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An example of management conflict using GMSE

Agents in GMSE (managers and users) are goal-oriented, and their behaviour is therefore driven to maximise
a particular utility of interest such as a target density of resources. For managers and users, this could
include animals or trees of conservation interest. For users, it could additionally include a landscape harvest
size such as bag size or timber. This model feature allows GMSE to evaluate the actions of agents in the
context of their individual objectives, and to therefore quantify the degree to which those objectives are or
are not achieved. When the actions of one party clashes with the objectives of another party, the objectives
of one might be expressed at the expense of the other, causing conservation conflict (Redpath et al., 2013).
Currently, there is no standard way to measure conservation conflict in a social-ecological system where both
the natural resource (e.g., animals, plants, or non-biological resources) and the people (e.g., stakeholders,
managers, etc.) are modelled in a single system, and previous modelling approaches have not meaningfully
separated agent objectives from agent actions. We suggest that a starting point to developing a useful metric
of conservation conflict is to quantify the deviation of an individual’s actions from their objectives (i.e., of
actual actions from desired actions), the former of which is restricted by the actions of other individuals.
Here we show how GMSE can be used to evaluate the amount of conflict in a simulated social-ecological
system under different management options.

To demonstrate how GMSE can be used to understand conflict in social-ecological systems, we build upon
the example of resource management in the main text. We consider a protected population of waterfowl that
exploits and damages agricultural land and is therefore a source of conservation conflict between those that
seek the conservation of waterfowl and those that are concerned with the loss of agriculture (e.g., Fox and
Madsen, 2017; Mason et al., 2017; Tulloch et al., 2017; Cusack et al., 2018). As in the main text example, the
objective of the manager is to keep waterfowl at a target abundance that minimises extinction risks, while
the objective of farmers is to maximise agricultural production on their landscape. Here we consider a more
complex simulation, with a level of detail that more accurately reflects a scenario that might occur in a real
social-ecological system where the manager sets policies that incentivise the user to act in a way that ensures
the persistence of the resource. The policies are backed up by a manager budget that can be allocated to set
costs of actions and thus incentivise users to perform the desired actions. The user also has a budget to carry
out actions, and the cost of the user actions is affected by the manager policies and budget. Our objective
is not to model the dynamics of a specific system, but to show how GMSE could be parameterised using
demographic estimates from empirical studies. We therefore consider an example population in which such
estimates are well-reported and readily available.

We parameterise our model using demographic information from the Taiga Bean Goose (Anser fabalis fabalis),
a managed population that is hunted for recreation in Fennoscandinavia (Johnson et al., 2018). Taiga Bean
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Geese can cause agricultural damage (Johnson et al., 2018), which could potentially lead to conflict between
farming and management or conservation objectives.

Using demographic parameters in simulations

Our goal is not to provide a detailed case study of the Taiga Bean Geese, but rather to demonstrate how such
a case study would be possible in GMSE. For simplicity, here we assess conflict using only the gmse function
to show how parameter values can be set to provide useful results. Novice R users may prefer to run all of
the simulations below using the browser-based GMSE GUI by calling gmse_gui() from the R command line.
Alternatively, experienced R users may prefer to simulate by looping time steps through gmse_apply, which
allows more flexibility for incorporating custom sub-models and dynamically adjusting parameter values.

Simulations using the default GMSE sub-models described above are run using the gmse function, which
offers a range of options for setting parameter values (see Table 1 for some select examples). Output of gmse
is an exhaustive list that includes all resources and observations, all stakeholder decisions and actions, and all
landscape properties in each time step of the simulation (see Default GMSE data structures for a description
of key data structures).

Argument Default Description

time_max 100 Maximum time steps in simulation
land_dim_1 100 Width of the landscape (horizontal cells)
land_dim_2 100 Height of the landscape (vertical cells)
res_movement 20 Distance (cells) a resource can move in any direction (see also res_move_type)
remove_pr 0 Density-independent probability of resource mortality during a time step
lambda 0.3 Poisson rate parameter for resource offspring number produced during a time step
agent_view 10 How far managers can see on the landscape for resource counting when observe_type

= 0
res_birth_K 100000 Carrying capacity applied to the number of resources added during a time step
res_death_K 2000 Carrying capacity applied to the number of resources removed during a time step
res_death_type 1 Rules affecting resource death (default is density-dependent; see below)
res_move_type 1 Type of resource movement (default moves uniformly in any direction; see below)
observe_type 0 Type of resource observation (default is density-based; see below)
obs_move_type 1 How agents (manager and stakeholders) move (typically ignored; see below)
fixed_mark 50 For mark-recapture observation (observe_type = 1), number of marked resources
fixed_recapt 150 For mark-recapture observation (observe_type = 1), number of recaptured resources
times_observe 1 For density-based observation (observe_type = 0), landscape subsets observed
res_consume 0.5 Pr. of a landscape cell’s value reduced by the presence of a resource in a time step
max_ages 5 The maximum number of time steps a resource can persist before it is removed
minimum_cost 10 The minimum cost of a user performing any action
user_budget 1000 A user’s budget per time step for performing any number of actions
manager_budget 1000 A manager’s budget per time step for setting policy
manage_target 1000 The manager’s target resource abundance
RESOURCE_ini 1000 The initial abundance of resources
scaring FALSE Resource scaring (moves a resource to a random landscape cell) is a policy option
culling TRUE Resource culling (removes a resource entirely) is a policy option
castration FALSE Resource castration (sets a resource’s lambda to zero) is a policy option
feeding FALSE Resource feeding (increases a resource’s lambda) is a policy option
help_offspring FALSE Resource helping (increases a resource’s offspring number) is a policy option
tend_crops FALSE Users can increase landscape cell values
tend_crop_yld 0.2 Proportional increase per landscape cell from tend_crops action
kill_crops FALSE Users can decrease landscape cell values to zero
stakeholders 4 Number of users in the simulation
land_ownership FALSE Users own land and increase utility indirectly from landscape instead of resource use
manage_freq 1 Frequency (in time steps) with which managers revise and enact policy
public_land 0 Pr. of land that is public (un-owned by users) if land_ownership = TRUE
age_repr 1 Age below which resources are incapable of reproducing
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Argument Default Description

action_thres 0 Pr. Deviation of the estimated population from the manager target, above which
policy is updated

budget_bonus 0 Percentage of increase in budget a manager accrues by not updating policy in a time
step

consume_surv 0 Amount of yield a resource need to consume in a timestep to survive
consume_repr 0 Amount of yield a resource need to consume in a timestep to produce one offspring
times_feeding 1 Number of searches that resources are allowed per time step for feeding on the

landscape

Table 1: Select parameter values for initialising generalised management strategy evaluation simulations. See
below for explanation of non-default values of resource death and resource observation processes.

Results are most easily interpreted visually, so a summary of simulation dynamics is plotted by default (the
plot can also be called using the plot_gmse_results function, and summaries of results can be obtained
using gmse_summary and gmse_table). An example below shows how simulations are set and interpreted.

Where available, we use estimated demographic parameter values from Johnson et al. (2018) and AEWA
(2016). Where GMSE parameter values are not available, we use reasonable values or GMSE defaults. To
make model inferences for real case studies, we strongly recommend replicating simulations and simulating
across a range of parameter values when empirical estimates are unavailable, as social-ecological dynamics
might be sensitive to these unknown values.

Johnson et al. (2018) recently estimated key demographic parameters of the Taiga Bean Geese from the Central
Management Unit, which includes geese that breed in “Northern most Sweden, Northern Norway, Northern
and Central Finland, and adjacent North-western parts of Russia, wintering mostly in Southern Sweden and
South-east Denmark” (AEWA, 2016). They estimated goose survival under ideal conditions to be ca 0.878;
this can be interpreted in our model by setting mortality to remove_pr = 1 - 0.878. Similarly, Johnson
et al. (2018) estimated mean reproductive rate and carrying capacity to be 0.55 and 93870, respectively, so we
set lambda = 0.275 (for simplicity, we simply use half the mean reproductive rate; GMSE does not currently
distinguish female and male individuals) and res_death_K = 93870. The global abundance of Taiga Bean
Geese in 2009 was ca 63000 (Fox et al., 2010), with ca 35000 in the Central Management Unit (AEWA, 2016),
which we can take as a starting abundance for our simulations (RESOURCE_ini = 35000). The International
Single Species Action Plan has a target population size of ca 70000 in the Central Management Unit (AEWA,
2016), which we can use as a management target (manage_target = 70000). We simulate social-ecological
dynamics over 30 time steps, which could be interpreted as years.

The code below calls gmse using the empirically derived parameters for Taiga Bean Geese described above. We
also set manager_budget = 10000 and user_budget = 10000. Further, we consider the case of a region in
which farmland makes up 60% of all land, with 40% of land being ‘public’ (public_land = 0.4; which might
be interpreted as any land in which stakeholders are not, or cannot be, invested in goose presence), and divide
the farmland amongst 80 individual farmers (stakeholders = 80; land_ownership = TRUE). Landscape
size is set to default 100 by 100 cells, so each farmer owns about 75 cells, which might be interpreted as
hectares of land (for instructions on how to more precisely control landscape ownership, see the advanced
GMSE options using gmse_apply). Because we need both density-dependent (res_death_K = 93870) and
density-independent (remove_pr = 0.122) sources of mortality, we set res_death_type = 3. We assume
that a single goose decreases agricultural production on a cell by 2% per time step (res_consume = 0.02).
We further assume that the population is very well-monitored, with observers counting goose numbers on
each cell of the landscape in every timestep (observe_type = 3) with the ability to observe one landscape
cell in every direction (agent_view = 1). All other parameter values are set to GMSE defaults.

Simulating goose management

Below, we first only allow culling as a policy option and plot the dynamics of the social-ecological system
from a single simulation. Next, we run the same simulation but also allow scaring as a policy option; we
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then use the model to make inferences regarding how scaring as a management option might affect goose
population dynamics, agricultural production, and conservation conflict in the system. We emphasise that the
simulations below are intended only to demonstrate one use of GMSE on a species of conservation interest,
not to make recommendations for management of Taiga Bean Geese.
sim_1 <- gmse(manager_budget = 10000, user_budget = 10000, res_death_K = 93870,

manage_target = 70000, RESOURCE_ini = 35000, plotting = FALSE,
stakeholders = 80, land_ownership = TRUE, public_land = 0.4,
scaring = FALSE, lambda = 0.275, remove_pr = 0.122, time_max = 30,
res_death_type = 3, res_consume = 0.02, res_birth_K = 200000,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200);

The results of the above simulation are plotted in Figure 1 below.
plot_gmse_results(sim_results = sim_1);

Figure 1 shows the dynamics of goose abundance and agricultural yield, along with how managers react to
change in abundance and farmers react to manager policy. In the case of the simulation above, managers
quickly set a policy of high cost for culling, which leads to a rise in the goose population and a decrease in
crop yield for farmers. After roughly 20 time steps, the goose population rises above the manager target,
at which point the manager becomes more permissive of culling and the cost of culling for users therefore
declines. In response, users begin to cull geese on their land, and the goose population begins to stabilise
around the target of 7000 total geese. We can investigate the conflict between management policy and farmers
more directly using the plot_gmse_effort function (Figure 2).
plot_gmse_effort(sim_results = sim_1);

Black lines in Figure 2 indicate how permissive a manager is toward a particular action on a scale of 0 to
100, while coloured lines indicate how much effort farmers expend on a given action. When black lines
are far below coloured lines, we can (cautiously) interpret this as a conflict between management of the
goose population and farmer’s interest in agricultural production. These time periods represent instances
in which the manager is not permissive of a particular action (in this case culling), but farmers continue
to expend effort to do the action anyway. In the case of the above simulation of potential conflict between
farmers and goose conservation, conflict is highest before time step 20, where the manager is not permissive
of culling because the population is below the manager’s target. Once the goose population has increased
above the manager’s target, conflict decreases because the desired culling is permitted by managers to keep
the population at a target abundance. It is worth noting that, despite conflict as we define it decreasing,
agricultural damage is still relatively high after the target goose population size is achieved (Figure 1). Hence,
on a broader scale, conflict might persist around the appropriate target population size rather than what
actions are permitted for farmers; currently, this potential aspect of conflict is not modelled, but future
versions of GMSE may attempt to incorporate such additional complexity in conflict scenarios.

We can model the consequences for goose population dynamics, agricultural production, and conservation
conflict when scaring is a policy option available to the manager. The code below runs a simulation identical
to the one just discussed, but with a scaring option included using the argument scaring = TRUE.
sim_2 <- gmse(manager_budget = 10000, user_budget = 10000, res_death_K = 93870,

manage_target = 70000, RESOURCE_ini = 35000, plotting = FALSE,
stakeholders = 80, land_ownership = TRUE, public_land = 0.4,
scaring = TRUE, lambda = 0.275, remove_pr = 0.122, time_max = 30,
res_death_type = 3, res_consume = 0.02, res_birth_K = 200000,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200);

The results are plotted in Figure 3.
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Figure 1: Results of a GMSE simulation using parameters estimated for Taiga Been Geese Central Management
Unit. This example includes 80 farmers whose objective is to maximise their agricultural output, and one
manager whose objective is to keep geese at a target abundance, over 30 simulated time steps. Goose locations
at the end of the simulation are shown in the upper left panel, while the upper right panel shows the same
landscape broken down among the 80 farmers (upper 60% of the landscape in multiple colours), along with
non-agricultural land (lower 40% of the landscape in blue). Actual goose abundance is shown in the middle
left panel (black solid line), along with its estimate by the manager (blue solid line, hidden underneath
the black line). The horizontal red and blue dotted lines show goose carrying capacity and the manager’s
target for goose abundance, respectively. The orange line shows the total percent of landscape cell (including
non-farmed cells) yield, as decreased by geese. The middle right panel shows this yield for each farmer, and
for the public land (lower line in blue). The lower left panel shows the cost of culling for farmers, as set by
the manager, and the lower right panel shows the total number of culls attempted by farmers over time.

5



1:max_time

sc
ar

_e
ff[

, 1
] No scaring allowed

scaring culling castration feeding helping

1:max_time

10
0 

−
 c

ul
l_

ef
f[,

 1
]

50
10

0

1:max_time

cu
ll_

ef
f[,

 2
]

50
10

0

1:max_time

ca
st

_a
ct

[, 
1]

No castration allowed

M
an

ag
er

's
 p

er
m

is
si

ve
ne

ss
 o

f u
se

r 
ac

tio
n

P
er

ce
nt

ag
e 

of
 u

se
r 

ac
tio

n 
ef

fo
rt

 e
xp

en
de

d

1:max_time

fe
ed

_a
ct

[, 
1]

No feeding allowed

0 5 10 15 20 25 30

1:max_time

he
lp

_a
ct

[, 
1]

No helping offspring allowed

Time step

Figure 2: Permissiveness that each manager exhibits for each farmer action (black lines) and the effort that
each individual farmer puts into each action over time (coloured lines). Each panel row reports a different
action (in decreasing order: scaring, culling, castration, feeding, and helping). The left axis shows the
permissiveness that a manager has for the focal action (black line), which is calculated as 100 minus the
percent of the manager’s budget that is put into increasing the cost of the focal action. For example, if
the manager puts all of their effort (total budget) into increasing the cost of culling, then permissiveness of
culling is 0; if the manager puts no effort into increasing culling cost, then permissiveness of culling is 100.
The right axis shows effort that farmers put into an action (coloured lines), which defined as the percentage
of a farmer’s budget put into a particular action (note, values might not add up to 100 because farmers are
not forced to use their entire budget).
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plot_gmse_results(sim_results = sim_2);

When scaring is introduced to an otherwise identical simulation (compare Figure 3 to Figure 1), the goose
population increases as before, but it achieves the manager’s target population size and stabilises 2-3 time
steps earlier. The reason for this earlier stabilisation is due to the change in farmer’s actions as a consequence
of the introduced scaring policy. At the start of the simulation, managers adjust policy by quickly increasing
the cost of culling and decreasing the cost of scaring. In response, farmers turn to scaring rather than culling
to remove geese from their land cells (Figure 3). This is in contrast to the simulation in which scaring was
not an option, and farmers simply culled as much as possible despite the high costs (Figure 1). After the
population has risen to slightly above the manager’s target, the cost of culling again decreases, with the
manager balancing the incentivisation of culling and scaring. The consequence of scaring as an available policy
also reveals some potentially unexpected outcomes, such as increased variance in among-farmer agricultural
production, which arises as geese are scared from one area of the landscape to another.

We can use the plot_gmse_effort function as before to investigate how the inclusion of scaring as a policy
option might affect conservation conflict. Conflict results when scaring is included are plotted in Figure 4.
plot_gmse_effort(sim_results = sim_2);

Unlike the case in which culling was the only policy option (compare Figure 4 to Figure 2), the effort that
farmers expended on a given action did not rise as highly above the manager’s permissiveness of the action.
Hence, under the conditions of this model, the inclusion of scaring as a policy option has reduced conservation
conflict in the social-ecological system. We again emphasise that the simulations presented here only serve as
an example for how GMSE could be used as a tool for simulating social-ecological systems and understanding
the potential for conflict; it is not intended to inform policy in Taiga Bean Geese or any other specific system.

Default and non-default options in default GMSE sub-models

Within the default sub-models of GMSE, there are several non-default options that can be set using arguments
to gmse and gmse_apply. Brief explanations of these non-default options appear in the GMSE documentation
(also listed on the GMSE website). Here we further explain some of the less obvious or less intuitive options
available in GMSE, for which additional explanation beyond the GMSE documentation may be warranted for
application to case studies such as the Taiga Bean Geese case study example demonstrated above. Future
versions of GMSE are expected to expand upon these options.

res_move_type: Resources in default GMSE sub-models can move on the landscape in one of three
ways. These different movement types are listed below, and are taken as arguments to gmse (e.g.,
gmse(res_move_type = 2)).

0. No movement. Given this option, resources do not move at all in the resource sub-model, and instead
remain on the location at which they are initialised.

1. Uniform movement in any direction up to res_movement cells away from a resource’s original location
(default). In uniform movement, the resource moves to a new cell within some distance res_movement
of its original location in each time step. Distance therefore includes diagonal movement, such that
a resource capable of moving res_movement = 1 cell away can go to any of the eight adjacent cells
around its current location; it can also remain on its current cell. Similarly, a resource capable of moving
res_movement = 2 cells away can go to any of the 24 cells surrounding its current location, or remain
on its current cell. The distance (in cells) moved in the x-direction (i.e., left to right) and y-direction
(i.e., up and down), is sampled from a uniform distribution, meaning that all reachable cells (including
the resource’s current cell) have equal probability of being selected as the resource’s new cell location.

2. Poisson selected movement distance and direction. In this movement type, the distance (in cells) moved
in the x-direction and the y-direction are sampled from a Poisson distribution using res_movement as
the rate parameter (i.e., the mean movement distance in each direction). Using this movement type is
not generally recommended because it is not likely to be biologically realistic (e.g., diagonal movement
is rare because selection of both high x-direction and high y-direction values is unlikely).
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Figure 3: Results of a GMSE simulation using parameters estimated for Taiga Been Geese Central Management
Unit in which scaring is permitted. Simulation output is interpreted as in Figure 1.
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Figure 4: Permissiveness that each manager exhibits for each farmer action (black lines) and the effort that
each individual farmer puts into each action over time (coloured lines) given scaring as a possible policy
option. Simulation output is intepreted as in Figure 2.

9



3. Uniform movement in any direction up to res_movement cells away from a resource’s original location
res_movement times. Like option (1), when moving, resources can travel in any direction up to
res_movement cells from their current location with equal probability. What is different about this
option is that uniform movement in any direction occurs C = Poisson(res_movement) times. In other
words, when a resource moves, it first decides how many different cells it will visit (C), as determined
by sampling from a Poisson distribution with a rate parameter of res_movement (i.e., the mean number
of visited cells will be res_movement). Upon leaving a cell, the resource will move in the same way as
defined in option (1) above, by choosing a cell within res_movement distance (in cells) of its current
cell. It continues moving in this way until C cells have been visited. This type of movement has been
used in some individual-based models of plant-pollinator interactions (e.g., Duthie and Falcy, 2013;
Wilson et al., 2003).

res_birth_type: Resources in GMSE can be added to the model in one of two ways within the default
resource sub-model, thereby simulating resource birth. It is important to note that res_birth_type refers only
to additions that occur within the resource sub-model; additions from user actions (e.g., the help_offspring
option) occur within the user sub-model.

0. No explicit resource addition. This option causes no baseline resource additions, but resource birth is
still possible if consume_repr > 0. Under such conditions, landscape yield consumed by the resource
will result in floor(yield_consumed / consume_repr) offspring produced. The amount of yield a
resource consumes will be affected by both times_feeding (how many times the resource moves and
feeds on a new landscape cell during a time step) and res_consume (the proportion of yield on a cell that
is consumed upon visit to the cell). Note that consume_repr can still be used when res_birth_type
> 0 (below), resulting in multiple sources of resource addition.

1. Fixed number added per resource. For this option, each resource produces lambda new resources in each
time step.

2. Poisson sampling. For this option, each resource produces a number of offspring as determined by
sampling from a Poisson distribution in which lambda is the rate parameter (i.e., each resource is
expected to produce lambda offspring).

res_death_type: Resources in GMSE can be removed from the model in one of four ways within the
default resource sub-model, thereby simulating resource death. It is important to note that res_death_type
refers only to removal that occurs within the resource sub-model; removal from user actions (e.g., death from
shooting) occurs within the user sub-model.

0. No explicit density independent or dependent removal. This option does not cause removal to be directly
caused in a density independent or dependent way. Nevertheless, removal may still be possible if the
argument consume_surv > 0 (its default value is 0). In this case, survival of a resource in a time step
depends on that resource consuming at least consume_surv in yield on the landscape. In such cases,
a natural carrying capacity will be generated as more resources result in higher total consumption.
The amount yield that a resource consumes is further affected by both times_feeding (how many
times the resource moves and feeds on a new landscape cell during a time step) and res_consume (the
proportion of yield on a cell that is is consumed upon visit to the cell). Note that consume_surv is
can still be used when res_death_type > 0 (below), resulting in multiple potential sources of removal.
Given res_death_type = 0, user actions have no effect on resource removal (to ensure that user
actions do have an effect, set res_death_type = 1 and removal_pr = 0; see below).

1. Density-independent removal. Given this option, there is no density-dependent removal of resources
within the resource sub-model. Resources are simply removed with a fixed probability of removal_pr
(its default value is 0) each time the sub-model is run. This option should be used with great care
because in the absence of density-dependence, it is possible for the population of resources to increase
without limit and thereby greatly slow down simulation times.

2. Density-dependent removal (default). Given this option, removal of resources within the resource
sub-model is caused entirely by density effects. The probability that a resource is removed is a function
of the resource carrying capacity set using the res_death_K parameter. If the number of resources (N)
is greater than res_death_K (K), then the probability that an individual resource is removed is defined
by (N − K)/N . Removal then occurs independently for each resource based on this probability.
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3. Density-independent and density-dependent removal. This option allows a combination of both options
(1) and (2), which affect removal independently. In other words, each resource is assigned a probability
of removal removal_pr as in (1), and then independently assigned another probability of removal based
on res_death_K as in (2). If removal occurs as a consequence of (1), (2), or both, then the resource is
removed.

observe_type: Observation of resources in default GMSE sub-models can occur in one of four ways. Each
observation type mimics some process of resource observation, with potential error affected by observation
intensity.

0. Density-based observation. In this option, managers observe resources on a subset of the landscape;
subset size is determined by the manager’s view as set using the agent_view parameter. In practice,
this is done by having the manager pick a cell on the landscape at random, then count all of the
resources within a distance (in any direction) of agent_view cells. Managers then extrapolate the
density of resources within this subset to estimate the total number of resources on the landscape. For
example, if the manager has an agent_view of 1, then they are capable of seeing all of the resources on
nine landscape cells (the cell on which they are located, and each adjacent cell). If they count that
there are 90 resource on these nine cells, then they calculate a resource density of 10 per cell. They then
multiply the density of 10 by the total number of landscape cells to estimate the number of resources
on the landscape. The error of this estimate naturally decreases with increasing agent_view, such that
when the manager is capable of viewing the entire landscape, observation error is zero. If desired, the
times_observe (default equals 1) option can also be used to allow managers to sample more than one
landscape subset in their estimate (e.g., if times_observe = 2, then density is estimated from two
different locations, with the mean of individual estimates used for a combined estimate of population
density).

1. Mark-recapture observation. This option simulates the process of a mark-recapture analysis. In this
process, managers randomly sample fixed_mark resources in the population; sampling occurs without
replacement and without any spatial bias, and if fixed_mark is greater than the total number of
resources on the landscape, then managers sample all resources. The manager then randomly samples
fixed_recapt resources, again without replacement or spatial bias. The sampled resources from
fixed_mark and fixed_recapt are interpreted as marked and recaptured resources, respectively, and
a Chapman estimate (Pollock et al., 1990) is then used in the manager model to calculate estimated
population size form these observation data. Error in this estimate can be naturally minimised if both
fixed_mark and fixed_recapt are very high.

2. Sample linear transect. This option simulates sampling from a linear transect of the landscape. The
manager samples an entire set of cell rows on the landscape and counts the total resources on all cells;
the manager then continues onto the next set of landscape rows until the entire landscape has been
sampled. The number of rows observed in each sample is defined by agent_view. For example, if
the landscape is of the dimensions 100 × 100 cells, and agent_view = 2, then the manager will first
observe all resources in the upper 200 cells (first 2 × 100 cells in the upper two landscape cell rows),
then move onto the next 200 cells, repeating the process 50 times until all rows have been sampled.
This process of sampling will only generate observation error if res_move_obs = TRUE, which it is by
default. In this case, resources can move on the landscape (according to the rules of res_move_type
and distance of res_movement) in between transect observation, potentially causing some resources to
escape observation and others to be observed more than once.

3. Sample block transect. This option is identical to the sample linear transect option above, except that
instead of sampling an entire row of a landscape, the manager samples one square block of the landscape
at a time. The cell length of each block side equals agent_view, meaning that the manager can observe
all of the resources on agent_view * agent_view cells at a time. The manager proceeds to observe
the entire landscape, block by block, until all cells on the landscape have been covered. For example, if
agent_view = 25, and the landscape is of the dimensions 100 × 100, then the manager will sample
four total blocks of the landscape, one at a time, and use the total number of resources observed as
the estimate of resource density on the landscape. As with linear transect sampling, if res_move_obs
= TRUE (which it is by default), then resources can move on the landscape between block samples,
potentially causing observation error if some resources are missed due to movement, or counted multiple
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times.

obs_move_type: Observation of agents (manager and users) in default GMSE sub-models can occur in the
same four ways as allowed in res_move_type (default obs_move_type = 1), with movement distance defined
by the parameter agent_move (default 50). Currently, the only effect of this movement is to allow for spatially
autocorrelated sampling of resources by the manager in the observation model. If the manager is using density-
based sampling (observe_type = 0) and sampling more than one subset of the landscape (times_observe
> 1), then the manager’s movement between subsets is governed by res_move_type (movement rules) and
agent_move (movement distance). Hence, to have the manager observe the population many times in one
area of the landscape, the times_observe option should be increased above one and agent_move should be
decreased to a low value.

Conclusions and future development

The GMSE function gmse and its graphical user interface counterpart gmse_gui offer wide a suite of options
for parameterising simulations to fit empirical case studies of conservation interest using default GMSE
natural resource, observation, manager, and user sub-models. Future development of these sub-models might
usefully incorporate additional details relevant to specific case studies, such population structure, multiple
natural resource and user types, or different manager policy and user action possibilities. Requests for new
features and contributions to GMSE can be made through GitHub. Additionally, where entirely different types
of sub-models are required, the gmse_apply function can be used to more flexibly simulate social-ecological
systems. In Advanced case study options, we show an example of this using the same Taiga Bean Geese case
study that we did here.
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