass to the default print function

Author(s)

Adam Kapelner

<pre>print.optimal_experime</pre>	ntal_design_search
	Prints a summary of a optimal_experimental_design_search ob-
	ject

Description

Prints a summary of a optimal_experimental_design_search object

Usage

```
## S3 method for class 'optimal_experimental_design_search'
print(x, ...)
```

х	The optimal_experimental_design_search object to be summarized in the console
	Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.rerandomization_	experimental_design_search
	Prints a summary of a rerandomization_experimental_design_search
	object

Description

Prints a summary of a rerandomization_experimental_design_search object

Usage

```
## S3 method for class 'rerandomization_experimental_design_search'
print(x, ...)
```

Arguments

x	The rerandomization_experimental_design_search object to be summarized in the console
• • •	Other parameters to pass to the default print function

Author(s)

Adam Kapelner

resultsGreedySearch Returns the results (thus far) of the greedy design search

Description

Returns the results (thus far) of the greedy design search

Usage

resultsGreedySearch(obj, max_vectors = 9)

obj	The greedy_experimental_design object that is currently running the search
<pre>max_vectors</pre>	The number of design vectors you wish to return. NULL returns all of them. This is not recommended as returning over 1 000 vectors is time-intensive. The
	default is 9.

Author(s)

Adam Kapelner

Examples

```
## Not run:
library(MASS)
data(Boston)
#pretend the Boston data was an experiment setting
#first pull out the covariates
X = Boston[, 1 : 13]
#begin the greedy design search
ged = initGreedyExperimentalDesignObject(X,
max_designs = 1000, num_cores = 2, objective = "abs_sum_diff")
#wait
res = resultsGreedySearch(ged, max_vectors = 2)
design = res$ending_indicTs[, 1] #ordered already by best-->worst
design
#what is the balance on this vector?
res$obj_vals[1]
#compute balance explicitly in R to double check
compute_objective_val(X, design) #same as above
#how far have we come?
ged
#we can cut it here
stopSearch(ged)
```

End(Not run)

resultsGurobiNumericalOptimizeExperimentalDesign

Returns the results (thus far) of the Gurobi numerical optimization design search

Description

Returns the results (thus far) of the Gurobi numerical optimization design search

Usage

resultsGurobiNumericalOptimizeExperimentalDesign(obj)

resultsKarpSearch

Arguments

obj

The gurobi_numerical_optimization_experimental_design_search object that is currently running the search

Author(s)

Adam Kapelner

resultsKarpSearch *Returns the results (thus far) of the karp design search*

Description

Returns the results (thus far) of the karp design search

Usage

resultsKarpSearch(obj)

Arguments

obj

The karp_experimental_design object that is currently running the search

Author(s)

Adam Kapelner

resultsOptimalSearch Returns the results (thus far) of the optimal design search

Description

Returns the results (thus far) of the optimal design search

Usage

```
resultsOptimalSearch(obj)
```

Arguments obj

The optimal_experimental_design object that is currently running the search

Author(s)

```
resultsRerandomizationSearch
```

Returns the results (thus far) of the rerandomization design search

Description

Returns the results (thus far) of the rerandomization design search

Usage

```
resultsRerandomizationSearch(obj, include_assignments = FALSE)
```

Arguments

obj The rerandomization_experimental_design object that is currently running the search include_assignments

Do we include the assignments (takes time) and default is FALSE.

Author(s)

Adam Kapelner

searchTimeElapsed *Returns the number of vectors found by the greedy design search*

Description

Returns the number of vectors found by the greedy design search

Usage

```
searchTimeElapsed(obj)
```

Arguments

obj The experimental_design object that is currently running the search

Author(s)

startSearch Starts the parallelized greedy design search. Once begun, this function cannot be run again.

Description

Starts the parallelized greedy design search. Once begun, this function cannot be run again.

Usage

startSearch(obj)

Arguments

obj

The experimental_design object that will be running the search

Author(s)

Adam Kapelner

stopSearch	Stops the parallelized greedy design search.	Once stopped, it cannot
	be restarted.	

Description

Stops the parallelized greedy design search. Once stopped, it cannot be restarted.

Usage

stopSearch(obj)

Arguments

obj The experimental_design object that is currently running the search

Author(s)

```
summary.greedy_experimental_design_search
```

Prints a summary of a greedy_experimental_design_search *object*

Description

Prints a summary of a greedy_experimental_design_search object

Usage

```
## S3 method for class 'greedy_experimental_design_search'
summary(object, ...)
```

Arguments

object	The greedy_experimental_design_search object to be summarized in the
	console
	Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

Description

Prints a summary of a karp_experimental_design_search object

Usage

```
## S3 method for class 'karp_experimental_design_search'
summary(object, ...)
```

Arguments

object	The karp_experimental_design_search object to be summarized in the con-
	sole
	Other parameters to pass to the default summary function

Author(s)

Description

Prints a summary of a optimal_experimental_design_search object

Usage

```
## S3 method for class 'optimal_experimental_design_search'
summary(object, ...)
```

Arguments

object	The optimal_experimental_design_search object to be summarized in the
	console
	Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

Description

Prints a summary of a rerandomization_experimental_design_search object

Usage

```
## S3 method for class 'rerandomization_experimental_design_search'
summary(object, ...)
```

Arguments

object	The rerandomization_experimental_design_search object to be summa-
	rized in the console
	Other parameters to pass to the default summary function

Author(s)

Index

*Topic Design, GreedyExperimentalDesign, 6 14 *Topic **Experimental** GreedyExperimentalDesign, 6 14 *Topic **Greedy** GreedyExperimentalDesign, 6 15 *Topic datasets automobile, 2 *Topic search 16 GreedyExperimentalDesign, 6 automobile, 2 complete_randomization, 3 searchTimeElapsed, 18 complete_randomization_with_balanced_ns, 3 compute_objective_val, 4 compute_randomization_metrics, 4 20 generate_stdzied_design_matrix, 5 20 GreedyExperimentalDesign, 6 GreedyExperimentalDesign-package 21 (GreedyExperimentalDesign), 6 gurobi_multiple_designs, 6 21 initGreedyExperimentalDesignObject, 7 initGurobiNumericalOptimizationExperimentalDesignObject, 8 initKarpExperimentalDesignObject, 9 initOptimalExperimentalDesignObject, 10 initRerandomizationExperimentalDesignObject, 10 plot.greedy_experimental_design_search, 11 plot_obj_val_by_iter, 12 plot_obj_val_order_statistic, 12, 13 print.greedy_experimental_design_search, 13