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simulate_gaussian

Create ideal data for a generalized linear model.

Description

Create ideal data for a generalized linear model.

Usage

simulate_gaussian(N = 10000, link = "identity”, weights = 1:3,
xrange = 1, unrelated = 0, ancillary = 1)

simulate_binomial(N = 10000, link = "logit", weights = c(0.1, 0.2),
xrange = 1, unrelated = 0)

simulate_gamma(N = 10000, link = "inverse"”, weights = 1:3,
xrange = 1, unrelated = 0, ancillary = 0.05)

simulate_poisson(N = 10000, link = "log", weights = c(0.5, 1),
xrange = 1, unrelated = 0)

simulate_inverse_gaussian(N = 10000, link = "1/mu*2", weights = 1:3,
xrange = 1, unrelated = @, ancillary = 0.3333)

simulate_negative_binomial (N = 10000, link

"log", weights = c(0.5,

1), xrange = 1, unrelated = @, ancillary = 1)

simulate_tweedie(N = 10000, link = "log", weights = 0.02,
xrange = 1, unrelated = @, ancillary = 1.15)

Arguments

N

link
weights
xrange
unrelated

ancillary

Details

Sample size. (Default: 10000)

Link function. See family for details.

Betas in glm model.

range of x variables.

Number of unrelated features to return. (Default: 0)

Ancillary parameter for continuous families and negative binomial. See details.

For many families, it is possible to pick weights that cause inverse link(X * weights) to be math-
ematically invalid. For example, the log link for binomial regression defines P(Y=1) as exp(X *
weights) which can be above one. If this happens, the function will error with a helpful message.

The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In
simulate_gaussian(link = "inverse", weights = 1:3), the model is (1/Y) = 1*X1 + 2¥X2 + 3*X3 + 3.
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links

* gaussian: identity, log, inverse

* binomial: logit, probit, cauchit, loglog, cloglog, log, logc, identity
* gamma: inverse, identity, log

* poisson: log, identity, sqrt

* inverse gaussian: 1/mu”2, inverse, identity, log

* negative binomial: log, identity, sqrt

* tweedie: log, identity, sqrt, inverse

The default link is the first link listed for each family.

ancillary parameter

* gaussian: standard deviation

* binomial: N/A

* gamma: scale parameter

* poisson: N/A

* inverse gaussian: dispersion parameter
* negative binomial: theta.

e tweedie: rho

Value

A tibble with a response variable and predictors.

Examples

library(GlmSimulatoR)
library(ggplot2)
library(MASS)

# Do glm and 1m estimate the same weights? Yes

set.seed(1)

simdata <- simulate_gaussian()

linearModel <- Im(Y ~ X1 + X2 + X3, data = simdata)

glmModel <- glm(Y ~ X1 + X2 + X3, data = simdata, family = gaussian(link = "identity"))
summary (linearModel)

summary (glmModel)

rm(linearModel, glmModel, simdata)

# If the link is not identity, will the response

# variable still be normal? Yes

set.seed(1)

simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))

ggplot(simdata, aes(x = Y)) +
geom_histogram(bins = 30)
rm(simdata)
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# Is AIC lower for the correct link? For ten thousand data points, depends on seed!
set.seed(1)

simdata <- simulate_gaussian(N = 10000, link = "inverse"”, weights = 1)
glmCorrectLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "inverse"))
glmWronglLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "identity"))
summary (glmCorrectlLink)$aic

summary (glmWronglLink)$aic

rm(simdata, glmCorrectLink, glmWronglLink)

# Does a stepwise search find the correct model for logistic regression? Yes

# 3 related variables. 3 unrelated variables.

set.seed(1)

simdata <- simulate_binomial(N = 10000, link = "logit"”, weights = c(.3, .4, .5), unrelated = 3)

scopeArg <- list(

lower =Y ~ 1,

upper =Y ~ X1 + X2 + X3 + Unrelatedl + Unrelated2 + Unrelated3
)

startingModel <- glm(Y ~ 1, data = simdata, family = binomial(link = "logit"))
glmModel <- stepAIC(startingModel, scopeArg)

summary (glmModel)

rm(simdata, scopeArg, startingModel, glmModel)

# When the resposne is a gamma distribution, what does a scatter plot between X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
geom_point()
rm(simdata)
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