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1 Introduction

GMMAT is an R package for performing association tests using generalized linear mixed
models (GLMMs)1 in genome-wide association studies (GWAS) and sequencing associa-
tion studies. GLMMs provide a broad range of models for correlated data analysis. In
the GWAS and sequencing association study context, examples of correlated data include
those from family studies, samples with cryptic relatedness and/or shared environmental
effects, as well as samples generated from complex sampling designs.

GMMAT first fits a GLMM with covariate adjustment and random effects to account
for population structure and family or cryptic relatedness. For GWAS, GMMAT performs
score tests for each genetic variant. For candidate gene studies, GMMAT can also perform
Wald tests to get the effect size estimate for each genetic variant. For rare variant analysis
from sequencing association studies, GMMAT performs the burden test,2–5 the sequence
kernel association test (SKAT),6 SKAT-O7 and the efficient hybrid test of the burden test
and SKAT, in the variant Set Mixed Model Association Tests (SMMAT) framework,8

based on user-defined variant sets.

2 The model

In the context of single variant test, GMMAT works with the following GLMM

ηi = g(µi) = Xiα+Giβ + bi.

We assume that given the random effects b, the outcome yi are conditionally independent
with mean E(yi|b) = µi and variance V ar(yi|b) = φa−1

i v(µi), where φ is the dispersion
parameter (for binary and Poisson data φ = 1), ai are known weights, and v(·) is the
variance function. The linear predictor ηi is a monotonous function of the conditional
mean µi via the link function ηi = g(µi). Xi is a 1×p row vector of covariates for subject
i, α is a p × 1 column vector of fixed covariate effects including the intercept, Gi is the
genotype of the genetic variant of interest for subject i, and β is the fixed genotype effect.
We assume that b ∼ N(0,

∑K
k=1 τkVk) is an n×1 column vector of random effects, τk are

the variance component parameters, Vk are known n×n matrices. In practice, Vk can be
the theoretical kinship matrix if analyzing family samples with known pedigree structure
in a homogeneous population, or the empirical genetic relationship matrix (GRM) to
account for population structure and cryptic relatedness, or any n×n matrices to account
for shared environmental effects or complex sampling designs.

GMMAT can be used to analyze both continuous and binary traits. For continuous
traits, if a normal distribution and an identity link function are assumed, GMMAT per-
forms association tests based on linear mixed models (LMMs). For binary traits, however,
we showed that performing association tests based on LMMs can lead to invalid P values
in the presence of moderate or strong population stratification, even after adjusting for
top ancestry principal components (PCs) as fixed effects.9 In such scenarios, we would
recommend assuming a Bernoulli distribution and a logit link function for binary traits,
adjusting for top ancestry PCs as fixed-effect covariates. This GLMM is also known as
the logistic mixed model.

In the context of variant set tests (also known as gene-based tests or aggregate variant
tests), GMMAT works with the following GLMM

ηi = g(µi) = Xiα+ Giβ + bi,
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where Gi is now a 1× q row vector of genotypes for q variants in subject i, β is a q × 1
column vector of genotype effects with mean β0 and variance σ2. The following 4 tests
in the SMMAT framework are implemented. The burden test is for H0 : β0 = 0 versus
H1 : β0 6= 0 under the constraint σ2 = 0, SKAT is for H0 : σ2 = 0 versus H1 : σ2 > 0
under the constraint β0 = 0, SKAT-O is a linear combination of burden test and SKAT
statistics, and the efficient hybrid test combines the burden test with an adjusted SKAT
(which is asymptotically independent with the burden test) H0 : σ2 = 0 versus H1 : σ2 > 0
under no constraints on β0 using Fisher’s method.8 Of note, in all these tests, the null
GLMM is the same as the null model in the single variant test, which only needs to be
fitted once.

For longitudinal data, two types of models can be applied: random intercept only mod-
els, and random intercept and random slope models. The random intercept only model
is appropriate for analyzing repeated measures with no time trends, and observations for
the same individual i at different time points j are assumed to be exchangeable. In the
context of single variant test, GMMAT works with the following GLMM for repeated
measures

ηi = g(µi) = Xiα+Giβ + bi.

The notations are similarly defined as the cross-sectional data above, except that now
we have for each observation j of individual i the mean E(yij|b) = µi and variance
V ar(yij|b) = φa−1

i v(µi). The random effects b, which is a length n vector of bi (n

is the number of individuals), is assumed to follow b ∼ N(0,
∑K

k=1 τkVk + τK+1In),
where the first K terms account for between-subject relatedness attributable to n × n
matrices Vk, and the last term accounts for random individual effects not attributable to
relatedness matrices Vk. For example, for unrelated individuals, we would not have any
between-subject relatedness matrices Vk, but only the last term for random individual
effects. Let Z be the N × n design matrix indicating which observation is from which
individual (N is the total number of observations, N > n but we do not need the same
numbers of observations from each individual), the random effects for all observations
Zb ∼ N(0,

∑K
k=1 τkZVkZ

T + τK+1ZZT ) accounts for all sources of correlation, and the
observed outcome yij are assumed to be independent conditioning on that.

The random intercept and random slope model is appropriate for analyzing longitu-
dinal data with individual-specific time trends (therefore, a random slope for time effect,
in addition to the random intercept described above). In the context of single variant
test, GMMAT works with the following GLMM for time trends

ηij = g(µij) = Xijα+Giβ + b0i + b1iTij.

Typically, the time-dependent variable of interest Tij should be included in the fixed effect
covariates Xij. The random effects of the intercept b0, which is a length n vector of b0i (n

is the number of individuals), is assumed to follow b0 ∼ N(0,
∑K

k=1 τkVk+τK+1In), where
the first K terms account for random individual effects of the intercept attributable to
n×n matrices Vk, and the last term accounts for random individual effects of the intercept
not attributable to relatedness matrices Vk. In addition, we assume Cov(b0,b1) =∑K

k=1 τK+1+kVk + τ2K+2In), where b1 is a length n vector of the random effects of the
slope b1i. The first K terms account for the covariance of the random individual effects of
the intercept and the slope attributable to n×n matrices Vk, and the last term accounts
for the covariance of the random individual effects of the intercept and the slope not
attributable to relatedness matrices Vk. Finally, we assume b1 ∼ N(0,

∑K
k=1 τ2K+2+kVk+
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τ3K+3In), where the first K terms account for random individual effects of the slope
attributable to n×n matrices Vk, and the last term accounts for random individual effects
of the slope not attributable to relatedness matrices Vk. For example, with K = 1, let
b = (bT

0 ,b
T
1 )T be the stacked random individual effects (for both the intercept and the

slope), Z be the N × 2n design matrix for linking observations with their corresponding
random intercept and random slope (N is the total number of observations, again we do
not need the same numbers of observations from each individual), the random effects for

all observations Zb ∼ N(0,Z{
(
τ1 τ3
τ3 τ5

)
⊗Vk+

(
τ2 τ4
τ4 τ6

)
⊗In}ZT ) accounts for all sources

of correlation, and the observed outcome yij are assumed to be independent conditioning
on that.

Variant set tests for longitudinal data in the SMMAT framework are similarly defined,
for both random intercept only models (repeated, exchangeable measures), and random
intercept and random slope models (time trends).

For multiple phenotype analysis, m continuous traits can be jointly modeled in LMMs.
Let Y be an n ×m matrix of phenotypes, X be an n × p matrix of covariates, α be a
p ×m matrix of fixed covariate effects including the intercept, G be an n × q matrix of
genotypes (note that for single variant analysis, q = 1), β be a q×m matrix of genotype
effects, b be an n×m matrix of random effects, ε be an n×m matrix of random errors,
we have

Y = Xα+ Gβ + b + ε.

In this joint model, ε follow a matrix normal distribution MN n×m(0, In,Ψ0), such that
the vectorized form vec(ε) ∼ Nnm(0,Ψ0⊗ In), where Ψ0 is an m×m variance-covariance
matrix for residuals of m continuous traits. The vectorized form of the random effects
vec(b) ∼ Nnm(0,

∑K
k=1 Ψk ⊗Vk), where m×m matrices Ψk are the variance-covariance

component parameters for m continous traits, corresponding to known n × n between-
subject relatedness matrices Vk. Once a null model without any genetic effects is fitted,
the multiple phenotype single variant test H0 : β = 0 versus H1 : β 6= 0 can proceed
using a chi-square distribution with m degrees of freedom. Variant set tests for multiple
phenotypes are currently defined as the burden test, SKAT, SKAT-O, and SMMAT effi-
cient hybrid test on all qm parameters in β. Therefore, it is recommended that multiple
phenotypes are rescaled to the same variance before conducting variant set tests.

3 Getting started

3.1 Downloading GMMAT

GMMAT can be downloaded at https://github.com/hanchenphd/GMMAT. It can be in-
stalled as a regular R package. It is also available on CRAN (https://CRAN.R-project.
org/package=GMMAT).

3.2 Installing GMMAT

GMMAT links to R packages Rcpp and RcppArmadillo, and also imports R packages
Rcpp, CompQuadForm, foreach, parallel, Matrix, methods, Bioconductor packages Se-
qArray and SeqVarTools. In addition, GMMAT requires testthat to run code checks
during development, and doMC to run parallel computing in glmm.score and SMMAT
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for genotype files in the GDS format (however, doMC is not available on Windows and
these functions will switch to a single thread). These dependencies should be installed
before installing GMMAT.

For optimal computational performance, it is recommended to use an R version con-
figured with the Intel Math Kernel Library (or other fast BLAS/LAPACK libraries). See
the instructions on building R with Intel MKL (https://software.intel.com/en-us/
articles/using-intel-mkl-with-r).

Here is an example for installing GMMAT and all its dependencies in an R session
(assuming none of the R packages other than the default has been installed):

> ## try http:// if https:// URLs are not supported

> ## remove "doMC" below if you are running Windows

> install.packages(c("devtools", "RcppArmadillo", "CompQuadForm", "doMC",

+ "foreach", "Matrix", "BiocManager", "testthat"),

+ repos = "https://cran.r-project.org/")

> BiocManager::install(c("SeqArray", "SeqVarTools"))

> devtools::install_github("hanchenphd/GMMAT")

3.3 Using GMMAT in Analysis Commons

The GMMAT package (version 1.1.2) is also available in Analysis Commons10 on DNAnexus
cloud computing platform (https://platform.dnanexus.com/), as the ”gmmat v1.1.2”
App in Project ”Commons Tools”.

4 Input

GMMAT requires the phenotype and covariates in an R data frame, known positive semi-
definite matrices Vk as an R matrix (in the case of a single matrix) or an R list (in the
case of multiple matrices), and genotypes saved in a plain text file (or in a compressed
plain text file .gz or .bz2), a PLINK binary PED file, or in a GDS format file. We describe
how to prepare these data below.

4.1 Phenotype and covariates

Phenotype and covariates should be either saved as a data frame in R, or recorded in a
text file that can be read into R as a data frame. The rows of the data frame represent
different individuals, and the columns represent different variables. For example, here we
show the header and first 6 rows of the example text file pheno.txt:

id disease trait age sex

1 1 5.45 61 0

2 1 5.61 50 1

3 0 3.1 54 0

4 1 6.22 48 1

5 1 5.42 49 0

6 0 6.22 50 1

...
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In this example, there are an ID column (id), one binary phenotype (disease), one
quantitative phenotype (trait) and two covariates (age and sex). There can be additional
columns for unused variables, and the order of columns does not matter. To read it into
R as a data frame, you can use

> pheno.file <- system.file("extdata", "pheno.txt", package = "GMMAT")

> pheno <- read.table(pheno.file, header = TRUE)

Missing values in the data frame should be recognizable by R as NA. For example, if
you use . (period) to denote missing values in the text file, you can use

> pheno <- read.table(pheno.file, header = TRUE, na.strings = ".")

4.2 Matrices of covariance structure

GMMAT requires at least one positive semi-definite matrix Vk to model the covariance
structure of the random effects (for cross-sectional data). In the simplest case, this is
usually a GRM estimated from the genotype data. Currently GMMAT does not provide
a function to calculate the GRM, but there are many software packages that can do this
job. For example, GEMMA11 can be used to estimate either the centered GRM or the
standardized GRM. GRM saved in an external file must be read into R as a matrix. For
example,

> GRM.file <- system.file("extdata", "GRM.txt.bz2", package = "GMMAT")

> GRM <- as.matrix(read.table(GRM.file, check.names = FALSE))

This matrix can include more than n individuals in practice, but the rownames and
colnames must include all individuals’ id in the phenotype and covariates data frame.
Multiple matrices can be used to allow multiple components of random effects. In such
cases, the matrices should be constructed as a list of matrices, and each matrix should
comply with the rownames and colnames requirements described above (although they
don’t have to be in the same order). For example, if you have 3 R matrices Mat1, Mat2
and Mat3, you can construct the R list

> Mats <- list(Mat1, Mat2, Mat3)

All matrices must be positive semi-definite. Sparse matrices from the Matrix package
are also allowed.

4.3 Genotypes

GMMAT can take genotype files either in plain text format (or the compressed version
.gz or .bz2), PLINK binary PED format, or in the GDS format. Non-integer imputed
genotypes (dosages) should be saved in plain text files (or the compressed version .gz
or .bz2). The plain text file can be space-, tab-, comma-, or even special character-
delimited, and there can be additional rows (e.g., comments) and/or columns before the
genotype data matrix. Here is an example of part of a tab-delimited plain text genotype
file geno.txt:
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# This is an example genotype file for demonstrating GMMAT

# Each row represents one SNP for all individuals in the study

# First column is SNP name, second and third columns are alleles (Allele1

and Allele2): it is recommended to use Allele1 for the reference allele

and Allele2 for the effect allele, but reversed coding is also allowed

and does not affect association test results (users should be cautious

with allele coding when interpreting results)

# Starting from fourth column, each column represents one individual

# In this example, there are 400 individuals and 100 SNPs

SNP1 A T 0 0 NA NA ...

SNP2 A C 1 0 1 0 ...

SNP3 A C 0 0 0 1 ...

SNP4 A G 1 0 1 1 ...

SNP5 A G 1 0 2 1 ...

...

Genotypes in Variant Call Format (VCF) and PLINK binary PED format can be
converted to the GDS format using seqVCF2GDS and seqBED2GDS functions from the
SeqArray package:

> SeqArray::seqVCF2GDS("VCF_file_name", "GDS_file_name")

> SeqArray::seqBED2GDS("BED_file_name", "FAM_file_name", "BIM_file_name",

+ "GDS_file_name")

5 Running GMMAT

If GMMAT has been successfully installed, you can load it in an R session using

> library(GMMAT)

We provide 6 functions in GMMAT : glmmkin for fitting the GLMM with known
Vk, glmm.score for running single variant score tests, glmm.wald for single variant
Wald tests, glmm.score.meta for performing meta-analysis on score test results, SM-
MAT for running variant set tests SMMAT (also known as gene-based tests or aggregate
variant tests), and SMMAT.meta for performing variant set tests meta-analysis using
intermediate files (single variant scores and their covariance matrices in each variant set,
from the SMMAT function). Details about how to use these functions, their arguments
and returned values can be found in the R help document of GMMAT. For example, to
learn more about glmmkin, in an R session you can type

> ?glmmkin

5.1 Fitting GLMM

Here we provide a simple example of fitting GLMM using glmmkin. We have the binary
phenotype disease, the quantitative phenotype trait, and two covariates age and sex,
saved in a plain text file pheno.txt. We also have computed the GRM externally and
saved it in a compressed file GRM.txt.bz2. In this example we fit a GLMM assuming
Bernoulli distribution of the disease and logit link function (also known as a logistic mixed
model). We adjust for age and sex, and use one n×n matrix as Vk (the GRM) to model
the covariance structure of the random effects.

9
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> model0 <- glmmkin(disease ~ age + sex, data = pheno, kins = GRM,

+ id = "id", family = binomial(link = "logit"))

> model0$theta

dispersion kins1

1.0000000 0.3377331

> model0$coefficients

(Intercept) age sex

0.472081189 -0.006818634 -0.086444746

> model0$cov

(Intercept) age sex

(Intercept) 1.21381797 -0.0228770377 -0.041621901

age -0.02287704 0.0004506975 0.000393544

sex -0.04162190 0.0003935440 0.043649530

Note that pheno and GRM must be read into R as a data frame and a matrix, respec-
tively. When using the function glmmkin, the data frame of phenotype and covariates
(in our example, pheno) should be passed to the argument ”data”, and the matrix or the
list of matrices for random effects (in our example, the matrix GRM) should be passed
to the argument ”kins”. The first argument of the function glmmkin is ”fixed”, which
requires a formula for fixed effects. The syntax of the formula is the same as the formula
used in a linear model lm and a generalized linear model glm. The example model above
is equivalent to

> model0 <- glmmkin(fixed = disease ~ age + sex, data = pheno, kins = GRM,

+ id = "id", family = binomial(link = "logit"))

The argument ”id” specifies the ID column name in the data frame pheno. The argument
”family” takes the same syntax as used in a generalized linear model glm. For example,
if you would like to fit a LMM for a quantitative trait, you can use

> model1 <- glmmkin(fixed = trait ~ age + sex, data = pheno, kins = GRM,

+ id = "id", family = gaussian(link = "identity"))

Please avoid using LMMs for binary traits.
To fit a heteroscedastic LMM for a quantitative trait (allowing heterogeneous residual

variances among different groups),12 you can use

> model2 <- glmmkin(fixed = trait ~ age + sex, data = pheno, kins = GRM,

+ id = "id", groups = "disease",

+ family = gaussian(link = "identity"))

> model2$theta

1 0 kins1

0.9082504 1.0589985 1.0853533

10



In this example, groups are defined by disease status. Therefore, disease cases and controls
are assumed to have different residual variances on the quantitative trait, after adjusting
for age and sex.

Here is a list of supported family objects (for details and alternative link/variance
functions, please see the R help document of family):

Family Link Trait Variance
binomial logit binary µ(1− µ)
gaussian identity continuous φ
Gamma inverse continuous φµ2

inverse.gaussian 1/muˆ2 continuous φµ3

poisson log count µ
quasi identity continuous φ

quasibinomial logit binary φµ(1− µ)
quasipoisson log count φµ

The function glmmkin returns a list. Except for the heteroscedastic LMM, the first
element in the vector theta is the estimate of the dispersion parameter φ (for binary and
Poisson data we have a fixed φ = 1), and the remaining elements are variance component
estimates for each matrix modeling the covariance structure of the random effects (in the
same order as in the list of matrices passed to ”kins”). In our binary disease example
model0 above, we have only one such matrix (the GRM, therefore K = 1), and the
results show that the estimate of the variance component parameter τ1 is 0.3377331. The
vector coefficients gives the fixed effect estimates, and the order matches the order of
covariates in the formula passed to ”fixed”. In our binary disease example above, we have
an intercept 0.472081189, and an age effect estimate −0.006818634, a sex effect estimate
−0.086444746. The matrix cov is the covariance matrix of the fixed effect estimates.

When a heteroscedastic LMM is fitted using the function glmmkin, the first elements
(with length equal to the number of groups) in the vector theta are the estimated residual
variances for each group (in the same order as the levels of groups appearing in the
data), followed by variance component estimates for each matrix modeling the covariance
structure of the random effects (in the same order as in the list of matrices passed to
”kins”). In our heteroscedastic LMM model2 above, 0.9082504 is the residual variance
estimate for cases, 1.0589985 is the residual variance estimate for controls (since in the
data pheno, disease 1 appears before disease 0), and 1.0853533 is the estimate of the
variance component parameter for the GRM.

In the following example, we have the same binary phenotype disease, covariates age
and sex, and the same GRM as in the previous example. In addition to the GRM, we
have another n× n matrix to model the covariance structure of the random effects. The
GLMM is

log(
P (diseasei = 1|agei, sexi, bi)

1− P (diseasei = 1|agei, sexi, bi)
) = α0 + α1 × agei + α2 × sexi + bi,

where b ∼ N(0, τ1V1 + τ2V2), V1 is the GRM, V2 is a block diagonal matrix with block
size 10 and all entries equal to 1 within a block. Here V2 is used to model clusters: in
this example we have 40 clusters with 10 individuals in each cluster. For individual i in
cluster j (j = 1, 2, . . . , 40), the model above is equivalent to

log(
P (diseasei = 1|agei, sexi, b1i, b2j)

1− P (diseasei = 1|agei, sexi, b1i, b2j)
) = α0 + α1 × agei + α2 × sexi + b1i + b2j,
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where b1 ∼ N(0, τ1V1), b2j ∼ N(0, τ2). All 10 individuals in a cluster share a common
b2j, and b2j are independent and identically distributed across clusters.

> M10 <- matrix(0, 400, 400)

> for(i in 1:40) M10[(i-1)*10+(1:10), (i-1)*10+(1:10)] <- 1

> rownames(M10) <- colnames(M10) <- 1:400

> Mats <- list(GRM, M10)

> model3 <- glmmkin(fixed = disease ~ age + sex, data = pheno, id = "id",

+ kins = Mats, family = binomial(link = "logit"))

> model3$theta

dispersion kins1 kins2

1.0000000 0.2199087 0.1219592

In this example, the dispersion parameter φ is fixed to 1, the variance component estimates
τ̂1 = 0.2199087, τ̂2 = 0.1219592, corresponding to the n× n matrices V1 (the GRM) and
V2 (the block diagonal matrix M10), respectively.

For longitudinal data, the following example illustrates a random intercept only model,
which is appropriate for analyzing repeated measures with no time trends. We have 5
exchangeable observations of the continuous phenotype y.repeated for each individual,
adjusting for sex as a fixed effects covariate. The model is

yij = α0 + α1 × sexi + bi + εij,

where the random individual effects b ∼ N(0, τ1V1+τ2In), V1 is the GRM, and the error
εij ∼ N(0, φ).

> pheno2.file <- system.file("extdata", "pheno2.txt", package = "GMMAT")

> pheno2 <- read.table(pheno2.file, header = TRUE)

> model4 <- glmmkin(y.repeated ~ sex, data = pheno2, kins = GRM, id = "id",

+ family = gaussian(link = "identity"))

Duplicated id detected...

Assuming longitudinal data with repeated measures...

> model4$theta

dispersion kins1 kins2

0.5089982 0.2410866 0.2129918

In this example, the dispersion parameter estimate is φ̂ = 0.5089983, and the variance
component estimates τ̂1 = 0.2410866, τ̂2 = 0.2129918, corresponding to the GRM and
the identity matrix, respectively, for the random intercept of individual effects.

The last example of this section illustrates a random intercept and random slope
model, which is appropriate for analyzing longitudinal data with individual-specific time
trends. We have observations of the continuous phenotype y.trend at 5 time points for
each individual, adjusting for sex and time as fixed effects covariates. The model is

yij = α0 + α1 × sexi + α2 × timeij + b0i + b1i × timeij + εij,

where the random effects of the intercept b0 ∼ N(0, τ1V1+τ2In), the covariance Cov(b0,b1) =
τ3V1+τ4In), the random effects of the time slope b1 ∼ N(0, τ5V1+τ6In), V1 is the GRM,
and the error εij ∼ N(0, φ).
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> model5 <- glmmkin(y.trend ~ sex + time, data = pheno2, kins = GRM, id = "id",

+ random.slope = "time", family = gaussian(link = "identity"))

Duplicated id detected...

Assuming longitudinal data with repeated measures...

> model5$theta

dispersion kins1.var.intercept kins2.var.intercept

2.0139758 1.5056896 0.5443516

kins1.cov.intercept.slope kins2.cov.intercept.slope kins1.var.slope

1.2539355 -0.2469170 1.1690890

kins2.var.slope

0.6931902

In this example, the dispersion parameter estimate is φ̂ = 2.0139758, the variance com-
ponent estimates τ̂1 = 1.5056896, τ̂2 = 0.5443516, corresponding to the GRM and the
identity matrix, for the random intercept of individual effects, the covariance estimates
τ̂3 = 1.2539355, τ̂4 = −0.2469170, corresponding to the GRM and the identity matrix,
and the variance component estimates τ̂5 = 1.1690890, τ̂6 = 0.6931902, corresponding to
the GRM and the identity matrix, for the random slope of individual time effects.

5.2 Single variant tests

5.2.1 Score tests

When performing score tests in GWAS, we need a fitted GLMM under the null hypothesis
H0 : β = 0 and a genotype file. We can construct score tests using the glmmkin class
object returned from the function glmmkin for the null GLMM. Note that score tests
require only vector/matrix multiplications and are much faster than Wald tests, which
require fitting a new GLMM for each SNP. Score tests give the direction of effects but
not effect size estimates. However, we can simply add score statistics and their variances
from different studies to perform a meta-analysis. Here we provide a simple example of
score tests using the plain text genotype file ”geno.txt”:

> geno.file <- system.file("extdata", "geno.txt", package = "GMMAT")

> glmm.score(model0, infile = geno.file, outfile =

+ "glmm.score.text.testoutfile.txt", infile.nrow.skip = 5,

+ infile.ncol.skip = 3, infile.ncol.print = 1:3,

+ infile.header.print = c("SNP", "Allele1", "Allele2"))

The first argument in glmm.score is the returned glmmkin class object from the null
GLMM. The argument ”infile” is the name (and path if not in the current working di-
rectory) of the plain text genotype file (or compressed files .gz and .bz2), and the ar-
gument ”outfile” is the name of the output file. In this example genotype file, we have
5 comment lines to skip using ”infile.nrow.skip”. The first 3 columns contain informa-
tion on SNP name and alleles, which we skip from the analysis using ”infile.ncol.skip”
but subsequently keep in the output file using ”infile.ncol.print” to select the 1st, 2nd
and 3rd columns. Corresponding column names in the output file can be assigned using
”infile.header.print”.

If your genotype information is saved in a PLINK binary PED file ”geno.bed”, you
can use:
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> geno.file <- strsplit(system.file("extdata", "geno.bed",

+ package = "GMMAT"), ".bed", fixed = TRUE)[[1]]

> glmm.score(model0, infile = geno.file, outfile =

+ "glmm.score.bed.testoutfile.txt")

Here ”infile” is the prefix (and path if not in the current working directory) of the PLINK
files (.bed, .bim and .fam). SNP information in the .bim file (in our example, ”geno.bim”)
is carried over to the output file.

Alternatively, if your genotype information is saved in a GDS file ”geno.gds”, you can
use:

> geno.file <- system.file("extdata", "geno.gds", package = "GMMAT")

> glmm.score(model0, infile = geno.file, outfile =

+ "glmm.score.gds.testoutfile.txt")

The function glmm.score returns the actual computation time in seconds from its
function call for plain text genotype files (or compressed files .gz and .bz2) and PLINK
binary PED files. For GDS genotype files, no value is returned.

5.2.2 Wald tests

When performing Wald tests for candidate SNPs to get effect size estimates, we need the
phenotype (and covariates) data frame, the matrices modeling the covariance structure
of the random effects, and the genotype file. To perform Wald tests, we do not need
fitting the null GLMM required in score tests using glmmkin. In the example below, we
perform Wald tests for 4 candidate SNPs of interest and get their effect estimates:

> geno.file <- system.file("extdata", "geno.txt", package = "GMMAT")

> snps <- c("SNP10", "SNP25", "SNP1", "SNP0")

> glmm.wald(fixed = disease ~ age + sex, data = pheno, kins = GRM, id = "id",

+ family = binomial(link = "logit"), infile = geno.file, snps = snps,

+ infile.nrow.skip = 5, infile.ncol.skip = 3, infile.ncol.print = 1:3,

+ infile.header.print = c("SNP", "Allele1", "Allele2"))

SNP Allele1 Allele2 N AF BETA SE PVAL converged

1 SNP10 A G 400 0.23250000 -0.1397665 0.1740090 0.4218510 TRUE

2 SNP25 A C 400 0.17500000 -0.0292076 0.1934447 0.8799861 TRUE

3 SNP1 A T 393 0.02544529 0.4566064 0.4909946 0.3523907 TRUE

4 SNP0 <NA> <NA> NA NA NA NA NA NA

The syntax is a hybrid of glmmkin and glmm.score. Note that the argument ”fixed”
is a formula including the covariates but NOT the test SNPs. The argument ”snps” is
a character vector of the names of the test SNPs. If ”infile” is a plain text genotype file
(or compressed files .gz and .bz2), the function glmm.wald returns a data frame with
first columns copied from the genotype file using ”infile.ncol.print” and names specified
using ”infile.header.print”, followed by the sample size N, the allele frequency (AF) of the
effect allele (Allele2 in this example, but you can also define Allele1 as the effect allele in
your coded genotype file), effect size estimate BETA of the effect allele, standard error
SE, Wald test P value PVAL, and an indicator for whether the GLMM is converged.
Note that in the example above, SNP0 is not actually included in the genotype file, so
all results are missing.
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If your genotype information is saved in a PLINK binary PED file ”geno.bed”, you
can use:

> geno.file <- strsplit(system.file("extdata", "geno.bed",

+ package = "GMMAT"), ".bed", fixed = TRUE)[[1]]

> glmm.wald(fixed = disease ~ age + sex, data = pheno, kins = GRM, id = "id",

+ family = binomial(link = "logit"), infile = geno.file, snps = snps)

CHR SNP cM POS A1 A2 N AF BETA SE PVAL

1 1 SNP10 0 10 G A 400 0.7675000 0.1397665 0.1740090 0.4218510

2 1 SNP25 0 25 C A 400 0.8250000 0.0292076 0.1934447 0.8799861

3 1 SNP1 0 1 T A 393 0.9745547 -0.4566064 0.4909946 0.3523907

4 <NA> SNP0 <NA> <NA> <NA> <NA> NA NA NA NA NA

converged

1 TRUE

2 TRUE

3 TRUE

4 NA

It returns a data frame with first 6 columns copied from the .bim file (in our example,
”geno.bim”), followed by the sample size N, the allele frequency (AF) of A2 allele (the
effect allele, note that A1 allele in .bim is coded 0 and A2 allele is coded 1), effect size
estimate BETA of A2 allele, standard error SE, Wald test P value PVAL, and an indicator
for whether the GLMM is converged.

Alternatively, if your genotype information is saved in a GDS file ”geno.gds”, you can
use:

> geno.file <- system.file("extdata", "geno.gds", package = "GMMAT")

> glmm.wald(fixed = disease ~ age + sex, data = pheno, kins = GRM, id = "id",

+ family = binomial(link = "logit"), infile = geno.file, snps = snps)

SNP CHR POS REF ALT N AF BETA SE PVAL

1 SNP10 1 10 G A 400 0.7675000 0.1397665 0.1740090 0.4218510

2 SNP25 1 25 C A 400 0.8250000 0.0292076 0.1934447 0.8799861

3 SNP1 1 1 T A 393 0.9745547 -0.4566064 0.4909946 0.3523907

4 SNP0 <NA> <NA> <NA> <NA> NA NA NA NA NA

converged

1 TRUE

2 TRUE

3 TRUE

4 NA

It returns a data frame with first 5 columns information extracted from the GDS file,
followed by the sample size N, the allele frequency (AF) of ALT allele, effect size estimate
BETA of ALT allele, standard error SE, Wald test P value PVAL, and an indicator for
whether the GLMM is converged.
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5.2.3 Meta-analysis

Score test results from multiple studies can be combined in meta-analysis. We provide the
function glmm.score.meta to perform meta-analysis on score test results. Generally,
if each study performs score tests using genotypes in PLINK binary PED format or
GDS format, the score test output from glmm.score can be directly used as input files.
Otherwise the meta-analysis function needs a tab or space delimited plain text file (or
compressed files that can be recognized by the R function read.table) with at least 8
columns: SNP name, effect allele, reference allele, N, AF, SCORE, VAR and PVAL. Note
that the SNP name, effect allele, reference allele can have customized column names in
different input files, but the column names of N, AF, SCORE, VAR and PVAL should
match exactly. Customized SNP and alleles column names can be specified using ”SNP”,
”A1” and ”A2”. Note that we do not define whether ”A1” or ”A2” is the effect allele:
it is your choice. However, your choice should be consistent across different studies:
for example, if you have two studies with the same allele column names ”Allele1” and
”Allele2”, and you want to define ”A1” as the effect allele, but the effect allele is ”Allele1”
in the first study and ”Allele2” in the second study, you need A2 = c(”Allele2”, ”Allele1”)
for the reference allele column in each study, and A1 = c(”Allele1”, ”Allele2”) for the
effect allele column in each study. Note that in glmm.score output from analyzing
PLINK binary PED format genotypes, the effect allele has column name ”A2”, and in
glmm.score output from analyzing GDS format genotypes, the effect allele has column
name ”ALT”. Thus if you have a result file from analyzing PLINK binary PED format
genotypes in the third study, and another result file from analyzing GDS format genotypes
in the fourth study, in addition to the aforementioned two studies, and you still want to
define ”A1” as the effect allele, you need A2 = c(”Allele2”, ”Allele1”, ”A1”, ”REF”) for the
reference allele column in each study, and A1 = c(”Allele1”, ”Allele2”, ”A2”, ”ALT”) for
the effect allele column in each study.

Here is an example of meta-analyzing 3 score test result files:

> meta1.file <- system.file("extdata", "meta1.txt", package = "GMMAT")

> meta2.file <- system.file("extdata", "meta2.txt", package = "GMMAT")

> meta3.file <- system.file("extdata", "meta3.txt", package = "GMMAT")

> glmm.score.meta(files = c(meta1.file, meta2.file, meta3.file),

+ outfile = "glmm.score.meta.testoutfile.txt",

+ SNP = rep("SNP", 3), A1 = rep("A1", 3), A2 = rep("A2", 3))

The following SNPs have been removed due to inconsistent alleles across studies:

[1] "L10" "L12" "L15"

5.3 Variant set tests

5.3.1 Pooled analysis

Variant set tests (also known as gene-based tests or aggregate variant tests) in a single
study (or a pooled analysis of multiple studies) can be performed using the function
SMMAT. Currently only the GDS genotype format is supported. In addition to a
glmmkin class object returned from the function glmmkin for the null GLMM and the
GDS format genotype file, a group definition file with no header and 6 columns (variant
set id, variant chromosome, variant position, variant reference allele, variant alternate
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allele, weight) is also required. For example, here we show the first 6 rows of the example
group definition file ”SetID.withweights.txt”:

Set1 1 1 T A 1

Set1 1 2 A C 4

Set1 1 3 C A 3

Set1 1 4 G A 6

Set1 1 5 A G 9

Set1 1 6 C A 9

Note that each variant in the group definition file is matched by chromosome, position,
reference allele and alternate allele with variants from the GDS file. One genetic variant
can be included in different groups with possibly different weights. If no external weights
are needed in the analysis, simply replace the 6th column by all 1’s.

Four variant set tests are supported in the SMMAT framework: ”B” for the burden
test, ”S” for SKAT, ”O” for SKAT-O and ”E” for the efficient hybrid test of the burden
test and SKAT. You can include one or more tests in a single analysis. If ”O” is selected,
the burden test and SKAT results will be automatically included; if ”E” is selected, the
burden test results will be automatically included. Therefore, the following example gives
all four test results:

> group.file <- system.file("extdata", "SetID.withweights.txt",

+ package = "GMMAT")

> geno.file <- system.file("extdata", "geno.gds", package = "GMMAT")

> SMMAT(model0, group.file = group.file, geno.file = geno.file,

+ MAF.range = c(1e-7, 0.5), miss.cutoff = 1, method = "davies",

+ tests = c("O", "E"))

group n.variants miss.min miss.mean miss.max freq.min freq.mean freq.max

1 Set1 20 0 0.000875 0.0175 0.5000 0.8150402 0.99125

2 Set2 20 0 0.000000 0.0000 0.6400 0.8795625 0.99125

3 Set3 20 0 0.000000 0.0000 0.5675 0.8385000 0.98875

4 Set4 20 0 0.000000 0.0000 0.5075 0.7450625 0.98375

5 Set5 20 0 0.000000 0.0000 0.5050 0.7266250 0.98375

6 Set6 20 0 0.000000 0.0000 0.5050 0.7928125 0.99625

7 Set7 20 0 0.000000 0.0000 0.5000 0.7905625 0.99625

8 Set8 20 0 0.000000 0.0000 0.5000 0.7828125 0.99375

9 Set9 20 0 0.000000 0.0000 0.6725 0.8363750 0.99375

B.score B.var B.pval S.pval O.pval O.minp O.minp.rho

1 194.05011 81468.56 0.49659373 0.11615304 0.18921935 0.11615304 0

2 -82.55532 275927.57 0.87511718 0.89844275 1.00000000 0.87511718 1

3 184.18465 236240.82 0.70472885 0.48496499 0.65744122 0.48496499 0

4 296.38607 26152.83 0.06684276 0.36789748 0.10658180 0.06684276 1

5 446.62340 74481.48 0.10173395 0.13608484 0.14697384 0.10173395 1

6 260.94738 129355.49 0.46812168 0.67455936 0.63135503 0.46812168 1

7 186.76450 144364.91 0.62304086 0.46755702 0.62998910 0.46755702 0

8 -217.12052 109511.48 0.51175880 0.04054031 0.07271573 0.04054031 0

9 32.51345 177820.67 0.93854152 0.36683211 0.55166533 0.36683211 0

E.pval

1 0.18887303
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2 0.96115053

3 0.50543498

4 0.11280647

5 0.30955819

6 0.57325090

7 0.56439536

8 0.05185727

9 0.59186822

It returns a data frame with first 8 columns showing the group (variant set) name, num-
ber of variants in each group, minimum, mean, maximum missing rate of variants in
each group, minimum, mean, maximum effect allele frequency of variants in each group,
followed by variant set test results. For Burden, 3 columns will be included to show the
burden test score, variance of the score, and its P value. For SKAT, the P value column
will be included. For SKAT-O, 3 columns will be included to show SKAT-O P value,
minimum P value in the search grid, and the value of the mixing parameter ρ at which
the minimum P value is observed. For the efficient hybrid test, the P value column will
be included.

For a single study, intermediate files containing single variant scores and their covari-
ance matrices for each variant set (based on the group definition file) can be saved for
future use in re-analysis and/or meta-analysis. For example, here we perform the burden
test and save intermediate files:

> SMMAT(model0, group.file = group.file, geno.file = geno.file,

+ MAF.range = c(1e-7, 0.5), miss.cutoff = 1, method = "davies",

+ tests = "B", meta.file.prefix = "SMMAT.meta")

group n.variants miss.min miss.mean miss.max freq.min freq.mean freq.max

1 Set1 20 0 0.000875 0.0175 0.5000 0.8150402 0.99125

2 Set2 20 0 0.000000 0.0000 0.6400 0.8795625 0.99125

3 Set3 20 0 0.000000 0.0000 0.5675 0.8385000 0.98875

4 Set4 20 0 0.000000 0.0000 0.5075 0.7450625 0.98375

5 Set5 20 0 0.000000 0.0000 0.5050 0.7266250 0.98375

6 Set6 20 0 0.000000 0.0000 0.5050 0.7928125 0.99625

7 Set7 20 0 0.000000 0.0000 0.5000 0.7905625 0.99625

8 Set8 20 0 0.000000 0.0000 0.5000 0.7828125 0.99375

9 Set9 20 0 0.000000 0.0000 0.6725 0.8363750 0.99375

B.score B.var B.pval

1 194.05011 81468.56 0.49659373

2 -82.55532 275927.57 0.87511718

3 184.18465 236240.82 0.70472885

4 296.38607 26152.83 0.06684276

5 446.62340 74481.48 0.10173395

6 260.94738 129355.49 0.46812168

7 186.76450 144364.91 0.62304086

8 -217.12052 109511.48 0.51175880

9 32.51345 177820.67 0.93854152

In the example above, a space-delimited file ”SMMAT.meta.score.1” will be generated to
save the single variant scores, and a binary file ”SMMAT.meta.var.1” will be generated to
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save the covariance matrices for the variant sets. Note that the binary file is not human-
readable, but can be used by SMMAT.meta in re-analysis and/or meta-analysis.

5.3.2 Meta-analysis

With intermediate files generated by SMMAT, the function SMMAT.meta can be used
in re-analysis of single study results, and/or meta-analysis to combine multiple studies.
Here we show an example of rerunning SKAT using intermediate files generated above in
the burden test:

> SMMAT.meta(meta.files.prefix = "SMMAT.meta", n.files = 1,

+ group.file = group.file, MAF.range = c(1e-7, 0.5),

+ miss.cutoff = 1, method = "davies", tests = "S")

group n.variants S.pval

1 Set1 20 0.11615305

2 Set2 20 0.89844275

3 Set3 20 0.48496499

4 Set4 20 0.36789748

5 Set5 20 0.13608485

6 Set6 20 0.67455935

7 Set7 20 0.46755701

8 Set8 20 0.04054031

9 Set9 20 0.36683210

The first argument, ”meta.files.prefix”, is a vector of intermediate files’ prefix with length
equal to the number of studies, and the second argument, ”n.files”, is a vector of integers
showing how many sets of intermediate files each study has (also with length equal to the
number of studies). In our above example of re-analysis, we have one set of intermedi-
ate files (”SMMAT.meta.score.1” and ”SMMAT.meta.var.1”) with prefix ”SMMAT.meta”.
The group definition file (passed to ”group.file”) should be the same as the one used to
generate intermediate files by SMMAT (with possibly different weights allowed). In the
above example, only SKAT is performed, but four variant set tests are supported in the
SMMAT framework: ”B” for the burden test, ”S” for SKAT, ”O” for SKAT-O and ”E” for
the efficient hybrid test of the burden test and SKAT. You can include one or more tests
by passing a vector to the argument ”tests”. If ”O” is selected, the burden test and SKAT
results will be automatically included; if ”E” is selected, the burden test results will be
automatically included.

6 Output

The single variant score test function glmm.score generates a tab-delimited plain text
output file. Here we show the header and the first five rows of the example output
”glmm.score.text.testoutfile.txt” from using a plain text genotype file ”geno.txt” in the
function glmm.score:

SNP Allele1 Allele2 N AF SCORE VAR PVAL

SNP1 A T 393 0.0254453 1.985 4.55635 0.352406

SNP2 A C 400 0.5 3.51032 46.3328 0.60606
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SNP3 A C 400 0.2075 -0.5334 30.6023 0.923185

SNP4 A G 400 0.29875 -3.11494 40.5128 0.624567

SNP5 A G 400 0.59375 -4.00135 42.2757 0.538287

...

The first 3 columns are copied from the genotype file using ”infile.ncol.print” with names
specified using ”infile.header.print”. Results are included in 5 columns: the sample size N,
the allele frequency (AF) of the effect allele (Allele2 in this example, but it is the user’s
choice: you can also define Allele1 as the effect allele in your coded genotype file), the
score statistic SCORE of the effect allele, the variance of the score VAR, and score test
P value PVAL.

If you use a PLINK binary PED file ”geno.bed” as the genotype file, here are the
header and the first 5 rows of the example output ”glmm.score.bed.testoutfile.txt” from
glmm.score:

CHR SNP cM POS A1 A2 N AF

1 SNP1 0 1 T A 393 0.974555

1 SNP2 0 2 A C 400 0.5

1 SNP3 0 3 C A 400 0.7925

1 SNP4 0 4 G A 400 0.70125

1 SNP5 0 5 A G 400 0.59375

...

SCORE VAR PVAL

-1.985 4.55635 0.352406

3.51032 46.3328 0.60606

0.5334 30.6023 0.923185

3.11494 40.5128 0.624567

-4.00135 42.2757 0.538287

...

The first 6 columns are copied from the .bim file (in our example, ”geno.bim”): the
chromosome CHR, SNP name, genetic location cM, physical position POS, and alleles
A1 and A2. Results are included in 5 columns: the sample size N, the allele frequency
(AF) of A2 allele, the score statistic SCORE of A2 allele, the variance of the score VAR,
and score test P value PVAL.

If you use a GDS genotype file ”geno.gds”, here are the header and the first 5 rows of
the example output ”glmm.score.gds.testoutfile.txt” from glmm.score:

SNP CHR POS REF ALT N MISSRATE AF

SNP1 1 1 T A 393 0.0175 0.974554707379135

SNP2 1 2 A C 400 0 0.5

SNP3 1 3 C A 400 0 0.7925

SNP4 1 4 G A 400 0 0.70125

SNP5 1 5 A G 400 0 0.59375

...

SCORE VAR PVAL

-1.98499773964117 4.55635419833128 0.352406198841659

3.51031642022882 46.3327704279554 0.606059807621643

0.533400376138446 30.6022846771608 0.923185374786553

3.11494101139992 40.5127610067912 0.624566559783622
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-4.00135050079485 42.2757210650549 0.538287231263494

...

The first 5 columns are extracted from the GDS file: SNP (”annotation/id”), CHR (”chro-
mosome”), POS (”position”), reference and alternate alleles (”allele”). Results are included
in 6 columns: the sample size N (with non-missing genotypes), the genotype missing rate
MISSRATE, the allele frequency (AF) of ALT allele, the score statistic SCORE of ALT
allele, the variance of the score VAR, and score test P value PVAL.

The meta-analysis function glmm.score.meta generates a tab-delimited plain text
output file. Here are the header and the first 5 rows of the example output from the
meta-analysis ”glmm.score.meta.testoutfile.txt”:

SNP A1 A2 N AF SCORE VAR PVAL

L14 A C 10000 0.65895 21.5371 445.72 0.30766609304268

L25 A C 10000 0.78425 14.3376 387.091 0.466163476535903

L7 A C 20000 0.50435 33.1136 1019.122 0.299608382095623

L9 A C 30000 0.39875 -33.0641 904.842 0.271687891048334

L35 A C 10000 0.78425 14.3376 387.091 0.466163476535903

...

The first 3 columns are set by the function glmm.score.meta to denote SNP name and
alleles (your choice of either A1 or A2 as the effect allele). N is the total sample size, AF
is the effect allele frequency, SCORE is the summary score statistic of the effect allele,
VAR is the variance of the summary score statistic, and PVAL is the meta-analysis P
value.

In variant set tests SMMAT, if ”meta.file.prefix” is specified, space-delimited inter-
mediate files for single variant scores and binary intermediate files for covariance matrices
will be generated. Here are the header and the first 5 rows of the example intermediate
file ”SMMAT.meta.score.1”:

group chr pos ref alt N missrate altfreq

Set1 1 1 T A 393 0.0175 0.974554707379135

Set1 1 2 A C 400 0 0.5

Set1 1 3 C A 400 0 0.7925

Set1 1 4 G A 400 0 0.70125

Set1 1 5 A G 400 0 0.59375

...

SCORE VAR PVAL

-1.98499773963038 4.55635419833203 0.352406198844316

3.51031642023436 46.3327704279556 0.606059807621076

0.533400376147224 30.6022846771614 0.923185374785294

3.11494101140768 40.5127610067916 0.62456655978276

-4.00135050078827 42.2757210650552 0.538287231264163

...

The first 5 columns are copied from the group definition file, indicating the variant set
(group) id, variant chromosome, variant position, variant reference allele, variant alternate
allele, respectively. Results are included in 6 columns: the sample size N (with non-
missing genotypes), the genotype missing rate missrate, the alt allele frequency altfreq,
the score statistic SCORE of alt allele, the variance of the score VAR, and single variant
score test P value PVAL.
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7 Advanced options

7.1 Alternative model fitting algorithms

By default we use the Average Information REML algorithm13,14 to fit the GLMM in
glmmkin, which is computationally efficient and recommended in most cases. However,
there are also alternative model fitting algorithms:

method = "REML", method.optim = "Brent"

It maximizes the restricted likelihood using the derivative-free Brent method,15 but only
works when there is one matrix for the covariance structure of the random effects.

method = "ML", method.optim = "Brent"

It maximizes the likelihood using the Brent method.

method = "REML", method.optim = "Nelder-Mead"

It maximizes the restricted likelihood using the Nelder-Mead method,16 however it is
usually very slow in large samples.

method = "ML", method.optim = "Nelder-Mead"

It maximizes the likelihood using the Nelder-Mead method.
Note that the default algorithm is

method = "REML", method.optim = "AI"

A maximum likelihood version of Average Information algorithm is not available in
glmmkin.

7.2 Changing model fitting parameters

By default we set the maximum number of iteration to 500 and tolerance to declare
convergence to 1e-5:

maxiter = 500, tol = 1e-5

These parameters can be changed. When using the Brent method for maximizing the
likelihood (or restricted likelihood), we specify the search range of the ratio of the variance
component parameter τ1 over the dispersion parameter φ to be between 1e-5 and 1e5,
and we divide the search region evenly into 10 regions on the log scale:

taumin = 1e-5, taumax = 1e5, tauregion = 10

These parameters can also be changed, but they are only effective when using the Brent
method.
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7.3 Missing genotypes

It is recommended to perform genotype quality control prior to analysis to impute missing
genotypes or filter out SNPs with high missing rates. However, GMMAT does allow miss-
ing genotypes, and imputes to the mean value by default. Alternatively, in glmm.score
and glmm.wald, missing genotypes can be omitted from the analysis using

missing.method = "omit"

In variant set tests using SMMAT, instead of imputing missing genotypes to the mean
value, you can impute missing genotypes to 0 (homozygous reference allele) using

missing.method = "impute2zero"

If using a plain text (or compressed .gz and .bz2) genotype file, missing genotypes
should be coded as ”NA”. If you have missing genotypes coded in a different way, you
can specify this in the argument ”infile.na”.

7.4 Reordered genotypes

The genotype file (either a plain text file, a PLINK binary PED file, or a GDS file) can
include more individuals than in the phenotype and covariates data frame, and they can
be in different orders. GMMAT handles this issue using an argument ”select” in both
glmm.score and glmm.wald. For example, if the order of individuals in your genotype
file is A, B, C, D, but you only have 3 unique individuals (with order C, A, B) in the
fitted ”obj” (for glmm.score) or in the data frame ”data” (for glmm.wald), then you
can specify

select = c(2, 3, 1, 0)

to reflect the order of individuals. Note that since individual D is not included, its order
is assigned to 0. The length of the vector must match the number of individuals in your
genotype file. Also note that if there are observations with missing phenotype/covariates
in ”data”, ”select” for glmm.wald should match to ”data” before removing any missing
values, while ”select” for glmm.score should match to ”obj” (in which missing values
have been excluded).

In variant set tests, SMMAT will extract ID from ”null.obj” using ”id include” re-
turned in the glmmkin fitted null model object. The ID will be matched to ”sample.id”
in the GDS genotype file.

7.5 Parallel computing

Parallel computing can be enabled in glmm.score and SMMAT using the argument
”ncores”to specify how many cores you would like to use on a computing node. By default
”ncores” is 1, meaning that these functions will run in a single thread. Currently parallel
computing is only implemented for GDS format genotype files.

If you enable parallel computing and save intermediate files, you will get multi-
ple sets of intermediate files. For example, if your ”ncores” is 12 and you specified
”meta.file.prefix” to ”study1”, then you will get 12 sets of (totaling 24) intermediate files
”study1.score.1”, ”study1.var.1”, ”study1.score.2”, ”study1.var.2”, ..., ”study1.score.12”,
”study1.var.12”. Later in the meta-analysis to combine with 2 sets of intermediate files
”study2.score.1”, ”study2.var.1”, ”study2.score.2”, ”study2.var.2”, you will need to use
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meta.files.prefix = c("study1", "study2"), n.files = c(12, 2)

If your R is configured with Intel MKL and you would like to enable parallel comput-
ing, it is recommended that you set the environmental variable ”MKL NUM THREADS”
to 1 before running R to avoid hanging. Alternatively, you can do this at the beginning
of your R script by using

> Sys.setenv(MKL_NUM_THREADS = 1)

7.6 Variant filters

Variants can be filtered in glmm.score and SMMAT based on minor allele frequency
(MAF) and missing rate filters. The argument ”MAF.range” specifies the minimum and
maximum MAFs for a variant to be included in the analysis. By default the minimum
MAF is 1×10−7 and the maximum MAF is 0.5, meaning that only monomorphic markers
in the sample will be excluded (if your sample size is no more than 5 million). The
argument ”miss.cutoff” specifies the maximum missing rate for a variant to be included
in the analysis. By default it is set to 1, meaning that no variants will be removed due
to high genotype missing rates.

7.7 Internal minor allele frequency weights

Internal weights are calculated based on the minor allele frequency (NOT the effect allele
frequency, therefore, variants with effect allele frequencies 0.01 and 0.99 have the same
weights) as a beta probability density function. Internal weights are multiplied by the
external weights given in the last column of the group definition file. To turn off internal
weights, use

MAF.weights.beta = c(1, 1)

to assign flat weights, as a beta distribution with parameters 1 and 1 is a uniform distri-
bution on the interval between 0 and 1.

7.8 Allele flipping

In variant set tests SMMAT, by default the alt allele is used as the coding allele and
variants in each variant set are matched strictly on chromosome, position, reference and
alternate alleles.

The argument ”auto.flip” allows automatic allele flipping if a specified variant is not
found in the genotype file, but a variant at the same chromosome and position with
reference allele matching the alternate allele in the group definition file ”group.file”, and
alternate allele matching the reference allele in the group definition file ”group.file”, to
be included in the analysis. Please use with caution for whole genome sequence data, as
both ref/alt and alt/ref variants at the same position are not uncommon, and they are
likely two different variants, rather than allele flipping.

The argument ”use.minor.allele” allows using the minor allele instead of the alt allele
as the coding allele in variant set tests. Note that this choice does not change ”S” for
SKAT results, but ”B” for the burden test, ”O” for SKAT-O and ”E” for efficient hybrid
test of the burden test and SKAT results will be affected. Generally the alt allele can
either be the minor or the major allele. If in a variant set, different variants with alt allele
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frequencies 0.001 and 0.998 are combined together in a burden test, the results would be
difficult to interpret. We generally recommend turning on the ”use.minor.allele” option,
unless you know the ancestry alleles explicitly and the specific scientific hypothesis clearly
that you would like to test. Along with the MAF filter, this option is useful for combining
rare mutations, assuming rare allele effects are in the same direction.

7.9 P values of weighted sum of chi-squares

In variant set tests SMMAT, you can use 3 methods in the ”method” argument to
compute P values of weighted sum of chi-square distributions: ”davies”,17 ”kuonen”18 and
”liu”.19 By default ”davies” is used, if it returns an error message in the calculation, or a
P value greater than 1, or less than 1× 10−5, ”kuonen” method will be used. If ”kuonen”
method fails to compute the P value, ”liu” method will be used.

7.10 Heterogeneous genetic effects in variant set meta-analysis

Heterogeneous genetic effects20 are allowed in variant set tests meta-analysis function
SMMAT.meta, by specifying groups using the ”cohort.group.idx”argument. By default
all studies are assumed to share the same genetic effects in the meta-analysis, and this
can be changed by assigning different group indices to studies. For example,

cohort.group.idx = c("a","b","a","a","b")

means cohorts 1, 3, 4 are assumed to have homogeneous genetic effects, and cohorts 2, 5
are in another group with homogeneous genetic effects (but possibly heterogeneous with
group ”a”).

7.11 Other options

By default, genotypes are centered to the mean before the analysis in single variant tests.
You can turn this feature off by specifying

center = FALSE

in both glmm.score and glmm.wald functions to use raw genotypes.
If your genotype file is a plain text (or a compressed .gz and .bz2 file), and you want to

read in fewer lines than all lines included in the file, you can use the ”infile.nrow”argument
to specify how many lines (including lines to be skipped using ”infile.nrow.skip”) you want
to read in. By default the delimiter is assumed to be a tab, but you can change it using the
”infile.sep” argument. These options are implemented in glmm.score and glmm.wald.

In the score test function glmm.score, by default 100 SNPs are tested in a batch. You
can change it using the ”nperbatch” argument, but the computational time can increase
substantially if it is either too small or too large, depending on the performance of your
computing system.

If you perform Wald tests glmm.wald and use a plain text (or a compressed .gz
and .bz2) file, and your SNPs are not in your first column, you can change ”snp.col” in
glmm.wald to indicate which column is your SNP name.

In the variant set tests SMMAT, by default the group definition file ”group.file”
should be tab delimited, but you can change it using the ”group.file.sep” argument. Also
there is a ”Garbage.Collection” argument (default FALSE), if turned on, SMMAT will
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call the function gc for each variant set tested. It helps save memory footprint, but the
computation speed might be slower.

8 Version

8.1 Version 0.6 (October 12, 2015)

Initial public release of GMMAT.

8.2 Version 0.7 (January 22, 2016)

1. Merged old functions glmm.score.text and glmm.score.bed to glmm.score.

2. Merged old functions glmm.wald.text and glmm.wald.bed to glmm.wald.

3. glmm.score now takes ”obj”, a glmmkin class object returned from glmmkin to
set up the score test, instead of ”res” and ”P” from old functions glmm.score.text
and glmm.score.bed.

4. Implemented model fitting with fixed variance components in glmmkin, and model
refitting when variance component estimates are on the boundary of the parameter
space, and default unconverged Average Information REML to derivative-free Brent
method (one variance component parameter) or Nelder-Mead method (more than
one variance component parameters).

5. Implemented offset in glmmkin.

6. Renamed alpha, eta, mu to coefficients, linear.predictors, fitted.values in glmmkin
returned object.

7. Implemented score test meta-analysis function glmm.score.meta.

8. Fixed minor bugs in glmm.wald to handle errors in fitting each alternative GLMM,
and minor bugs in fitting alternative GLMMs using derivative-free algorithms.

8.3 Version 0.7-1 (January 22, 2016)

Light version of v0.7: same features as v0.7 except that this light version does not depend
on the C++ library boost and cannot take compressed plain text files .gz and .bz2 as
genotype files.

8.4 Version 0.9 (March 9, 2018)

1. Added ”id include” to glmmkin returned object to indicate which rows in the data
have nonmissing outcome/covariates and are included in the model fit, which is
useful to create

> select <- match(geno_ID, pheno_ID[obj$id_include])

> select[is.na(select)] <- 0

that can be used as the ”select” argument in glmm.score.
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2. Removed memory duplicates for big matrices in C++ and R code.

3. Support for GDS format genotype files implemented in functions glmm.score and
glmm.wald, with optional parallel computing.

4. MAF.range and miss.cutoff implemented in glmm.score for minor allele frequency
and missing rate filters.

5. Implemented variant set tests glmm.rvtests, including burden test, SKAT, SKAT-
O and SMMAT, with optional parallel computing.

6. Implemented variant set re-analysis/meta-analysis function glmm.rvtests.meta.

7. Implemented heteroscedastic linear mixed models in glmmkin and glmm.wald by
specifying ”groups”.

8.5 Version 0.9.1 (May 13, 2018)

1. In variant set tests glmm.rvtests and glmm.rvtests.meta, tests ”Burden”, ”SKAT”,
”SKAT-O” and ”SMMAT” changed to ”B”, ”S”, ”O” and ”E”, respectively, to denote
4 variant set tests in the SMMAT framework: the burden test, SKAT, SKAT-O
and the efficient hybrid test of the burden test and SKAT.

2. Implemented known weights (e.g. binomial denominator) in glmmkin and glmm.wald
by passing the argument ”weights” to the glm object ”fixed”

3. Implemented internal MAF-based weights, using the argument ”MAF.weights.beta”
to denote the two beta probability density function parameters. Note that the
weights are calculated on the minor allele frequency (not the effect allele frequency).
Internal weights are multiplied by the external weights given in the last column of
the group definition file.

8.6 Version 0.9.2 (June 8, 2018)

1. In variant set tests glmm.rvtests and glmm.rvtests.meta, test ”O” (SKAT-O
in the SMMAT framework) p-value switched to minimum p-value multipled by the
number of points on the search grid if the integration result is larger than the latter
(consistent with implementation in the SKAT package).

8.7 Version 0.9.3 (July 18, 2018)

1. In the null model fitting function glmmkin, prior weights (e.g. binomial denomi-
nators for binomial distributions) coerced to a vector.

2. In the null model fitting function glmmkin, model matrix X for fixed effects now
included in the returned object.
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8.8 Version 1.0.0 (December 28, 2018)

1. Implemented ID matching for the phenotype data frame and relatedness matrices in
glmmkin and glmm.wald. The argument ”id” is required for a column indicating
ID in the phenotype data frame, and the relatedness matrices must have rownames
and colnames, and they must at least include all samples as specified in the ”id”
column of the phenotype data frame ”data”.

2. Changed the definition of ”id include” in glmmkin returned object to indicate the
original ”id” of observations in the data that have nonmissing outcome/covariates
and are included in the model fit, which is useful to create

> select <- match(geno_ID, unique(obj$id_include))

> select[is.na(select)] <- 0

that can be used as the ”select” argument in glmm.score to match the order of
individuals in the plain text (or a compressed .gz and .bz2) genotype file ”infile”
(assuming ”geno ID” is a vector of the ID’s for ”infile”). Note that this is not neces-
sary if the genotype file is a PLINK binary PED file, or a GDS file (in these cases,
”select” is NULL by default, and the genotype ID information will be extracted
automatically and matched to ”id include” in glmmkin returned object).

3. Implemented genotype ID matching in glmm.wald if the genotype file ”infile” is a
PLINK binary PED file, or a GDS file. Similarly to glmm.score, ”select” is NULL
by default and the genotype ID information will be extracted automatically and
matched to unique ”id” in the phenotype data frame ”data” (but before removing
any missing outcome/covariates). Note that it is usually necessary to create

> select <- match(geno_ID, unique(data[, id]))

> select[is.na(select)] <- 0

that can be used as the ”select” argument in glmm.wald to match the order of
individuals in the plain text (or a compressed .gz and .bz2) genotype file ”infile”
(assuming ”geno ID” is a vector of the ID’s for ”infile”). Otherwise, it is assumed
that the genotype ID is equal to unique ”id” in the phenotype data frame ”data”.

4. Renamed variant set test functions in the SMMAT framework glmm.rvtests and
glmm.rvtests.meta to SMMAT and SMMAT.meta, respectively.

5. Set the default of the argument ”kins”to NULL, assuming individuals are unrelated.

6. Implemented model fitting for longitudinal data in glmmkin and glmm.wald.
Duplicated ”id” in the phenotype data frame ”data” are allowed and assumed to be
longitudinal data (exchangeable repeated measures, or observations from multiple
time points with time trends).

8.9 Version 1.0.1 (January 1, 2019)

1. Added ”LinkingTo: BH” to improve portability with boost library headers.

2. Added ”Suggests: testthat” to conduct code tests.

3. Made minor code changes to improve portability to the Windows operating system.
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8.10 Version 1.0.2 (January 2, 2019)

1. Made minor C++ code changes to improve portability to non-GCC compilers.

2. Added Sys.info checks in glmm.score and SMMAT. If ”ncores” is greater than 1
on a Windows operating system, it will be switched back to 1 to use a single thread
for genotype files in the GDS format.

8.11 Version 1.0.3 (January 14, 2019)

1. Removed dependency on boost in reading .gz and .bz2 genotype files (for Windows
portability).

2. Added dependency on zlib and bzip2 libraries.

8.12 Version 1.0.4 (March 6, 2019)

1. Minor code change in the tests directory as the default method for generating from a
discrete uniform distribution used in sample() has been changed in R-devel (3.6.0).

8.13 Version 1.1.0 (May 21, 2019)

1. Implemented support for sparse matrices in the argument ”kins” of glmmkin.

2. Fixed a bug in glmm.wald when the argument ”missing.method” is ”omit”.

3. Fixed a bug in SMMAT and SMMAT.meta when reading group definition files
with T as all reference or alternate alleles (force T to be character instead of logical).

8.14 Version 1.1.1 (August 26, 2019)

1. Fixed a bug in glmm.wald when the argument ”fixed” is a long formula.

2. Fixed a bug in glmmkin and glmm.wald when the indices are already ordered in
subsetting ddiMatrix for longitudinal data analysis.

8.15 Version 1.1.2 (October 11, 2019)

1. Fixed a bug in glmmkin when fitting a model with large dense matrices in ”kins”.

2. Fixed a bug in glmm.score and glmm.wald for analyzing plain text genotype
files on Mac OS.

8.16 Version 1.2.0 (May 14, 2020)

1. Implemented multiple phenotype analysis in glmmkin, glmm.score and SM-
MAT.

2. Added names to theta, coefficients, cov in glmmkin results.

3. Changed the logical expression in glmmkin and glmm.wald for testing if ”kins”
is a matrix (matrix objects now also inherit from class ”array”).
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4. Fixed a bug in glmmkin and glmm.wald when passing . . . arguments.

5. Changed missing values to NA in glmm.score output for the GDS genotype format.

6. Supported reordered group definition files in SMMAT.meta, as long as chr:pos is
a unique variant identifier (thanks to Arthur Gilly).

7. Supported imputed dosage GDS files (in the node annotation/format/DS/data)
(thanks to Rounak Dey).

9 Contact

Please refer to the R help document of GMMAT for specific questions about each func-
tion. For comments, suggestions, bug reports and questions, please contact Han Chen
(Han.Chen.2@uth.tmc.edu). For bug reports, please include an example to reproduce the
problem without having to access your confidential data.
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