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Aindex R function for calculating the Hodder-Okell’s A index of spatial asso-
ciation

Description

The function allows to calculate the Hodder-Okell’s A index of spatial association between the fea-
tures of two point patterns.

Usage

Aindex(x, y, studyplot = NULL, B = 199, addmap = FALSE)

Arguments

x Point pattern (SpatialPointDataframe class).

y Point pattern (SpatialPointDataframe class).

studyplot Feature (of polygon type; SpatialPolygonsDataFrame class) representing the
study area; if not provided, the study area is internally worked out as the bound-
ing polygon based on the union the convex hulls of the x and y patterns. This is
only used for visualization purpose, should the user want to plot the two point
patterns within the actual study area.

B Number of permutations (199 by default).

addmap FALSE (default) or TRUE if the user does not want or wants a map of the study
area and of the two patterns to be displayed.

Details

The functions takes as input two point patterns (SpatialPointDataframe class) and calculate the A
index. Details about the latter are provided by:
Orton C. 1980, "Mathematics in Archeology", Glasgow: William Collins Sons & Co Ltd, pp. 154-
155
Blankholm P. 1990, "Intrasite spatial Analysis in Theory and Practice", Aarhus: Aarhus University
Press, pp. 130-135.

The A index is about equal to 1 when the two patterns are randomly mingled; it is smaller than 1
when the two patterns are segregated; it is larger than 1 when the features of the two point patterns
tend to occur together. The computational details are provided by Blankholm’s book cited above
(page 132).
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The significance of the A index is calculated via the randomized approach devised by:
Kintigh K W. 1990, “Intrasite Spatial Analysis: A Commentary of Major Methids”. In Voorrips A,
“Mathematics and Information Science in Archaeology: A Flexible Framework”, Studies in Mod-
ern Archaeology 3: 165-200

Given two patterns A and B being analysed, the procedure keeps the points location unchanged and
randomly assigns the points to either pattern. The random re-assignment is performed B times (199
by default) and each time the A index is calculated. One-tailed and two-tailed p values are calcu-
lated following the procedure described by Baddeley et al., "Spatial Point Patterns. Methodology
and Applications with R", CRC Press 2016, p. 387.

Value

The function produces:
-an histogram showing the frequency distribution of the randomized A index, with vertical reference
lines representing the 0.025th and 0.975th quantile of the distribution. A black dot represents the
observed A index. At the bottom of the chart the randomized p values are reported;
-optionally (setting the ’addmap’ parameter to TRUE), a map showing the point patterns (and the
study area, if supplied).

See Also

distRandSign , distCovarModel , pointsCovarModel

Examples

# calculate the Hodder-Okell's A index for the two patterns, and plot the map
Aindex(springs, points, addmap=TRUE)

assemblage Dataset: distribution of 7 archaeological objects across 9 assemblages

Description

A dataset containing the frequencies (counts) of 7 objects across 9 assemblages.

Usage

data(assemblage)

Format

A data frame with 9 rows and 7 variables
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aucadj R function for optimism-adjusted AUC (internal validation)

Description

The function allows to calculate the AUC of a (binary) Logistic Regression model, adjusted for
optimism.

Usage

aucadj(data, fit, B)

Arguments

data Dataframe containing the dataset (note: the Dependent Variable must be stored
in the first column to the left).

fit Object returned from glm() function.

B Desired number of bootstrap resamples (suggested values: 100 or 200).

Details

The function performs an internal validation of a model via a bootstrap procedure (devised by
Harrell and colleagues), which enables to estimate the degree of optimism of a fitted model and
the extent to which the model will be able to generalize outside the training dataset. If you
want more info, you can refer to this website (http://thestatsgeek.com/2014/10/04/adjusting-for-
optimismoverfitting-in-measures-of-predictive-ability-using-bootstrapping/), and/or read the follow-
ing interesting article (in which the bootstrap procedure is described at page 776): http://thestatsgeek.com/2014/10/04/adjusting-
for-optimismoverfitting-in-measures-of-predictive-ability-using-bootstrapping/

Value

The returned boxplots represent:
-the distribution of the AUC value in the bootstrap sample (auc.boot), which represents "an estima-
tion of the apparent performance" (according to the aforementioned reference);
-the distribution of the AUC value deriving from the model fitted to the bootstrap samples and eval-
uated on the original sample (auc.orig), which represents the model performance on independent
data.
At the bottom of the chart, the apparent AUC (i.e., the value deriving from the model fitted to the
original dataset) and the AUC adjusted for optimism are reported.

See Also

logregr , modelvalid
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Examples

# load the sample dataset
data(log_regr_data)

# fit a logistic regression model, storing the results into an object called 'model'
model <- glm(admit ~ gre + gpa + rank, data = log_regr_data, family = "binomial")

aucadj(data=log_regr_data, fit=model, B=200)

BRsim R function for Brainerd-Robinson similarity coefficient (and optional
clustering)

Description

The function allows to calculate the Brainerd-Robinson similarity coefficient, taking as input a
cross-tabulation (dataframe), and to optionally perform an agglomerative hierarchical clustering.

Usage

BRsim(data, which = "rows", correction = FALSE, rescale = TRUE,
clust = TRUE, part = NULL, aggl.meth = "ward.D2", oneplot = TRUE,
cex.dndr.lab = 0.85, cex.sil.lab = 0.75, cex.dot.plt.lab = 0.8)

Arguments

data Dataframe containing the dataset (note: assemblages in rows, variables in columns).

which Takes "rows" (default) if the user wants the coefficients be calculated for the row
categories, "cols" if the users wants the coefficients be calculated for the column
categories.

correction Takes FALSE (default) if the user does not want the coefficients to be corrected,
while TRUE will provide corrected coefficients.

rescale Takes FALSE if the user does NOT want the coefficients to be rescaled between
0.0 and 1.0 (i.e., the user will get the original version of the Brainerd-Robinson
coefficient (spanning from 0 [maximum dissimilarity] to 200 [maximum simi-
larity]), while TRUE (default) will return rescaled coefficient.

clust TRUE (default) or FALSE if the user does or does not want a agglomerative
hierarchical clustering to be performed.

part Desired number of clusters; if NULL (default), an optimal partition is calculated
(see Details).

aggl.meth Agglomeration method ("ward.D2" by default).

oneplot TRUE (default) or FALSE if the user wants or does not want the plots to be
visualized in a single window.
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cex.dndr.lab Set the size of the labels used in the dendrogram.
cex.sil.lab Set the size of the labels used in the silhouette plot.
cex.dot.plt.lab

Set the size of the labels used in the Cleveland’s dot charts representing the
by-cluster proportions.

Details

The function produces a correlation matrix in tabular form and a heat-map representing, in a graph-
ical form, the aforementioned correlation matrix.

In the heat-map (which is built using the ’corrplot’ package), the size and the color of the squares
are proportional to the Brainerd-Robinson coefficients, which are also reported by numbers.

In order to "penalize" BR similarity coefficient(s) arising from assemblages with unshared cate-
gories, the function does what follows: it divides the BR coefficient(s) by the number of unshared
categories plus 0.5. The latter addition is simply a means to be still able to penalize coefficient(s)
arising from assemblages having just one unshared category. Also note that joint absences will
have no weight on the penalization of the coefficient(s). In case of assemblages sharing all their
categories, the corrected coefficient(s) turns out to be equal to the uncorrected one.

By setting the parameter ’clust’ to TRUE, the units for which the BR coefficients have been cal-
culated will be clustered. Notice that the clustering is based on a dissimilarity matrix which is
internally calculated as the maximum values of the BR coefficient (i.e., 200 for the normal values, 1
for the rescales values) minus the BR coefficient. This allows a simpler reading of the dendrogram
which is produced by the function, where the less dissimilar (i.e., more similar) units will be placed
at lower levels, while more dissimilar (i.e., less similar) units will be placed at higher levels within
the dendrogram.

The latter depicts the hierarchical clustering based (by default) on the Ward’s agglomeration method;
rectangles identify the selected cluster partition. Besides the dendrogram, a silhouette plot is pro-
duced, which allows to measure how ’good’ is the selected cluster solution.

As for the latter, if the parameter ’part’ is left empty (default), an optimal cluster solution is ob-
tained. The optimal partition is selected via an iterative procedure which locates at which cluster
solution the highest average silhouette width is achieved. If a user-defined partition is needed, the
user can input the desired number of clusters using the parameter ’part’. In either case, an additional
plot is returned besides the cluster dendrogram and the silhouette plot; it displays a scatterplot in
which the cluster solution (x-axis) is plotted against the average silhouette width (y-axis). A black
dot represent the partition selected either by the iterative procedure or by the user.

Notice that in the silhouette plot, the labels on the left-hand side of the chart show the units’ names
and the cluster number to which each unit is closer.

The silhouette plot is obtained from the ’silhouette()’ function out from the ’cluster’ package
(https://cran.r-project.org/web/packages/cluster/index.html).
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For a detailed description of the silhouette plot, its rationale, and its interpretation, see:
Rousseeuw P J. 1987. "Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis", Journal of Computational and Applied Mathematics 20, 53-65 (http://www.sciencedirect.com/science/article/pii/0377042787901257).

The function also provides a Cleveland’s dot plots that represent by-cluster proportions. The clus-
tered units are grouped according to their cluster membership, the frequencies are summed, and
then expressed as percentages. The latter are represented by the dot plots, along with the aver-
age percentage. The latter provides a frame of reference to understand which percentage is below,
above, or close to the average. The raw data on which the plots are based are stored within the list
returned by the function (see below).

Value

The function returns a list storing the following components

• $BR_similarity_matrix: similarity matrix showing the BR coefficients

• $BR_distance_matrix: dissimilarity matrix on which the hierarchical clustering is performed
(if selected)

• $avr.silh.width.by.n.of.clusters: average silhouette width by number of clusters (if clustering
is selected)

• $partition.silh.data: silhouette data for the selected partition (if clustering is selected)

• $data.w.cluster.membership: copy of the input data table with an additional column storing
the cluster membership for each row (if clustering is selected)

• $by.cluster.proportion: data table showing the proportion of column categories across each
cluster; rows sum to 100 percent (if clustering is selected)

See Also

corrplot , silhouette

Examples

data(assemblage)
coeff <- BRsim(data=assemblage, correction=FALSE, rescale=TRUE, clust=TRUE, oneplot=FALSE)

library(archdata) #load the 'archdata' package

#load the 'Nelson' dataset out of the 'archdata' package
data(Nelson)

#build a table to examine
table <- as.data.frame(as.matrix(Nelson[,3:7]))

# perform the analysis and store the results in the 'res' object
res <- BRsim(table, which="rows", clust=TRUE, oneplot=FALSE)
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chiperm R function for permutation-based chi-square test of independence

Description

The function performs the chi-square test of independence on the basis of permuted tables, whose
number is selected by user.

Usage

chiperm(data, B = 999, resid = FALSE, filter = FALSE,
thresh = 1.96, cramer = FALSE)

Arguments

data Dataframe containing the input contingency table.

B Desired number of permuted tables (999 by default).

resid TRUE or FALSE (default) if the user does or doesn’t want to plot the table of
Pearson’s standardized residuals.

filter Takes TRUE or FALSE (default) if the user does or does’t want to filter the Pear-
son’s standardized residuals according to the threshold provided by the thresh
parameter; by default, the threshold is set at 1.96, which corresponds to an alpha
level of 0.05.

thresh Value of the standardized residuals below which the residuals will be not dis-
played (by default, the threshold is set at 1.96, which corresponds to an alpha
level of 0.05).

cramer Takes TRUE or FALSE (default) if the user does or doesn’t want to calculate
and plot the bootstrap confidence interval for Cramer’s V.

Details

For the rationale of this approach, see for instance the description provided by:
Beh E.J., Lombardo R. 2014, Correspondence Analysis: Theory, Practice and New Strategies,
Chichester, Wiley, pages 62-64.

Value

The function produces:
(1) a chart that displays the permuted distribution of the chi-square statistic based on B permuted
tables. The selected number of permuted tables, the observed chi-square, the 95th percentile of the
permuted distribution, and the associated p value are reported at the bottom of the chart;
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(2) a chart that displays the bootstrap distribution of Cramer’s V coefficient, based on a number of
bootstrap replicates which is equal to the value of the function’s parameter B;

(3) a chart that the Pearson’s Standardized Residuals: a colour scale allows to easily understand
which residual is smaller (BLUE) or larger (RED) than expected under the hypothesis of indepen-
dence. Should the user want to only display residuals larger than a given threshold, it suffices to set
the filter parameter to TRUE, and to specify the desired threshold by means of the thresh parameter,
which is set at 1.96 by default.

Examples

data(assemblage)
chiperm(data=assemblage, B=199, resid=TRUE, cramer=TRUE)

deaths Dataset: location of cholera deaths in London (after Dr Snow’s mid-
1800s study of cholera outbreak in Soho).

Description

A SpatialPointsDataFrame representing the location of cholera deaths in London (after Dr Snow’s
mid-1800s study of cholera outbreak in Soho).

Usage

data(deaths)

Format

SpatialPointsDataFrame

distCovarModel R function to model (and test) the dependence of a point pattern on the
distance to another pattern

Description

The function is a wrapper for a number of functions out of the extremely useful ’spatstat’ package
(specifically, ppm(), cdf.test(), auc(), roc(), effectfun()). It allows to test if there is a significant
dependence of the input point pattern on a spatial covariate (first-order effect), the latter being the
distance to another feature (of either point or line type).
The function takes as input two datasets: a point patter (SpatialPointsDataFrame class) and a fea-
ture (either SpatialPointsDataFrame or SpatialLinesDataFrame class) the distance to which is used
as spatial covariate for the input point pattern.
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Usage

distCovarModel(feature, cov.var, studyplot = NULL, buffer = 0,
Foxall = FALSE, oneplot = FALSE)

Arguments

feature Feature (of point type; SpatialPointsDataFrame class) representing the spatial
point pattern of interest.

cov.var Feature (of either point or line type; SpatialPointsDataFrame or SpatialLines-
DataFrame class) the distance to which represents the spatial covariate.

studyplot Feature (of polygon type; SpatialPolygonsDataFrame) representing the study
area; if not provided, the study area is internally worked out as the bounding
polygon based on the union the convex hulls of the feature and of the cov.var
data.

buffer Add a buffer to the convex hull of the study area (0 by default); the unit depends
upon the units of the input data.

Foxall Set to TRUE, will plot the Foxall’s J function.

oneplot Set to TRUE (default), will plot the charts into a single visualization.

Details

The function fits a inhomogeneous Poisson point process (Alternative Model-H1) with the distance
to the second feature entered by the user (’cov.var’ parameter) used as spatial covariate. In other
words, the fitted alternative model is a Poisson point process with intensity of the point pattern as
a loglinear function of the distance to the second pattern entered by the user (see Baddeley et al.,
"Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016, 309-313). The
distance to the second feature is internally calculated via the spatstat’s ’distfun()’ function.

Also, the function fits a homogeneous Poisson point model (Null Model-H0, equivalent to Com-
plete Spatial Randomness: Baddeley et al., "Spatial Point Patterns. Methodology and Applications
with R", CRC Press 2016, 305-306), that is used as comparison for the inhomogeneous point pro-
cess model in a Likelihood Ratio test (Baddeley et al., "Spatial Point Patterns. Methodology and
Applications with R", CRC Press 2016, 334-335). A significant result, i.e. a low p-value, suggests
rejecting the Null Hypothesis of CSR in favour of the Alternative Hypothesis of a Poisson point
process affected by a covariate effect (i.e., inhomogeneous intensity due to the influence of the
covariate) (Baddeley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC
Press 2016, 305).

The function returns a 4 plots, which can be arranged in just one visualization setting the parameter
oneplot to TRUE:

-plot of the study area along with the point pattern of interest and the second feature entered by the
user (whose distance is the spatial covariate);

-plot of the fitted intensity against the spatial covariate (Baddeley et al., "Spatial Point Patterns.
Methodology and Applications with R", CRC Press 2016, 308);
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-plot of the cumulative distribution of the covariate at the data points against the cumulative distri-
bution of the covariate at all the spatial location within the study area (rationale: Baddeley et al.,
"Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016, 184-185);

-plot of the ROC curve, which help assessing the strength of the dependence on the covariate (Bad-
deley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016,
187-188).

Setting the parameter Foxall to TRUE, the third plot will be replaced by the chart of the Foxall’s
J function, which is another "useful statistic" when the covariate is the distance to a spatial pattern
(Baddeley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016,
187, 282-284). Values of J are uqual to 1 when the two patterns are independent random patterns;
values <1 indicate that the input point pattern tends to be closer to the cov.var pattern than expected
for random points; values >1 indicate that the input point pattern avoid the cov.var pattern, i.e.
the point pattern is more likely than random points to lie far away from the cov.var pattern (see
Baddeley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016,
284).

Value

The function returns a list storing the following components

• $H0-model: info and relevant statistics regarding the Null Model

• $H1-model: info and relevant statistics regarding the Alternative Model

• $Model comparison (LRT) results of the Likelihood Ratio test

• $AIC-H0: AIC of the Null Model

• $AIC-H1: AIC of the Alternative Model

• $KS test: information regarding the cumulative distribution comparison via Kolmogorov-
Smirnov test

• $AUC: the AUC statistics

See Also

distRandSign , Aindex , pointsCovarModel , auc , cdf.test , effectfun , ppm , roc

Examples

#load a point dataset representing some locations
data(locations)

#load a point dataset representing some locations, the distance to which
#is used as spatial covariate
data(springs)

#perform the analysis, and store the results in the 'results' object
results <- distCovarModel(locations, springs)
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distDiffTest R function for testing the difference in distance of two point feature
datasets to a target feature dataset

Description

The function allows to perform a permutation-based t-test to test the difference in distance of two
point feature datasets to a target feature dataset. The latter can consist of either points, a lines, or
polygons.

Usage

distDiffTest(feat1, feat2, to.feat, feat1.lab = NULL, feat2.lab = NULL,
B = 999)

Arguments

feat1 Point pattern to be tested (of point type; ’SpatialPointsDataFrame’ class).
feat2 Second point pattern to be tested (of point type; ’SpatialPointsDataFrame’ class).
to.feat Target feature (point, polyline, or polygon type; ’SpatialPointsDataFrame’, ’Spa-

tialLinesDataFrame’, ’SpatialPolygonsDataFrame’ class).
feat1.lab Label to be used in the returned chart to indicate the ’feat1’ (default: smpl 1).
feat2.lab Label to be used in the returned chart to indicate the ’feat2’ (default: smpl 2).
B Desired number of permutations (set at 999 by default).

Details

Under the hood, the function relies on the perm.t.test() function out of this same package. First, for
each feature of both patterns, the distance to the nearest target feature is calculated; for each set of
features, the distances are eventually averaged; the observed difference between the two averages is
stored. Then, the individual observed nearest distances are randomly assigned to either group; the
re-assignment is performed B times (999 by default) and each time the difference between the two
averages is calculated. The distribution of these permuted average differenes represents the distri-
bution of that statistic under the Null Hypothesis of no difference in distance to the target feature.
One-sided and two-sided p-values are reported.

Value

The frequency histogram returned by the function displays the distribution of the permuted mean
difference between the two samples; a solid dot indicates the observed mean difference, while
an hollow dot represents the mean of the permuted differences. Two dashed blue lines indicates
the 0.025 and 0.975 percentile of the permuted distribution. A rug plot at the bottom histgram
indicates the individual permuted mean differences. At the bottom of the chart, some information
are displayed. In particular, the observed mean difference and the permuted p-values are reported.
In the last row, the result of the regular (parametric) t-test (both assuming and not assuming equal
variances) is reported to allow users to compare the outcome of these different versions of the test.
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See Also

perm.t.test

Examples

#test the difference in distance of two sets of points to the nearest geological fault
distDiffTest(feat1=springs, feat2=points, to.feat=faults, B=299)

distRandCum R function to test the significance of the spatial relationship between
two features in terms of the cumulative distribution of minimum dis-
tances

Description

The function allows to assess if there is a significant spatial association between a point pattern and
the features of another pattern. For instance, users may want to assess if the features of a point
pattern tend to lie close to some features represented by polylines.

Usage

distRandCum(from.feat, to.feat, studyplot = NULL, buffer = 0,
B = 200, type = "rand")

Arguments

from.feat Feature (of point type; SpatialPointsDataFrame class) whose spatial association
with the to-feature has to be assessed.

to.feat Feature (point, polyline, or polygon type; SpatialPointsDataFrame, SpatialLi-
nesDataFrame, SpatialPolygonsDataFrame class) in relation to which the spatial
association of the from-feature has to be assessed.

studyplot Feature (of polygon type; SpatialPolygonsDataFrame class) representing the
study area; if not provided, the study area is internally worked out as the bound-
ing polygon based on the union the convex hulls of the from- and of the to-
feature.

buffer Add a buffer to the convex hull of the study area (0 by default); the unit depends
upon the units of the input data.

B Number of randomizations to be used (200 by default).

type By default is set to "rand", which performs the randomization-based analysis;
if both the from.feature and the to.feature dataset are of point type, setting the
parameter to "perm" allows to opt for the permutation-based approach.
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Details

Given a from-feature (event for which we want to estimate the spatial association with the to-
feature) and a to-feature (event in relation to which we want to estimate the spatial association for
the from-feature), the assessment is performed by means of a randomized procedure:

-keeping fixed the location of the to-feature, random from-features are drawn B times (the number
of randomized from-features is equal to the number of observed from-features);
-for each draw, the minimum distance to the to-features is calculated; if the to-feature is made up of
polygons, the from-features falling within a polygon will have a distance of 0;
-a cumulative distribution of random minimum distances is thus obtained;
-the cumulative random minimum distances are used to work out an acceptance interval (with sig-
nificance level equal to 0.05; sensu Baddeley et al., "Spatial Point Patterns. Methodology and
Applications with R", CRC Press 2016, 208) that allows to assess the statistical significance of
the cumulative distribution of the observed minimum distances, and that is built using the above-
mentioned B realizations of a Complete Spatial Random process.

The from-feature must be a point feature, whilst the to-feature can be a point or a polyline or a
polygon feature.

The rationale of the procedure is that, if there indeed is a spatial association between the two fea-
tures, the from-feature should be closer to the to-feature than randomly generated from-features. If
the studyplot shapefile is not provided, the random locations are drawn within a bounding polygon
based on the union the convex hulls of the from- and of the to-feature.

If both the from-feature and the to-feature are of point type (SpatialPointsDataFrame class), the
user may opt for the randomized procedure described above (parameter ’type’ set to ’rand’), or for
a permutation-based procedure (parameter ’type’ set to ’perm’). Unlike the procedure described
above, whereby random points are drawn within the study area, the permutation-based routine
builds a cumulative distribution of minimum distances keeping the points location unchanged and
randomly assigning the points to either of the two patterns. The re-assignment is performed B times
(200 by default) and each time the minimum distance is calculated.

For an example of the use of the analysis, see for instance Carrero-Pazos, M. (2018). Density, inten-
sity and clustering patterns in the spatial distribution of Galician megaliths (NW Iberian Peninsula).
Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-018-0662-2, fig. 6.

Value

The function produces a cumulative distribution chart in which the distribution of the observed
minimum distances is represented by a black line, and acceptance interval is represented in grey.
The number of iteration used and the type of analysis (whether randomization-based or permutation-
based) are reported in the chart’s title.

See Also

distRandSign
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Examples

data(springs)

data(faults)

#perform the analysis using 50 iterations and
#the default randomization-based approach
distRandCum(from.feat=springs, to.feat=faults, B=50)

data("malta_polyg") # load a sample polygon

#perform the analysis; since both patterns are of point type but the 'type' parameter is left
#in its default value ('rand'), the randomization-based approach is used
distRandCum(springs, points, studyplot=malta_polyg, B=50)

#same as above, but using the permutation-based approach
distRandCum(springs, points, studyplot=malta_polyg, type="perm", B=50)

distRandSign R function to test for a significant spatial association between two fea-
tures (points-to-points, points-to-lines, points-to-polygons)

Description

The function allows to assess if there is a significant spatial association between a point pattern and
the features of another pattern. For instance, users may want to assess if some locations tend to lie
close to some features represented by polylines. By the same token, users may want to know if there
is a spatial association between the location of a given event and the location of another event. See
the example provided further below (in the examples section), where the question to address is if
there is a spatial association between springs and geological fault-lines; in other words: do springs
tend to be located near the geological faults?

Usage

distRandSign(from.feat, to.feat, studyplot = NULL, buffer = 0,
B = 199, oneplot = TRUE, export = FALSE)

Arguments

from.feat Feature (of point type; SpatialPointsDataFrame class) whose spatial association
with the to-feature has to be assessed.

to.feat Feature (point, polyline, or polygon type; SpatialPointsDataFrame, SpatialLi-
nesDataFrame, SpatialPolygonsDataFrame class) in relation to which the spatial
association of the from-feature has to be assessed.
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studyplot Feature (of polygon type; SpatialPolygonsDataFrame class) representing the
study area; if not provided, the study area is internally worked out as the bound-
ing polygon based on the union the convex hulls of the from- and of the to-
feature.

buffer Add a buffer to the convex hull of the study area (0 by default); the unit depends
upon the units of the input data.

B Number of randomizations to be used (199 by default).

oneplot TRUE (default) or FALSE if the user wants or does not want the plots displayed
in a single window.

export FALSE (default) or TRUE is the user wants to export the input dataset as a
shapefile (see description for further info).

Details

Given a from-feature (event for which we want to estimate the spatial association with the to-
feature) and a to-feature (event in relation to which we want to estimate the spatial association for
the from-feature), the assessment is performed by means of a randomized procedure:

-keeping fixed the location of the to-feature, random from-features are drawn B times (the number
of randomized from-features is equal to the number of observed from-features);
-for each draw, the average minimum distance to the to-features is calculated; if the to-feature is
made up of polygons, the from-features falling within a polygon will have a distance of 0;
-a distribution of average minimum distances is thus obtained;
-p values are computed following Baddeley et al., "Spatial Point Patterns. Methodology and Appli-
cations with R", CRC Press 2016, p. 387.

The from-feature must be a point feature, whilst the to-feature can be a point or a polyline or a
polygon feature.

The rationale of the procedure is that, if there indeed is a spatial association between the two
features, the from-feature should be on average closer to the to-feature than randomly generated
from-features. If the studyplot shapefile is not provided, the random locations are drawn within a
bounding polygon based on the union the convex hulls of the from- and of the to-feature.

If both the from-feature and the to-feature are of point type (SpatialPointsDataFrame class), the
function also test the spatial association by means of a permuted procedures. Unlike the procedure
described above, whereby random points are drawn within the study area, the permutation-based
routine builds a distribution of averages minimum distances keeping the points location unchanged
and randomly assigning the points to either of the two patterns. The re-assignment is performed B
times (199 by default) and each time the average minimum distance is calculated.

The function produces a histogram showing: the distribution of randomized average minimum dis-
tances; a black dot indicating the observed average minimum distance; a hollow dot representing the
average of the randomized minimum distances; two blue reference lines correspond to the 0.025th
and to the 0.975th quantile of the randomized distribution. P-values are reported at the bottom of
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the plot.

In case both the from- and the to- feature are of point type, another histogram is produced, which
provides the same information of the preceding histogram, but derived from the permutation-based
routine that has been detailed above.

The function also produces a map showing the study area, the from- and the to-features. The
from-features are given a colour according to whether or not their minimum distance to the nearest
to-feature is smaller (GREEN) or larger (RED) than the 0.025 and 0.975 (respectively) of the dis-
tribution of the randomized average distances. This information is also reported in a new field that
is appended to the input dataset. Optionally, the input dataset (with 2 new columns added) can be
exported using the ’export’parameter. The new columns store: the features’ minimum distance to
the nearest to-feature; a string indicating if the corresponding feature is closer or more distant than
expected to the nearest to-feature.

Value

The function returns a list storing the following components

• $from.feat.min.dist: distance of each entity of the from-feature to the nearest entity of the
to-feature

• $avrg.obs.min.dist: observed average minimum distance

• $avrg.rnd.min.dist: average randomized minimum distance

• $avrg.perm.min.dist: average permuted minimum distance (returned only when both the from-
and to- features are of point type)

• $p.value closer than expected-rnd-

• $p.value closer than expected-perm- (returned only when both the from- and to- features are
of point type)

• $p.value more distant than expected-rnd-

• $p.value more distant than expected-perm- (returned only when both the from- and to- features
are of point type)

• $p.value different from random-rnd-:

• $p.value different from random-perm- (returned only when both the from- and to- features are
of point type)

• $dataset: from.feature dataset with 2 fields added: one (’obs.min.dist’) storing the from-
features’s minimum distance to the nearest to-feature, one (’signif’) storing the significance of
the distance (see description)

See Also

distRandCum , distCovarModel , Aindex
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Examples

data(springs)
data(faults)

#calculate the significance of the spatial association between springs and geological
#fault-lines; plots displayed in a single panel
result <- distRandSign(from.feat=springs, to.feat=faults, oneplot=TRUE, B=49)

data(points)
data(polygons)

#calculate the significance of the spatial association between points and polygons
result <- distRandSign(from.feat=points, to.feat=polygons, oneplot=FALSE, B=49)

events Dataset: location of fictional events

Description

A SpatialPointsDataFrame representing fictional events.

Usage

data(events)

Format

SpatialPointsDataFrame

faults Dataset: geological fault-lines in Malta

Description

A SpatialLinesDataFrame representing the geological fault-lines in Malta.

Usage

data(faults)

Format

SpatialLinesDataFrame
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featClust R function for features clustering on the basis of distances/area

Description

The function provides the facility to cluster the features of the input dataset on the basis of ei-
ther their (projected) coordinates (for points; SpatialPointsDataFrame class) or of their area (for
polygons; SpatialPolygonsDataFrame class). If a target feature dataset (to.feat) is provided, the
clustering will be based on the distance of the x feature to the nearest to.feature. When a to.feature
is specified, the x feature (i.e., the feature that the user wants to cluster) can be either a point
(SpatialPointsDataFrame class), or a polyline (SpatialLinesDataFrame class) , or a polygon (Spa-
tialPolygonsDataFrame class) feature. Notice that if all the x features overlap with all the to.feature,
all the minimum distances will be 0, and the function will trow an error.

Usage

featClust(x, to.feat = NULL, aggl.meth = "ward.D2", part = NULL,
showID = TRUE, oneplot = TRUE, cex.dndr.lab = 0.85,
cex.sil.lab = 0.75, cex.feat.lab = 0.65, col.feat.lab = "black",
export = FALSE)

Arguments

x Dataset whose feature are to be clustered; either points (SpatialPointsDataFrame
class) or polygons (SpatialPolygonsDataFrame class); if the to.feat is specified,
x can also be a polylines feature (SpatialLinesDataFrame class).

to.feat Dataset (NULL by default) representing the feature the distance toward which
is used as basis for clustering x; either points (SpatialPointsDataFrame class),
polygons (SpatialPolygonsDataFrame class), or polylines (SpatialLinesDataFrame).

aggl.meth Agglomeration method ("ward.D2" by default).
part Desired number of clusters; if NULL (default), an optimal partition is calculated

(see Details).
showID TRUE (default) or FALSE if the used wants or does not want the ID of the

clustered features to be displayed in the plot where the features are colored by
cluster membership.

oneplot TRUE (default) or FALSE if the user wants or does not want the plots to be
visualized in a single window.

cex.dndr.lab Set the size of the labels used in the dendrogram.
cex.sil.lab Set the size of the labels used in the silhouette plot.
cex.feat.lab Set the size of the labels used (if ’showID’ is set to TRUE) to show the clustered

features’ IDs.
col.feat.lab Set the color of the clustered features’ IDs (’black’ by default).
export TRUE or FALSE (default) if the user wants or does not want the clustered input

dataset to be exported; if TRUE, the input dataset with a new variable indicating
the cluster membership will be exported as a shapefile.
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Details

If the to.feature is not provided, the function internally calculates a distance matrix (based on the
Euclidean Distance) on the basis of the points’ coordinates or polygons’ area. If the to.feature is pro-
vided, the distance matrix will be based on the distance of the x feature to the nearest to.feature. A
dendrogram is produced which depicts the hierarchical clustering based (by default) on the Ward’s
agglomeration method; rectangles identify the selected cluster partition. Besides the dendrogram, a
silhouette plot is produced, which allows to measure how ’good’ is the selected cluster solution.

As for the latter, if the parameter ’part’ is left empty (default), an optimal cluster solution is ob-
tained. The optimal partition is selected via an iterative procedure which locates at which cluster
solution the highest average silhouette width is achieved. If a user-defined partition is needed, the
user can input the desired number of clusters using the parameter ’part’. In either case, an additional
plot is returned besides the cluster dendrogram and the silhouette plot; it displays a scatterplot in
which the cluster solution (x-axis) is plotted against the average silhouette width (y-axis). A black
dot represent the partition selected either by the iterative procedure or by the user.

Notice that in the silhouette plot, the labels on the left-hand side of the chart show the point ID
number and the cluster to which each point is closer.

Also, the function returns a plot showing the input dataset, with features colored by cluster mem-
bership. Two new variables are added to the shapefile’s dataframe, storing a point ID number and
the corresponding cluster membership.

The silhouette plot is obtained from the ’silhouette()’ function out from the ’cluster’ package
(https://cran.r-project.org/web/packages/cluster/index.html).
For a detailed description of the silhouette plot, its rationale, and its interpretation, see:
Rousseeuw P J. 1987. "Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis", Journal of Computational and Applied Mathematics 20, 53-65 (http://www.sciencedirect.com/science/article/pii/0377042787901257)

For the hierarchical clustering of features, see: Conolly, J., & Lake, M. (2006). Geographic Infor-
mation Systems in Archaeology. Cambridge: Cambridge University Press, 168-173.

Value

The function returns a list storing the following components

• $dist.matrix: distance matrix

• $avr.silh.width.by.n.of.clusters: average silhouette width by number of clusters

• $partition.silh.data: silhouette data for the selected partition

• $coord.or.area.or.min.dist.by.clust: coordinates, area, or distance to the nearest to.feat coupled
with cluster membership

• $dist.stats.by.cluster: by-cluster summary statistics of the x feature distance to the nearest
to.feature

• $dataset: the input dataset with two variables added ($feat_ID and $clust, the latter storing the
cluster membership)
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Examples

data(springs)

#perform the analysis and automatically select an optimal partition
res <- featClust(springs)

#as above, but selecting a 3-cluster partition
res <- featClust(springs, part=3)

#cluster springs on the basis of their distance to the nearest geological fault
res <- featClust(springs, faults)

#cluster polygonal areas on the basis of their distance to the nearest spring
res <- featClust(polygons, springs)

#cluster points on the basis of their distance to the nearest polygon
res <- featClust(points, polygons)

impRst R function to easily import a raster dataset into R

Description

The function is a wrapper for the ’raster()’ function out of the ’raster’ package. It provides the
facility to import a raster dataset (’RasterLayer’ class) by means of a window that allows the user
to navigate through the computer’s folders and to select the appropriate file.

Usage

impRst()

Examples

## Not run:
#a window will pop up allowing the user to select the raster dataset
my.raster <- impRst()

## End(Not run)
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impShp R function to easily import a vectorial dataset (shapefile) into R

Description

The function is a wrapper for the ’shapefile()’ function out of the ’raster’ package. It provides the
facility to import a vectorial dataset (of shapefile type) by means of a window that allows the user
to navigate through the computer’s folders and to select the appropriate file.

Usage

impShp()

Examples

## Not run:
#a window will pop up allowing the user to select the shapefile
my.shapefile <- impShp()

## End(Not run)

kwPlot R function for visually displaying Kruskal-Wallis test’s results

Description

The function allows allows to perform Kruskal-Wallis test, and to display the test’s results in a plot
along with boxplots.

Usage

kwPlot(x, y, strip = FALSE, notch = FALSE, omm = FALSE,
outl = TRUE, posthoc = FALSE, adjust = "bonferroni")

Arguments

x Object storing the values to be analysed.

y Object storing a grouping variable with 3 or more levels.

strip Logical value which takes FALSE (by default) or TRUE if the user wants jittered
points to represent individual values.

notch Logical value which takes FALSE (by default) or TRUE if user does not or
do want to have notched boxplots in the final display, respectively; it is worth
noting that overlapping of notches indicates a not significant difference at about
95 percent confidence.
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omm It stands for overall mean and median; takes FALSE (by default) or TRUE if
user wants the mean and median of the overall sample plotted in the chart (as a
dashed RED line and dotted BLUE line respectively).

outl Logical value which takes FALSE or TRUE (by default) if users want the box-
plots to display outlying values.

posthoc Logical value which takes FALSE (default) or TRUE if user does not or does
want to perform a follow-up test (namely, the Dunn’s test) in order to locate
which group significantly differs from the others.

adjust Sets the desidered method for p-values adjustment in the context of the Dunn’s
test; the list of methods is the following: Bonferroni ("bonferroni"; default);
Holm ("holm"), Hochberg ("hochberg"), Hommel ("hommel"), Benjamini &
Hochberg ("BH" or its alias "fdr"), Benjamini & Yekutieli ("BY"), none ("none").
For more info, see the ’p.adjust’ help documentation in R (?p.adjust).

Details

The boxplots display the distribution of the values of the two samples, and jittered points represent
the individual observations. At the bottom of the chart, the test statistics (H) is reported, along with
the degrees of freedom and the associated p value.
Setting the parameter ’posthoc’ to TRUE, the Dunn’s test is performed (with Bonferroni adjustment
by default): a dot chart is returned, as well as a list of p-values (2-sided). In the dot chart, a RED
line indicates the 0.05 threshold. The groups compared on a pairwise basis are indicated on the
left-hand side of the chart.

See Also

p.adjust

Examples

#create a toy dataset
mydata <- data.frame(values=c(rnorm(30, 100,10),rnorm(30, 80,10),rnorm(30, 98,10)),
group = as.factor(gl(3, 30, labels = c("A", "B", "C"))))

# performs the test, displays the test's result, including jittered points and notches.
# It also performs the Dunn's posthoc test using Bonferroni p-value correction.
kwPlot(x=mydata$values, y=mydata$group, strip=TRUE, notch=TRUE, posthoc=TRUE)

locations Dataset: location of fictional locations

Description

A SpatialPointsDataFrame representing fictional locations.
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Usage

data(locations)

Format

SpatialPointsDataFrame

logregr R function easy binary Logistic Regression and model diagnostics

Description

The function allows to make it easy to perform binary Logistic Regression, and to graphically dis-
play the estimated coefficients and odds ratios. It also allows to visually check model’s diagnostics
such as outliers, leverage, and Cook’s distance.

Usage

logregr(data, oneplot = FALSE)

Arguments

data Dataframe containing the dataset (Dependent Variable listed in the first column
to the left).

oneplot Logical value which takes TRUE or FALSE (default) if the user does or doesn’t
want to group the first set of 8 charts in one panel.

Value

The function may take a while (just matter of few seconds) to completed all the operations, and will
eventually return the following charts:

(1) Estimated coefficients, along with each coefficient’s confidence interval; a reference line is set
to 0. Each bar is given a color according to the associated p-value, and the key to the color scale is
reported in the chart’s legend.

(2) Odds ratios and their confidence intervals.

(3) A chart that is helpful in visually gauging the discriminatory power of the model: the predicted
probability (x axis) are plotted against the dependent variable (y axis). If the model proves to have
a high discriminatory power, the two stripes of points will tend to be well separated, i.e. the posi-
tive outcome of the dependent variable (points with color corresponding to 1) would tend to cluster
around high values of the predicted probability, while the opposite will hold true for the negative
outcome of the dependent variable (points with color corresponding to 0). In this case, the AUC
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(which is reported at the bottom of the chart) points to a low discriminatory power.

(4) Model’s standardized (Pearson’s) residuals against the predicted probability; the size of the
points is proportional to the Cook’s distance, and problematic points are flagged by a label report-
ing their observation number if the following two conditions happen: residual value larger than 3
(in terms of absolute value) AND Cook’s distance larger than 1. Recall that an observation is an
outlier if it has a response value that is very different from the predicted value based on the model.
But, being an outlier doesn’t automatically imply that that observation has a negative effect on the
model; for this reason, it is good to also check for the Cook’s distance, which quantifies how influ-
ential is an observation on the model’s estimates. Cook’s distance should not be larger than 1.

(5) Predicted probability plotted against the leverage value; dots represent observations, and their
size is proportional to their leverage value, and their color is coded according to whether or not the
leverage is above (lever. not ok) or below (lever. ok) the critical threshold. The latter is represented
by a grey reference line, and is also reported at the bottom of the chart itself. An observation has
high leverage if it has a particularly unusual combination of predictor values. Observations with
high leverage are flagged with their observation number, making it easy to spot them within the
dataset. Remember that values with high leverage and/or with high residual may be potential influ-
encial points and may potentially negatively impact the regression. As for the leverage threshold,
it is set at 3*(k+1)/N (following Pituch-Stevens, Applied Multivariate Statistics for the Social Sci-
ence. Analyses with SAS and IBM’s SPSS, Routledge: New York 2016), where k is the number of
predictors and N is the sample size.

(6) Predicted probability against the Cook’s distance.

(7) Standardized (Pearson’s) residuals against the leverage; points representing observations with
positive or negative outcome of the dependent variable are given different colors. Further, points’
size is proportional to the Cook’s distance. Leverage threshold is indicated by a grey reference line,
and the threshold value is also reported at the bottom of the chart. Observations are flagged with
their observation number if their residual is larger than 3 (in terms of absolute value) OR if leverage
is larger than the critical threshold OR if Cook’s distance is larger than 1. This allows to easily
check which observation turns out to be an outlier or a high-leverage data point or an influential
point, or a combination of the three.

(8) Chart that is almost the same as (7) except for the way in which observations are flagged. In
fact, they are flagged if the residual is larger than 3 (again, in terms of absolute value) OR if the
leverage is higher than the critical threshold AND if a Cook’s distance larger than 1 plainly declares
them as having a high influence on the model’s estimates. Since an observation may be either an
outlier or a high-leverage data point, or both, and yet not being influential, the chart allows to spot
observations that have an undue influence on our model, regardless of them being either outliers or
high-leverage data points, or both.

(9) Observation numbers are plotted against the standardized (Pearson’s) residuals, the leverage,
and the Cook’s distance. Points are labelled according to the rationales explained in the preceding
points. By the way, the rationale is also explained at the bottom of each plots.
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The function also returns a list storing two components: one is named ’formula’ and stores the
formula used for the logistic regression; the other contains the model’s results.

See Also

modelvalid , aucadj

log_regr_data Dataset: admission to graduate school

Description

A dataset containing information about the admission to graduate school of 400 individuals; the
dataset features a binary dependent variable and 3 predictors. Dataset is after: https://stats.idre.ucla.edu/r/dae/logit-
regression/

Usage

data(log_regr_data)

Format

A data frame with 400 rows and 4 variables

Details

• admit. Binary dependent variable (admission yes=1, admission no=0)

• gre. Graduate Record Exam score; predictor (continuous)

• gpa. Grade Point Average; predictor (continuous)

• rank. Prestige of the undergraduate school (ordinal)

malta_dtm_40 Dataset: Malta DTM (40m cell size)

Description

A RasterLayer representing a Digital Terrain Model for Malta (40m resolution).

Usage

data(malta_dtm_40)

Format

RasterLayer
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malta_polyg Dataset: Malta polygon

Description

A SpatialPolygonsDataFrame representing Malta.

Usage

data(malta_polyg)

Format

SpatialPolygonsDataFrame

Massachusetts Dataset: Massachusetts state limit

Description

A SpatialPolygonsDataFrame representing the limits of Massachusetts.
After https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html.

Usage

data(Massachusetts)

Format

SpatialPolygonsDataFrame

modelvalid R function for binary Logistic Regression internal validation

Description

The function allows to perform internal validation of a binary Logistic Regression model imple-
menting most of the procedure described in:
Arboretti Giancristofaro R, Salmaso L. "Model performance analysis and model validation in lo-
gistic regression". Statistica 2003(63): 375–396.

https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html
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Usage

modelvalid(data, fit, B = 200, g = 10, oneplot = TRUE,
excludeInterc = FALSE)

Arguments

data Dataframe containing the dataset (Dependent Variable must be stored in the first
column to the left).

fit Object returned from glm() function.

B Desired number of iterations (200 by default).

g Number of groups to be used for the Hosmer-Lemeshow test (10 by default).

oneplot TRUE (default) is the user wants the charts returned in a single visualization.

excludeInterc If set to TRUE, the chart showing the boxplots of the parameters distribution
across the selected iteration will have y-axis limits corresponding to the min
and max of the parameters value; this allows better displaying the boxplots of
the model parameters when they end up showing up too much squeezed due to
comparatively higher/lower values of the intercept. FALSE is default.

Details

The procedure consists of the following steps:

(1) the whole dataset is split into two random parts, a fitting (75 percent) and a validation (25 per-
cent) portion;

(2) the model is fitted on the fitting portion (i.e., its coefficients are computed considering only the
observations in that portion) and its performance is evaluated on both the fitting and the validation
portion, using AUC as performance measure;

(3) the model’s estimated coefficients, p-values, and the p-value of the Hosmer and Lemeshow test
are stored;

(4) steps 1-3 are repeated B times, eventually getting a fitting and validation distribution of the
AUC values and of the HL test p-values, as well as a fitting distribution of the coefficients and of
the associated p-values. The AUC fitting distribution provides an estimate of the performance of
the model in the population of all the theoretical fitting samples; the AUC validation distribution
represents an estimate of the model’s performance on new and independent data.

Value

The function returns:

-a chart with boxplots representing the fitting distribution of the estimated model’s coefficients;
coefficients’ labels are flagged with an asterisk when the proportion of p-values smaller than 0.05
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across the selected iterations is at least 95 percent;

-a chart with boxplots representing the fitting and the validation distribution of the AUC value across
the selected iterations. for an example of the interpretation of the chart, see the aforementioned ar-
ticle, especially page 390-91;

-a chart of the levels of the dependent variable plotted against the predicted probabilities (if the
model has a high discriminatory power, the two stripes of points will tend to be well separated,
i.e. the positive outcome of the dependent variable will tend to cluster around high values of the
predicted probability, while the opposite will hold true for the negative outcome of the dependent
variable);

-a list containing:

• $overall.model.significance: statistics related to the overall model p-value and to its distribu-
tion across the selected iterations

• $parameters.stability: statistics related to the stability of the estimated coefficients across the
selected iterations

• $p.values.stability: statistics related to the stability of the estimated p-values across the se-
lected iterations

• $AUCstatistics: statistics about the fitting and validation AUC distribution
• $Hosmer-Lemeshow statistics: statistics about the fitting and validation distribution of the HL

test p-values

As for the abovementioned statistics:

-full: statistic estimated on the full dataset;

-median: median of the statistic across the selected iterations;

-QRNG: interquartile range across the selected iterations;

-QRNGoverMedian: ratio between the QRNG and the median, expressed as percentage;
-min: minimum of the statistic across the selected iterations;

-max: maximum of the statistic across the selected iterations;

-percent_smaller_0.05: (only for $overall.model.significance, $p.values.stability, and $Hosmer-
Lemeshow statistics): proportion of times in which the p-values are smaller than 0.05; please notice
that for the overall model significance and for the p-values stability it is desirable that the percent-
age is at least 95percent, whereas for the HL test p-values it is indeed desirable that the proportion
is not larger than 5percent (in line with the interpetation of the test p-value which has to be NOT
significant in order to hint at a good fit);

-significant (only for $p.values.stability): asterisk indicating that the p-values of the corresponding
coefficient resulted smaller than 0.05 in at least 95percent of the iterations.
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See Also

logregr , aucadj

Examples

# load the sample dataset
data(log_regr_data)

# fit a logistic regression model, storing the results into an object called 'model'
model <- glm(admit ~ gre + gpa + rank, data = log_regr_data, family = "binomial")

# run the function, using 100 iterations, and store the result in the 'res' object
res <- modelvalid(data=log_regr_data, fit=model, B=100)

mwPlot R function for visually displaying Mann-Whitney test’s results

Description

The function allows to perform Mann-Whitney test, and to display the test’s results in a plot along
with two boxplots. For information about the test, and on what it is actually testing, see for instance
the interesting article by R M Conroy, "What hypotheses do "nonparametric" two-group tests actu-
ally test?", in The Stata Journal 12 (2012): 1-9.

Usage

mwPlot(x, y, xlabl = "x", ylabl = "y", strip = FALSE,
notch = FALSE, omm = FALSE, outl = TRUE, HL = FALSE)

Arguments

x Object storing the values of the first group being compared.

y Object storing either the values of the second group being compared or a group-
ing variable with 2 levels.

xlabl If y is not a grouping variable, user may want to specify here the name of the x
group that will show up in the returned boxplots (default is "x").

ylabl If y is not a grouping variable, user may want to specify here the name of the y
group that will show up in the returned boxplots (default is "y").

strip Logical value which takes FALSE (by default) or TRUE if the user wants jittered
points to represent individual values.

notch Logical value which takes FALSE (by default) or TRUE if user does not or
do want to have notched boxplots in the final display, respectively; it is worth
noting that overlapping of notches indicates a not significant difference at about
95 percent confidence.
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omm It stands for overall mean and median; takes FALSE (by default) or TRUE if
user wants the mean and median of the overall sample plotted in the chart (as a
dashed RED line and dotted BLUE line respectively).

outl Logical value which takes FALSE or TRUE (by default) if users want the box-
plots to display outlying values.

HL Logical value that takes TRUE or FALSE (default) if the user wants to display
the distribution of the pairwise differences between the values of the two sam-
ples being compared; the median of that distribution is the Hodges-Lehmann
estimator.

Details

The returned boxplots display the distribution of the values of the two samples, and jittered points
represent the individual observations.

At the bottom of the chart, a subtitle arranged on three lines reports relevant statistics:
-test statistic (namely, U) and the associated z and p value;
-Probability of Superiority value (which can be interpreted as an effect-size measure, as discussed
in: https://nickredfern.wordpress.com/2011/05/12/the-mann-whitney-u-test/);
-another measure of effect size, namely r (see https://stats.stackexchange.com/questions/124501/mann-
whitney-u-test-confidence-interval-for-effect-size), whose thresholds are indicated in the last line of
the plot’s subtitle.

The function may also return a density plot (coupled with a rug plot at the bottom of the same chart)
that displays the distribution of the pairwise differences between the values of the two samples
being compared. The median of this distribution (which is represented by a blue reference line in
the same chart) corresponds to the Hodges-Lehmann estimator.

Examples

#create a toy dataset
mydata <- data.frame(values=c(rnorm(30, 100,10),rnorm(30, 80,10)),
group = as.factor(gl(2, 30, labels = c("A", "B"))))

# performs the test, displays the test's result, including jittered points, notches,
#overall median and mean, and the Hodges-Lehmann estimator
mwPlot(x=mydata$values, y=mydata$group, strip=TRUE, omm=TRUE, notch=TRUE, HL=TRUE)

NNa R function for Nearest Neighbor analysis of point patterns

Description

The function allows to perform the Nearest Neighbor analysis of point patterns to formally test for
the presence of a clustered, dispersed, or random spatial arrangement (second-order effect). It also
allows to control for a first-order effect (i.e., influence of an underlaying numerical covariate) while
performing the analysis. The covariate must be of RasterLayer class. Significance is assessed via a
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randomized approach.

Usage

NNa(feature, studyplot = NULL, buffer = 0, B = 199, cov.var = NULL,
addmap = TRUE)

Arguments

feature Feature dataset (of point type; SpatialPointsDataFrame class).

studyplot Shapefile (of polygon type; SpatialPolygonsDataFrame class) representing the
study area; if not provided, the study area is internally worked out as the convex
hull enclosing the input feature dataset.

buffer Add a buffer to the studyplot (0 by default); the unit depends upon the units of
the input data.

B Number of randomizations to be used (199 by default).

cov.var Numeric covariate (of ’RasterLayer’ class).

addmap TRUE (default) or FALSE if the user wants or does not want a map of the study
area and of feature dataset to be also displayed.

Details

The function uses a randomized approach to test the significance of the Clark-Evans R statistic: the
observed R value is set against the distribution of R values computed across B iterations (199 by
default) in which a set of random points (with a sample size equal to the number of points of the
input feature) is drawn and the statistic recomputed.

The function produces a histogram of the randomized R values, with a black dot indicating the
observed value and a hollow dot representing the average of the randomized R values. P-values
(computed following Baddeley et al., "Spatial Point Patterns. Methodology and Applications with
R", CRC Press 2016, p. 387), are reported at the bottom of the same chart. Two reference lines
represent the two tails of the randomized distribution (left tail, indicating a significant clustered
pattern; right tail, indicating a significant dispersed pattern).

Value

The function returns a list storing the following components

• $obs.aver.NN.dist: average of the observed NN distances

• $obs.R: observed R value

• $aver.rand.R: average of the randomized Rs

• $p.value clustered: p-value for a clustered pattern

• $p.value.dispersed: p-value for a dispersed pattern

• $p.value.diff.from.random: p-value for a pattern different from random
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See Also

refNNa

Examples

data(springs)

#perform the analysis with B set to 99; the result points to a significant clustering
res <- NNa(springs, B=99)

data(Starbucks)
data(popdensity)

#perform the analysis, while controlling for the effect of the population density covariate
res <- NNa(Starbucks, cov.var=popdensity, B=99)

outlier R function for univariate outliers detection

Description

The function allows to perform univariate outliers detection using three different methods. These
methods are those described in:
Wilcox R R, "Fundamentals of Modern Statistical Methods: Substantially Improving Power and
Accuracy", Springer 2010 (2nd edition), pages 31-35.

Usage

outlier(x, method = "mean", addthres = TRUE)

Arguments

x Vector storing the data.

method Outliers identification method, either "mean" (default), "median", or "boxplot".

addthres Takes FALSE or TRUE (default) if user does not want or does want some thresh-
old lines be added to the returned chart.

Details

Two of the three methods are robust, and are therefore less prone to the masking effect.
(1) With the mean-based method, an observation is considered outlier if the absolute difference
between that observation and the sample mean is more than 2 Standard Deviations away (in either
direction) from the mean. In the plot returned by the function, the central reference line is indicating
the mean value, while the other two are set at mean− 2 ∗ SDandmean+ 2 ∗ SD.
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(2) The median-based method considers an observation as being outlier if the absolute difference
between the observation and the sample median is larger than the Median Absolute Deviation di-
vided by 0.6745. In this case, the central reference line is set at the median, while the other two are
set at median− 2 ∗MAD/0.6745 and median+ 2 ∗MAD/0.6745.

(3) The boxplot-based method considers an observation as being an outlier if it is either smaller
than the 1st Quartile minus 1.5 times the InterQuartile Range, or larger than the 3rd Quartile minus
1.5 times the InterQuartile Range. In the plot, the central reference line is set at the median, while
the other two are set at 1Q− 1.5 ∗ IQR and 3Q+ 1.5 ∗ IQR.

Value

The function also returns a list containing information about the chosen method, the mid-point,
lower and upper boundaries where non-outlying observations are expected to fall, total number of
outlying observations, and a dataframe listing the observations and indicating which is considered
outlier.
In the charts, the outlying observations are flagged with their ID number.

Examples

# create a toy dataset
mydata <- c(2,3,4,5,6,7,8,9,50,50)

# locate outlier(s) using the median-based method
outlier(mydata, method="median", addthres=TRUE)

perm.t.test R function for permutation-based t-test

Description

The function allows to perform a permutation-based t-test to compare two independent groups. The
test’s results are graphically displayed within the returned chart.

Usage

perm.t.test(data, format, sample1.lab = NULL, sample2.lab = NULL,
B = 999)

Arguments

data Dataframe containing the data.

format It takes "long" if the data are arranged in two columns, with the left-hand one
containing the values, and the righ-hand one containing a grouping variable; it
takes "short" if the values of the two groups being compared are stored in two
different adjacent columns.
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sample1.lab Label for the first sample being tested (default: smpl 1).

sample2.lab Label for the first sample being tested (default: smpl 2).

B Desired number of permutations (set at 999 by default).

Details

A permutation t-test proves useful when the assumption of ’regular’ t-test are not met. In particular,
when the two groups being compared show a very skewed distribution, and when the sample sizes
are very unbalanced.

"The permutation test is useful even if we plan to use the two-sample t test. Rather than relying on
Normal quantile plots of the two samples and the central limit theorem, we can directly check the
Normality of the sampling distribution by looking at the permutation distribution. Permutation tests
provide a “gold standard” for assessing two-sample t tests. If the two P-values differ considerably,
it usually indicates that the conditions for the two-sample t don’t hold for these data. Because per-
mutation tests give accurate P-values even when the sampling distribution is skewed, they are often
used when accuracy is very important." (Moore, McCabe, Craig, "Introduction to the Practice of
Statistics", New York: W. H. Freeman and Company, 2009).

Value

The frequency histogram returned by the function displays the distribution of the permuted mean
difference between the two samples; a solid dot indicates the observed mean difference, while
an hollow dot represents the mean of the permuted differences. Two dashed blue lines indicates
the 0.025 and 0.975 percentile of the permuted distribution. A rug plot at the bottom histgram
indicates the individual permuted mean differences. At the bottom of the chart, some information
are displayed. In particular, the observed mean difference and the permuted p-values are reported.
In the last row, the result of the regular (parametric) t-test (both assuming and not assuming equal
variances) is reported to allow users to compare the outcome of these different versions of the test.

Examples

#load the 'resample' package which stores a toy dataset
library(resample)

#load the 'Verizon' dataset
data("Verizon")

#performs the permutation-based t-test using 199 permutations
perm.t.test(Verizon, format="long", B=199)
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phases Dataset: Posterior Probabilities for the chronological relation of the
Starting and Ending boundaries of two Bayesian independent 14C
phases

Description

A dataset containing the posterior probability (as calculated by the OxCal program) for the relative
chronological relations for the starting and ending boundaries of two Bayesian-defined 14C phases.

Usage

data(phases)

Format

A data frame with 4 rows and 5 variables

plotJenks R function for plotting univariate classification using Jenks’ natural
break method

Description

The function allows to break a dataset down into a user-defined number of breaks and to nicely plot
the results, adding a number of other relevant information. Implementing the Jenks’ natural breaks
method, it allows to find the best arrangement of values into different classes.

Usage

plotJenks(data, n = 3, brks.cex = 0.7, top.margin = 10, dist = 5)

Arguments

data Vector storing the data.

n Number of classes in which the dataset must be broken down (3 by default).

brks.cex Adjusts the size of the labels used in the returned plot to display the classes’
break-points.

top.margin Adjusts the distance of the labels from the top margin of the returned chart.

dist Adjusts the distance of the labels from the dot used to display the data points.
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Details

The function produces a chart in which the values of the input variable are arranged on the x-axis
in ascending order, while the index of the individual observations is reported on the y-axis. Vertical
dotted red lines correspond to the optimal break-points which best divide the input variable into the
selected classes. The break-points (and their values) are reported in the upper part of the chart, onto
the corresponding break lines. Also, the chart’s subtitle reports the Goodness of Fit value relative
to the selected partition, and the partition which correspond to the maximum GoF value.

Value

The function returns a list containing the following components:

• $info: information about whether or not the method created non-unique breaks

• $classif: created classes and number of observations falling in each class

• $classif$brks: classes’ break-points

• $breaks$max.GoF: number of classes at which the maximum GoF is achieved

• $class.data: dataframe storing the values and the class in which each value actually falls into

Examples

#create a toy dataset
mydata <- rnorm(100, 30, 10)

# performs the analysis, using 6 as number of desired classes,
# and store the results in the 'res' object
res <- plotJenks(mydata, n=6)

points Dataset: location of fictional points

Description

A SpatialPointsDataFrame representing fictional locations.

Usage

data(points)

Format

SpatialPointsDataFrame
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pointsCovarCum R function to plot the cumulative distribution (and acceptance inter-
val) of the values of a spatial covariate measured at the locations of a
point pattern

Description

The function allows to test if there is a significant dependence of the input point pattern on a under-
lying spatial numeric covariate (first-order effect).
The function takes as input three datasets: a point patter (’SpatialPointsDataFrame’ class), a covari-
ate layer (of ’RasterLayer’ class), and (optionally) a polygon feature (’SpatialPolygonsDataFrame’
class) representing the study area and exactly matching the extent of the covariate layer. If the latter
is not provided, it is internally worked out from the covariate raster and may make the whole func-
tion take a while to complete.

Usage

pointsCovarCum(feature, cov.var, studyplot = NULL, B = 200,
cov.var.name = NULL, oneplot = TRUE)

Arguments

feature Feature (of point type; ’SpatialPointsDataFrame’ class) representing the spatial
point pattern of interest.

cov.var Numeric covariate (of ’RasterLayer’ class).

studyplot Feature (of polygon type; ’SpatialPolygonsDataFrame’ class) representing the
study area and exactly matching the extent of the covariate layer. If NULL, it is
worked out from the covariate layer (may make the whole function take a while
to complete).

B Number of randomized iterations to be used to calculate the acceptance interval
(200 by default).

cov.var.name Name of the input covariate to be used in the cumulative distribution chart as
label for the x axis (NULL by default).

oneplot Set to TRUE (default), will plot the charts into a single visualization.

Details

The function plots the cumulative distribution of the values of the covariate at the locations of the
input point pattern, and adds an acceptance interval (with significance level equal to 0.05; sensu
Baddeley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016,
208) that allows to assess the statistical significance of the observed cumulative distribution. The
interval is built by calculating the cumulative distribution of B realizations of a Complete Spatial
Random process, and keeping the middle 95percent of those B distributions. B is set by default to
200, but can be increased by the user. The number of random points drawn during each of the B



40 pointsCovarDistr

simulations is equal to the number of features of the input point pattern.

For an example of the cumulative distribution plot plus acceptance interval, see for instance Carrero-
Pazos, M. (2018). Density, intensity and clustering patterns in the spatial distribution of Galician
megaliths (NW Iberian Peninsula). Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-
018-0662-2, figs. 4 and 5.

Value

The function returns a 2 plots, which can be arranged in just one visualization setting the parameter
’oneplot’ to TRUE:

-a plot of the point pattern against the underlaying covariate;

-a plot of the cumulative distribution of the values of the covariate at the locations of the point patter
along with the above-mentioned acceptance interval.

See Also

pointsCovarModel

Examples

#load the point dataset representing the location of Starbucks shops
data(Starbucks)

#load the polygon dataset representing the study area
data(Massachusetts)

#load the raster representing the population density, to be used as covariate
data(popdensity)

results <- pointsCovarCum(feature=Starbucks, cov.var=popdensity, studyplot=Massachusetts,
cov.var.name="population density")

pointsCovarDistr R function to plot the frequency distribution of the average value of a
spatial covariate measured at randomized locations

Description

The function allows to test if there is a significant dependence of the input point pattern on a under-
lying numeric covariate (first-order effect).
The function takes as input three datasets: a point patter (’SpatialPointsDataFrame’ class), a covari-
ate layer (of ’RasterLayer’ class), and (optionally) a polygon feature (’SpatialPolygonsDataFrame’
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class) representing the study area and exactly matching the extent of the covariate layer. If the latter
is not provided, it is internally worked out from the covariate raster and may make the whole func-
tion take a while to complete.

Usage

pointsCovarDistr(feature, cov.var, studyplot = NULL, B = 199,
oneplot = TRUE)

Arguments

feature Feature (of point type; ’SpatialPointsDataFrame’ class) representing the spatial
point pattern of interest.

cov.var Numeric covariate (of ’RasterLayer’ class).

studyplot Feature (of polygon type; ’SpatialPolygonsDataFrame’ class) representing the
study area and exactly matching the extent of the covariate layer. If NULL, it is
worked out from the covariate layer (may make the whole function take a while
to complete).

B Number of randomized iterations to be used to calculate the acceptance interval
(199 by default).

oneplot Set to TRUE (default), will plot the charts into a single visualization.

Details

The function plots a frequency distribution histogram of the average value of a spatial covariate at
randomized locations (using B iterations). At each iteration, the number of randomized points is
equal to the number of points of the input point pattern. Two blue reference lines correspond to
the 0.025th and to the 0.975th quantile of the randomized distribution. A black dot represents the
observed mean value of the covariate measured at the locations of the input point pattern. P-values
are reported.

Value

The function returns a list storing the following components:

• $obs.cov.values: observed values of the covariate at the point pattern locations

• $obs.average: average of the observed values of the covariate

• $p.value.obs.smaller.than.exp: p.value for the observed average smaller than expected under
the Null Hypothesis

• $p.value.obs.larger.than.exp: p.value for the observed average larger than expected under the
Null Hypothesis

• $p.value.obs.diff.from.exp: p.value for the observed average different from what expected
under the Null Hypothesis
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See Also

pointsCovarModel, pointsCovarCum

Examples

#load the point dataset representing the location of springs
data(springs)

#load the polygon dataset representing the study area
data(malta_polyg)

#load the raster representing the terrain elevation, to be used as covariate
data(malta_dtm_40)

pointsCovarDistr(feature=springs, cov.var=malta_dtm_40, studyplot=malta_polyg)

pointsCovarModel R function to model (and test) the dependence of a point pattern on a
spatial numeric covariate

Description

The function is a wrapper for a number of functions out of the extremely useful ’spatstat’ package
(specifically, ppm(), cdf.test(), auc(), roc(), effectfun()). It allows to test if there is a significant
dependence of the input point pattern on a underlying spatial numeric covariate (first-order effect).
The function takes as input three datasets: a point patter (’SpatialPointsDataFrame’ class), a co-
variate layer (of ’RasterLayer’ class), and a polygon feature (’SpatialPolygonsDataFrame’ class)
representing the study area and exactly matching the extent of the covariate layer. If the latter is
not provided, it is internally worked out from the covariate raster and may make the whole function
take a while to complete.

Usage

pointsCovarModel(feature, cov.var, studyplot = NULL, oneplot = FALSE)

Arguments

feature Feature (of point type; SpatialPointsDataFrame class) representing the spatial
point pattern of interest.

cov.var Numeric covariate (of RasterLayer class).

studyplot Feature (of polygon type; SpatialPolygonsDataFrame) representing the study
area and exactly matching the extent of the covariate layer. If NULL, it is worked
out from the covariate layer (may make the whole function take a while to com-
plete).

oneplot Set to TRUE (default), will plot the charts into a single visualization.
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Details

The function fits a inhomogeneous Poisson point process (Alternative Model-H1) with intensity of
the point pattern as a loglinear function of the underlaying numerical covariate (see Baddeley et al.,
"Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016, 307-309). Also,
the function fits a homogeneous Poisson point model (Null Model-H0, equivalent to Complete Spa-
tial Randomness: Baddeley et al., "Spatial Point Patterns. Methodology and Applications with R",
CRC Press 2016, 305-306), that is used as comparison for the inhomogeneous point process model
in a Likelihood Ratio test (Baddeley et al., "Spatial Point Patterns. Methodology and Applications
with R", CRC Press 2016, 334-335). A significant result, i.e. a low p-value, suggests rejecting the
Null Hypothesis of CSR in favour of the Alternative Hypothesis of a Poisson point process affected
by a covariate effect (i.e., inhomogeneous intensity due to the influence of the covariate) (Baddeley
et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016, 305).

Value

The function returns a 4 plots, which can be arranged in just one visualization setting the parameter
’oneplot’ to TRUE:

-plot of the point pattern along with the underlaying covariate raster;

-plot of the fitted intensity against the spatial covariate (Baddeley et al., "Spatial Point Patterns.
Methodology and Applications with R", CRC Press 2016, 308);

-plot of the cumulative distribution of the covariate at the data points against the cumulative distri-
bution of the covariate at all the spatial location within the study area (rationale: Baddeley et al.,
"Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016, 184-185);

-plot of the ROC curve, which help assessing the strength of the dependence on the covariate (Bad-
deley et al., "Spatial Point Patterns. Methodology and Applications with R", CRC Press 2016,
187-188).

-a list containing:

• $H0-model: info and relevant statistics regarding the Null Model

• $H1-model: info and relevant statistics regarding the Alternative Model

• $Model comparison (LRT): results of the Likelihood Ratio test

• $AIC-H0: AIC of the Null Model

• $AIC-H1: AIC of the Alternative Model

• $KS test: information regarding the cumulative distribution comparison via Kolmogorov-
Smirnov test

• $AUC: AUC statistic

See Also

pointsCovarCum , distCovarModel , distRandSign
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Examples

#load the point dataset representing the location of Starbucks shops
data(Starbucks)

#load the polygon dataset representing the study area
data(Massachusetts)

#load the raster representing the population density, to be used as covariate
data(popdensity)

#note: a warning message reporting that 4 out of 699 points
# have values of the covariate undefined is expected
results <- pointsCovarModel(Starbucks, popdensity, Massachusetts)

pointsInPolygons R function to test points-in-polygons relationship

Description

The function allows to test:
-scenario a:
if there is a significant spatial association between a set of points and a set of polygons, in terms
of points falling within the polygons. In other words, it aims at testing whether a set of points falls
inside a set of polygons more often than would be expected by chance. The basic assumption is
that the polygons are completely contained within the study plot. If the shapefile (of polygon type)
representing the study plot is not provided, the calculations use the bounding polygon based on the
union the convex hulls of the point and of the polygon feature.
-scenario b:
if the distribution of points within a set of polygons totally covering the study area can be consid-
ered random, or if the observed points count for each polygon is larger or smaller than expected. P
values are also reported.

Usage

pointsInPolygons(point.feat, polyg.feat, studyplot = NULL, scenario,
buffer = 0, cex.text = 0.7)

Arguments

point.feat Feature (of point type; SpatialPointsDataFrame class) whose spatial association
with the polygons has to be assessed.

polyg.feat Feature (polygon type; SpatialPolygonsDataFrame) in relation to which the spa-
tial association of the points has to be assessed.
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studyplot Shapefile (of polygon type; SpatialPolygonsDataFrame) representing the study
area; if not provided, the study area is internally worked out as the bounding
polygon based on the union the convex hulls of the point and of the polygon
feature.

scenario Select one of the two types of analysis available ("a" or "b").

buffer Add a buffer to the convex hull of the study area (0 by default); the unit depends
upon the units of the input data.

cex.text Modify the size of the labels in the plot produced by the ’scenario b’ option.

Details

The computations relative to scenario "a" are based on the ’dbinom() and ’pbinom()’ functions.
The probability of observed count within polygons is dbinom(x, size = n.of.points, prob = p),
where ’x’ is the observed number of points within polygons, ’n.of.points’ is the total number of
points, and ’p’ is the probability that a single point will be found within a polygon, which is equal
to the ratio between the area of the polygons and the total area of the study plot. The probability that
x or fewer points will be found within the polygons is pbinom(x, size = n.of.points, prob = p).

The calculations relative to the scenario "b" are again based on the binomial distribution: the prob-
ability of the observed counts is dbinom(x, size = n.of.points, prob = p), where ’x’ is the
observed number of points within a given polygon, ’n.of.points’ is the total number of points, and
’p’ is equal to the size of each polygon relative to sum of the polygons’ area. The probability that x
or fewer points will be found within a given polygon is pbinom(x, size = n.of.points, prob = p).

Value

For scenario "a" the function produces a plot of the points and polygons (plus the study area), and
relevant information are reported at the bottom of the chart itself.

A list is also returned, containing what follows:
-$Polygons’ area;
-$Study area’s area;
-$Total # of points;
-$Observed # of points in polygons;
-$Expected # of points in polygons;
-$Exact probability of observed count within polygons;
-$Probability of <= observed count within polygons;
-$Probability of >= observed count within polygons.

For scenario "b" the function returns a plot showing the polygons plus the dots; in each polygon the
observed and expected counts are reported, and the p-value of the observed count is indicated.

A matrix is also returned, containing what follows:
-polygons’ area;
-percentage area (size of each polygon relative to sum of the polygons’ area; it corresponds to the
probability (p) fed into the binomial distribution function);
-observed number of points;
-expected number of points;
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-probability of observed counts;
-probability of observed counts <= than expected;
-probability of observed counts >= than expected.

See Also

pointsToPointsTess , dbinom , pbinom

Examples

data(points)
data(polygons)

result <- pointsInPolygons(points, polygons, scenario="a")

data(events)
data(thiessenpolyg)

result <- pointsInPolygons(events, thiessenpolyg, scenario="b")

pointsToPointsTess R function to test the relationship of a set of points with the Thiessen
tessellation built around points belonging to another feature dataset

Description

The function can be considered as a special case of the scenario "b" tested by the ’pointsInPoly-
gons()’ function provided by this same package, with the exception that in this case the polygons
are not entered by the user but are internally created by the function around the to-feature.

Usage

pointsToPointsTess(from.feat, to.feat, cex.text = 0.7)

Arguments

from.feat Feature (of point type; SpatialPointsDataFrame) whose spatial association with
to-feature has to be assessed.

to.feat Feature (of point type; SpatialPointsDataFrame) in relation to which the spatial
association of the from-feature has to be assessed.

cex.text Modify the size of the labels in the returned plot.
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Details

The question this function may allow to address is: do the points belonging to a feature dataset tend
to occur close to any of the points in another feature dataset than expected if the points would be
randomly scattered across the study area? To help addressing this question, the function creates
Thiessen polygons around the input ’to.feature’ and then runs the ’pointsInPolygons()’ function
using its ’scenario b’.
For further details, see the help documentation of the ’pointsInPolygons()’ function.

See Also

pointsInPolygons

Examples

data(locations)
data(events)

result <- pointsToPointsTess(events, locations)

data(deaths)
data(pumps)

result <- pointsToPointsTess(deaths, pumps)

polygons Dataset: location of fictional polygons

Description

A SpatialPolygonsDataFrame representing fictional polygons.

Usage

data(polygons)

Format

SpatialPolygonsDataFrame
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popdensity Dataset: Massachusetts population density

Description

A RasterLayer representing the population density in Massachusetts.
After https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html.

Usage

data(popdensity)

Format

RasterLayer

ppdPlot R function for plotting Posterior Probability Densities for Bayesian
modeled 14C dates/parameters

Description

The function allows plot Posterior Probability Densities with a nice outlook thanks to ’ggplot2’.
It takes as input a dataframe that must be organized as follows (it is rather easy to do that once the
data have been exported from OxCal):
-calendar dates (first column to the left);
-posterior probabilities (second column);
-grouping variables (third column), which could contain the names of the events of interest (e.g.,
phase 1 start, phase 1 end, phase 2 start, phase 2 end, etc).

Usage

ppdPlot(data, lower = min(data[, 1]), upper = max(data[, 1]), type)

Arguments

data Dataframe containing the data as returned by the OxCal program.

lower Lower limit of the calendar date axis.

upper Upper limit of the calendar date axis; if the lower and upper parameters are not
provided, the default values will be the earliest and latest calendar dates.

type Type of plot the user wishes to plot (a: curves outlined by a line; b: curves
plotted as solid areas; c: combination of a and b).

https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html
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Examples

#load a toy dataset
data(radioc_data)

#plot the Posterior Probability Densities for the phases' parameters
ppdPlot(radioc_data, type="a")

#plot the Posterior Probability Densities for the phases' parameters,
# setting different boundaries for the x-axis and using filled curves instead of simple outlines
ppdPlot(radioc_data, -1000, 100, type="b")

prob.phases.relat R function to calculate the Posterior Probability for different chrono-
logical relations between two Bayesian radiocarbon phases

Description

The function allows to calculate the posterior probability for different chronological relations be-
tween two phases defined via Bayesian radiocarbon modeling. For the results to make sense, the
phases have to be defined as independent if one wishes to assess what is the posterior probability
for different relative chronological relations between them.

Usage

prob.phases.relat(data = NULL, sAoldersB = NULL, sAoldereB = NULL,
eAoldersB = NULL, eAoldereB = NULL, sBoldersA = NULL,
sBoldereA = NULL, eBoldersA = NULL, eBoldereA = NULL,
sort = FALSE)

Arguments

data Matrix containing the posterior probability of the chronological relation between
the Starting and Ending boundaries of two independent phases, as returned by
the OxCal’s ’Order’ query (see Details).

sAoldersB Probability of startA being older than startB.

sAoldereB Probability of startA being older than endB.

eAoldersB Probability of endA being older than startB.

eAoldereB Probability of endA being older than endB.

sBoldersA Probability of startB being older than startA.

sBoldereA Probability of startB being older than endA.

eBoldersA Probability of endB being older than startA.

eBoldereA Probability of endB being older than endA.

sort logical which takes TRUE or FALSE (default) if the user does or does not want
the returned posterior probabilities sorted in descending order.
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Details

The rationale for this approach is made clear in an article by Buck et al 1992 (https://doi.org/10.1016/0305-
4403(92)90025-X), and it runs as follows: "if we do not make any assumption about the relationship
between the phases, can we test how likely they are to be in any given order"?

Data can be fed into the function in two ways:

-the function takes as input the table provided by the ’OxCal’ program as result of the ’Order’
query.
Once the table as been saved from ’OxCal’ in .csv format, you have to feed it in R. A .csv file
can be imported into R using (for instance): mydata < −read.table(file.choose(), header =
TRUE, sep = ”, ”, dec = ”.”, as.is = T );

be sure to insert the phases’ parameters (i.e., the starting and ending boundaries of the two phases)
in the OxCal’s Order query in the following order: StartA, EndA, StartB, EndB; that is, first the
start and end of your first phase, then the start and end of the second one; you can give any name to
your phases, as long as the order is like the one described.

-alternatively, 8 relevant parameters (which can be read off from the Oxcal’s Order query output)
can be manually fed into the function (see the Arguments section above).

Given two phases A and B, the function allows to calculate the posterior probability for:

-A being within B
-B being within A
-A starting earlier but overlapping with B
-B starting earlier but overlapping with A
-A being entirely before B
-B being entirely before A
-sA being within B
-eA being within B
-sB being within A
-eB being within A
where ’s’ and ’e’ refer to the starting and ending boundaries of a phase.

The function will return a table and a dot plot.

Thanks are due to Dr. Andrew Millard (Durham University) for the help provided in working out
the operations on probabilities.

Examples

#load a toy dataset
data(phases)

#calculate the Posterior Probability for the chronological relation between two phases,
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# stores the results in the 'res' object, and produce a dot chart.
res <- prob.phases.relat(phases)

# same as above, but manually feeding relevant parameters
res <- prob.phases.relat(data=NULL, sAoldersB=0.613, sAoldereB=1, eAoldersB=0.0010,
eAoldereB=0.666, sBoldersA= 0.386, sBoldereA=0.999, eBoldersA=0.000039, eBoldereA=0.3334)

pumps Dataset: location of public water pumps in London (after Dr Snow’s
mid-1800s study of cholera outbreak in Soho).

Description

A SpatialPointsDataFrame representing SpatialPointsDataFrame representing the location of public
water pumps in London (after Dr Snow’s mid-1800s study of cholera outbreak in Soho).

Usage

data(pumps)

Format

SpatialPointsDataFrame

radioc_data Dataset: Posterior Probabilities for the Starting and Ending bound-
aries of two 14C phases

Description

A dataset containing the calendar dates and the associated posterior probability for the starting and
ending boundaries of two 14C phases.

Usage

data(radioc_data)

Format

A data frame with 680 rows and 3 variables

Details

• dates. Calendar dates
• prob. Posterior probability
• group. Grouping variable containing strings referring to the start and ending boundaries of the

two 14C phases
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refNNa R function for refined Nearest Neighbor analysis of point patterns (G
function)

Description

The function allows to perform the refined Nearest Neighbor analysis of point patterns.

Usage

refNNa(feature, studyplot = NULL, buffer = 0, B = 200,
cov.var = NULL, order = 1)

Arguments

feature Feature dataset (of point type).

studyplot Shapefile (of polygon type) representing the study area; if not provided, the
study area is internally worked out as the convex hull enclosing the input feature
dataset.

buffer Add a buffer to the studyplot (0 by default); the unit depends upon the units of
the input data.

B Number of randomizations to be used (200 by default).

cov.var Numeric covariate (of RasterLayer class) (NULL by default).

order Integer indicating the kth nearest neighbour (1 by default).

Details

The function plots the cumulative Nearest Neighbour distance, along with an acceptance interval
(with significance level equal to 0.05; sensu Baddeley et al., "Spatial Point Patterns. Methodology
and Applications with R", CRC Press 2016, 208) based on B (set to 200 by default) realizations of a
Complete Spatial Random process. The function also allows to control for a first-order effect (i.e.,
influence of an underlaying numerical covariate) while performing the analysis. The covariate must
be of ’RasterLayer class’.

The function uses a randomized approach to build the mentioned acceptance interval whereby cu-
mulative distributions of average NN distances of random points are computed across B iterations.
In each iteration, a set of random points (with sample size equal to the number of points of the input
feature) is drawn.

Thanks are due to Dason Kurkiewicz for the help provided in writing the code to calculate the
acceptance interval.

See Also

NNa
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Examples

data(springs)

#produces a plot representing the cumulative nearest neighbour distance distribution;
#an acceptance interval based on 99 randomized simulations is also shown.
refNNa(springs, B=99)

#load the Startbucks datset
data(Starbucks)

#load the raster representing the numerical covariate
data(popdensity)

#perform the analysis, controlling for the 1st order effect
refNNa(Starbucks, cov.var=popdensity, B=99)

resc.val R function to rescale the values of a dataset between a minimum and
a maximum set by the user

Description

The function allows to rescale the values of a dataset between a minimum and a maximum that are
specified by the user. In doing that, it allows to preserve the shape of the distribution of the original
data.

Usage

resc.val(x, min.v = 0, max.v = 100)

Arguments

x Vector containing the values to be rescaled.

min.v Minimum value of the rescaled dataset (0 by default).

max.v Maximum value of the rescaled dataset (100 by default).

Details

The function produces two density charts representing the distribution of the original and of the
rescaled dataset. It also returns a dataframe storing the original and rescaled values.
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Examples

#generate a random dataset of size 30, normally distributed with mean 1000 and
#standard deviation 10
dataset <- rnorm(30, 1000,10)

#rescale the dataset to be constrained between 10 and 100
resc.val(dataset, min.v=10, max.v=100)

rndpoints Dataset: random points

Description

A SpatialPointsDataFrame representing random locations.

Usage

data(rndpoints)

Format

SpatialPointsDataFrame

robustBAplot R function to plot a robust version of the Bland-Altman plot

Description

The function allows to plot a robust version of the Bland-Altman plot.

Usage

robustBAplot(a, b, z = 1.96, methAlab = "Method A",
methBlab = "Method B", cex = 0.6)

Arguments

a Vector storing the first set of measurements to be compared.
b Vector storing the second set of measurements to be compared.
z Value for the confidence interval for the median difference; set by default to 1.96

(corresponding to 95 percent CI).
methAlab Label to be used in the returned chart to refer to the method yielding the first set

of measurements.
methBlab Label to be used in the returned chart to refer to the method yielding the second

set of measurements.
cex Size of the data points.
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Details

The function returns a chart based on robust (i.e. resistant to outlying values) measures of cen-
tral tendency and variability: median and Median Absolute Deviation (MAD) (Wilcox R R. 2001.
"Fundamentals of modern statistical methods: Substantially improving power and accuracy". New
York: Springer) instead of mean and standard deviation.

The x-axis displays the median of the two variables being compared, while the y-axis represents
their difference. A solid horizontal line represents the bias, i.e. the median of the differences
reported on the y-axis. Two dashed horizontal lines represent the region in which 95percent of the
observations are expected to lie; they are set at the median plus or minus z*(MAD/0.6745).

Examples

#create a first toy vector
a <- rnorm(30,10,1)

#create a second toy vector
b <- a*runif(30,1,1.5)

robustBAplot(a,b)

springs Dataset: location of springs in Malta

Description

A SpatialPointsDataFrame representing the location of springs in Malta.

Usage

data(springs)

Format

SpatialPointsDataFrame
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Starbucks Dataset: location of Starbucks in Massachusetts

Description

A SpatialPointsDataFrame representing the location of Starbucks in Massachusetts.
After https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html.

Usage

data(Starbucks)

Format

SpatialPointsDataFrame

thiessenpolyg Dataset: Thiessen polygons around the points represented in the ’lo-
cations’ dataset

Description

A SpatialPolygonsDataFrame representing Thiessen polygons around the points represented in the
’locations’ dataset.

Usage

data(thiessenpolyg)

Format

SpatialPolygonsDataFrame

https://mgimond.github.io/Spatial/point-pattern-analysis-in-r.html
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vislim R function for computing the limit of visibility of an object given its
height

Description

The function allows to plot the angular size of an object (in degrees) against the distance from the
observer, and to compute at which distance from the observer the angular size of the object hits the
limit of human visual acuity (0.01667 degrees).

Usage

vislim(vis.degree = 0.01667, targ.h)

Arguments

vis.degree Limit of human visual acuity (0.01667 by default).

targ.h Target size (=height in meters).

Details

The function returns:
-a plot displaying the decay in angular size as function of the object’s distance from the observer; a
black dot represents the distance at which the angular size hits the limit of human visual acuity;
-the value (in km) of the visibility limit.

Examples

# calculate the visibility limit of an object of size 6m, and store the result (20.62 km)
#in the 'limit' object
limit <- vislim(targ.h=6)
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