Package ‘GAMBoost’

February 19, 2015

Version 1.2-3

Title Generalized linear and additive models by likelihood based

boosting

Author Harald Binder <binderh@uni-mainz.de>

Maintainer Harald Binder <binderh@uni-mainz.de>
Depends R (>=2.14.0), Matrix

Suggests parallel, snowfall

Description This package provides routines for fitting generalized

linear and and generalized additive models by likelihood based
boosting, using penalized B-splines

License GPL (>=2)

NeedsCompilation yes
Repository CRAN
Date/Publication 2013-05-10 13:49:07

R topics documented:

Index

cV.GAMBOOSt 2
cV.GLMBOOSt 4
estimPVal 5
GAMBOOSto 7
getGAMBoostSelected L. 13
GLMBOOSt oo 14
optimGAMBoostPenalty L 15
optimGLMBoostPenalty 18
optimStepSizeFactor 19
plot.GAMBOOSt 21
predict. GAMBOOSt e 23
predict. GLMBoOOSt e 24

26

cv.GAMBoost

cv.GAMBoost

Cross-validation for GAMBoost fits

Description

Performs a K-fold cross-validation for GAMBoost in search for the optimal number of boosting steps.

Usage

cv.GAMBoost (x=NULL,y,x.linear=NULL, subset=NULL,maxstepno=500,

Arguments

X

y
x.linear

subset

maxstepno

family=binomial(),weights=rep(1,length(y)),
calc.hat=TRUE, calc.se=TRUE, trace=FALSE,
parallel=FALSE,upload.x=TRUE,multicore=FALSE, folds=NULL,
K=10, type=c("loglik"”, "error"”,"L2"),pred.cutoff=0.5,
just.criterion=FALSE,...)

n * p matrix of covariates with potentially non-linear influence. If this is not
given (and argument x.linear is employed), a generalized linear model is fit-
ted.

response vector of length n.
optional n * q matrix of covariates with linear influence.

an optional vector specifying a subset of observations to be used in the fitting
process.

maximum number of boosting steps to evaluate.

family,weights,calc.hat,calc.se

trace

parallel

upload.x

multicore

folds

arguments passed to GAMBoost.
logical value indicating whether information on progress should be printed.

logical value indicating whether computations in the cross-validation folds should
be performed in parallel on a compute cluster, using package snowfall. Paral-
lelization is performed via the package snowfall and the initialization function
of of this package, sfInit, should be called before calling cv.GAMBoost.

logical value indicating whether x and x.linear should/have to be uploaded to
the compute cluster for parallel computation. Uploading these only once (using
sfExport(x,x.linear) from library snowfall) can save much time for large
data sets.

indicates whether computations in the cross-validation folds should be performed
in parallel, using package multicore. If TRUE, package multicore is employed
using the default number of cores. A value larger than 1 is taken to be the num-
ber of cores that should be employed.

if not NULL, this has to be a list of length K, each element being a vector of indices
of fold elements. Useful for employing the same folds for repeated runs.

number of folds to be used for cross-validation.

cv.GAMBoost

type, pred.cutoff

just.criterion

Value

goodness-of-fit criterion: likelihood ("loglik"), error rate for binary response
data ("error") or squared error for others ("L2"). For binary response data and
the "error” criterion pred. cutoff specifies the p value cutoff for prediction of
class 1 vs 0.

logical value indicating wether a list with the goodness-of-fit information should
be returned or a GAMBoost fit with the optimal number of steps.

miscellaneous parameters for the calls to GAMBoost

GAMBoost fit with the optimal number of boosting steps or list with the following components:

criterion

se

selected
folds

Author(s)

vector with goodness-of fit criterion for boosting step 1, ..., maxstep

vector with standard error estimates for the goodness-of-fit criterion in each
boosting step.

index of the optimal boosting step.

list of length K, where the elements are vectors of the indices of observations in
the respective folds.

Harald Binder <binderh@uni-mainz.de>

See Also

GAMBoost

Examples

Not run:

Generate some data

X <- matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2*x[,1] + 2xx[,3]"2
y <= rbinom(100,1,binomial()$linkinv(eta))

Fit the model with smooth components

gb1 <- GAMBoost(x,y,penalty=400,stepno=100, trace=TRUE, family=binomial())

10-fold cross-validation with prediction error as a criterion

gbl.crit <- cv.GAMBoost(x,y,penalty=400,maxstepno=100,trace=TRUE,

family=binomial(),
K=10, type="error", just.criterion=TRUE)

Compare AIC and estimated prediction error

which.min(gb1$AIC)

4 cv.GLMBoost

which.min(gb1.crit$criterion)

End(Not run)

cv.GLMBoost Cross-validation for GLMBoost fits

Description
Performs a convenience wrapper around cv.GAMBoost for performing a K-fold cross-validation for
GLMBoost in search for the optimal number of boosting steps.

Usage

cv.GLMBoost(x,y,penalty=length(y), just.criterion=TRUE,...)

Arguments
y response vector of length n.
X n * g matrix of covariates with linear influence.
penalty penalty for the covariates with linear influence.

just.criterion logical value indicating wether a list with the goodness-of-fit information should
be returned or a GLMBoost fit with the optimal number of steps.

parameters to be passed to cv.GAMBoost or subsequently GAMBoost

Value

GLMBoost fit with the optimal number of boosting steps or list with the following components:

criterion vector with goodness-of fit criterion for boosting step 1, ..., maxstep
se vector with standard error estimates for the goodness-of-fit criterion in each
boosting step.
selected index of the optimal boosting step.
Author(s)

Harald Binder <binderh@uni-mainz.de>

See Also

GLMBoost, cv.GAMBoost, GAMBoost

estimPVal 5

Examples

Not run:

Generate some data

x <= matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2xx[,1] + 4*x[,3]

y <- rbinom(100,1,binomial()$linkinv(eta))

Fit the model with only linear components
gh1 <- GLMBoost(x,y,penalty=100,stepno=100, trace=TRUE, family=binomial())

10-fold cross-validation with prediction error as a criterion
gbl.crit <- cv.GLMBoost(x,y,penalty=100,maxstepno=100,trace=TRUE,
family=binomial(),

K=10, type="error")

Compare AIC and estimated prediction error

which.min(gb1$AIC)
which.min(gb1.crit$criterion)

End(Not run)

estimPVal Estimate p-values for a model fitted by GAMBoost or GLMBoost

Description

Performs permutation-based p-value estimation for the optional covariates in a fit from GAMBoost or
GAMBoost. Currently binary response models with linear effects are supported, and the components
have to be selected with criterion="score"

Usage

estimPVal(object,x,y,permute.n=10,per.covariate=FALSE,parallel=FALSE,
multicore=FALSE, trace=FALSE,...)

Arguments
object fit object obtained from GAMBoost or GLMBoost.
X n * p matrix of covariates with linear effect. This has to be the same that was
used as x. linear in the call to GAMBoost or x in GLMBoost.
y response vector. This has to be the same that was used in the call to GAMBoost

or GLMBoost.

permute.n number of permutations employed for obtaining a null distribution.

6 estimPVal

per.covariate logical value indicating whether a separate null distribution should be considered
for each covariate. A larger number of permutations will be needed if this is
wanted.

parallel logical value indicating whether computations for obtaining a null distribution
via permutation should be performed in parallel on a compute cluster. Paral-
lelization is performed via the package snowfall and the initialization function
of of this package, sfInit, should be called before calling estimPVal.

multicore indicates whether computations in the permuted data sets should be performed
in parallel, using package multicore. If TRUE, package multicore is employed
using the default number of cores. A value larger than 1 is taken to be the number
of cores that should be employed.

trace logical value indicating whether progress in estimation should be indicated by
printing the number of the permutation that is currently being evaluated.

miscellaneous parameters for the calls to GAMBoost

Details

As p-value estimates are based on permutations, random numbers are drawn for determining per-
mutation indices. Therfore, the results depend on the state of the random number generator. This
can be used to explore the variability due to random variation and help to determine an adequate
value for permute.n. A value of 100 should be sufficient, but this can be quite slow. If there is a
considerable number of covariates, e.g., larger than 100, a much smaller number of permutations,
e.g., 10, might already work well. The estimates might also be negatively affected, if only a small
number of boosting steps (say <50) was employed for the original fit.

Value
Vector with p-value estimates, one value for each optional covariate with linear effect specificed in
the original call to GAMBoost or GLMBoost.

Author(s)

Harald Binder <binderh@uni-mainz.de>

References

Binder, H., Porzelius, C. and Schumacher, M. (2009). Rank-based p-values for sparse high-dimensional
risk prediction models fitted by componentwise boosting. FDM-Preprint Nr. 101, University of
Freiburg, Germany.

See Also

GAMBoost, GLMBoost

Examples

Not run:
Generate some data
x <= matrix(runif(100*8,min=-1,max=1),100,8)

GAMBoost 7

eta <- -0.5 + 2*xx[,1] + 4xx[,3]
y <= rbinom(100,1,binomial()$linkinv(eta))

Fit a model with only linear components
gb1 <- GLMBoost(x,y,penalty=100,stepno=100, trace=TRUE, family=binomial(),criterion="score")

estimate p-values
pl <- estimPVal(gb1l,x,y,permute.n=10)

get a second vector of estimates for checking how large
random variation is

p2 <- estimPVal(gb1l,x,y,permute.n=10)
plot(pl,p2,xlim=c(@,1),ylim=c(@,1),xlab="permute 1",ylab="permute 2")

End(Not run)

GAMBoost Generalized additive model by likelihood based boosting

Description

GAMBoost is used to fit a generalized additive model by likelihood based boosting. It is especially
suited for models with a large number of predictors with potentially non-linear influence. It pro-
vides smooth function estimates of covariate influence functions together with confidence bands
and approximate degrees of freedom.

Usage

GAMBoost (x=NULL,y,xmin=NULL, xmax=NULL,penalty=100,bdeg=2,pdiff=1,
x.linear=NULL,standardize.linear=TRUE,
penalty.linear=0, subset=NULL,
criterion=c("deviance”,"score"),stepsize.factor.linear=1,
sf.scheme=c("sigmoid”,"linear"),pendistmat.linear=NULL,
connected.index.linear=NULL,
weights=rep(1,length(y)),stepno=500,family=binomial(),
sparse.boost=FALSE, sparse.weight=1,calc.hat=TRUE,calc.se=TRUE,
AIC.type=c("corrected”,"classical”),return.score=TRUE, trace=FALSE)

Arguments
X n * p matrix of covariates with potentially non-linear influence. If this is not
given (and argument x.linear is employed), a generalized linear model is fit-
ted.

y response vector of length n.

GAMBoost

xmin, xmax optional vectors of length p specifying the lower and upper bound for the range
of the smooth functions to be fitted.

penalty penalty value for the update of an individual smooth function in each boosting
step.

bdeg, pdiff degree of the B-spline basis to be used for fitting smooth functions and differ-
ence of the coefficient estimates to which the penalty should be applied. When
pdiff is a vector, the penalties corresponding to single vector elements are com-
bined to enforce several types of smoothness simultaneously.

x.linear optional n * q matrix of covariates with linear influence.
standardize.linear
logical value indicating whether linear covariates should be standardized for
estimation.

penalty.linear penalty value (scalar or vector of length q) for update of individual linear com-
ponents in each boosting step. If this is set to @ the covariates in x.linear
enter the model as mandatory covariates, which are updated together with the
intercept term in each step.

subset an optional vector specifying a subset of observations to be used in the fitting
process.
criterion Indicates the criterion to be employed for selecting the best update in each

boosting step for the linear components. deviance corresponds to the original,
deviance-based selection suggested for componentwise boosting. With score, a
score statistic is employed. The latter is faster and corresponds to the approach
employed for Cox regression in package CoxBoost.
stepsize.factor.linear

determines the step-size modification factor by which the natural step size of
boosting steps for the linear covariates should be changed after a covariate has
been selected in a boosting step. The default (value 1) implies constant penalties,
for a value < 1 the penalty for a covariate is increased after it has been selected
in a boosting step, and for a value > 1 the penalty it is decreased. If pendistmat
is given, penalty updates are only performed for covariates that have at least one
connection to another covariate.

sf.scheme scheme for changing step sizes (via stepsize.factor). "linear” corresponds
to the scheme described in Binder and Schumacher (2009), "sigmoid” employs
a sigmoid shape.

pendistmat.linear
connection matrix with entries ranging between 0 and 1, with entry (i, j) in-
dicating the certainty of the connection between covariates i and j. Accord-
ing to this information penalty changes due to stepsize.factor.linear <
1 are propagated, i.e., if entry (i, j) is non-zero, the penalty for covariate j
is decreased after it has been increased for covariate i, after it has been se-
lected in a boosting step. This matrix either has to have dimension q * q or
the indicices of the q.connected connected linear covariates have to be given
in connected. index.linear, in which case the matrix has to have dimension
g.connected * g.connected.

connected. index.linear
indices of the . connected connected linear covariates, for which pendistmat.linear
provides the connection information for distributing changes in penalties. If

GAMBoost 9

NULL, and a connection matrix is given, all covariates are assumed to be con-

nected.
weights an optional vector of weights to be used in the fitting process.
stepno number of boosting steps (m).
family a description of the error distribution to be used in the model. This can be a

character string naming a family function, a family function or the result of a
call to a family function. (See family for details of family functions.) Note
that GAMBoost supports only canonical link functions and no scale parameter
estimation, so gaussian(), binomial() and poisson() are the most plausible
candidates.

sparse.boost logical value indicating whether a criterion considering degrees of freedom (specif-
ically AIC) should be used for selecting a covariate for an update in each boost-
ing step (sparse boosting), instead of the deviance.

sparse.weight factor modifying how the degrees of freedom enter into calculation of AIC for
sparse boosting.

calc.hat logical value indicating whether the hat matrix should be computed for each
boosting step. If set to FALSE no degrees of freedom and therefore e.g. no AIC
will be available. On the other hand fitting will be faster (especially for a large
number of observations).

calc.se logical value indicating whether confidence bands should be calculated. Switch
this of for faster fitting.

AIC.type type of model selection criterion to be calculated (and also to be used for sparse
boosting if applicable): in the Gaussian case "classical” gives AIC and "corrected”
results in corrected AIC (Hurvich, Simonoff and Tsai, 1998); for all other re-
sponse families standard AIC is used.

return.score logical value indicating whether the value of the score statistic, as evaluated in
each boosting step for every covariate (only for binary response models, for lin-
ear components, if criterion="score"), should be returned. The correspond-
ing element scoremat can become very large (and needs much memory) when
the number of covariates and boosting steps is large.

trace logical value indicating whether progress in estimation should be indicated by
printing the index of the covariate updated (1, ..., p for smooth components and
p+1, ...,p-q for parametric components) in the current boosting step.
Details

The idea of likelihood based boosting (Tutz and Binder, 2006) is most easily understood for models
with a Gaussian response. There it results in repeated fitting of residuals (This idea is then trans-
ferred to the generalized case). For obtaining an additive model GAMBoost uses a large number
of boosting steps where in each step a penalized B-spline (of degree bdeg) (Eilers and Marx, 1996)
is fitted to one covariate, the response being the residuals from the last step. The covariate to be
updated is selected by deviance (or in case of sparse boosting by some model selection criterion).
The B-spline coefficient estimates in each step are fitted under the constraint of a large penalty on
their first (or higher order) differences. So in each step only a small adjustment is made. Summing
over all steps for each covariate a smooth function estimate is obtained. When no basis expansion
is used, i.e. just coefficients of covariates are updated, (generalized) linear models are obtained.

10 GAMBoost

The main parameter of the algorithm is the number of boosting steps, given that the penalty is
chosen large enough (If too small the minimum AIC will occur for a very early boosting step;
see optimGAMBoostPenalty). When there is a large number of covariates with potentially non-
linear effect, having a single parameter (with adaptive smoothness assignment to single components
performed automatically by the algorithm) is a huge advantage compared to approaches, where a
smoothing parameter has to be selected for each single component. The biggest advantage over con-
ventional methods for fitting generalized additive models (e.g. mgcv: gam or gam: gam) will therefore
be obtained for a large number of covariates compared to the number of observations (e.g. 10 co-
variates with only 100 observations). In addition GAMBoost performs well compared to other
approaches when there is a small signal-to-noise ratio and/or a response (e.g. binary) with a small
amount of information.

If a group of correlated covariates has influence on the response, e.g. genes from the same path-
way, componentwise boosting will often result in a non-zero estimate for only one member of
this group. To avoid this, information on the connection between covariates with linear influence
can be provided in pendistmat.linear. If then, in addition, a penalty updating scheme with
stepsize.factor.linear < 1ischosen, connected covariates with linear influence are more likely
to be chosen in future boosting steps, if a directly connected covariate has been chosen in an earlier
boosting step (see Binder and Schumacher, 2008b).

Note that the degrees of freedom (and based on these AIC and BIC) are just approximations, which
are completely valid for example only when the order and the indices of the components updated is
fixed. This leads to problems especially when there is a very large number of covariates (e.g. 10000
covariates with only 100 observations). Then it might be better (but also slower) to rely on cross
validation (see cv.GAMBoost) for selection of the number of boosting steps.

Note that the gamboost routine in the R package mboost implements a different kind of boosting
strategy: gradient based boosting instead of likelihood based boosting. The two approaches coin-
cide only in special cases (e.g. L2 loss and Gaussian response). While gradient based boosting is
more general, only likelihood based boosting allows e.g. for easily obtainable pointwise confidence
bands.

Value

GAMBoost returns an object of class GAMBoost. GAMBoost objects can be examined by print, sum-
mary, and plot. getGAMBoostSelected can be used on them to identify selected/significant covari-
ates.

X, n, p.linear original values for covariates with non-linear effect, number of observations,
and number of covariates with linear effect.
penalty, penalty.linear

penalties used in updating smooth and linear components.

stepno number of boosting steps.
family response family.
AIC.type type of AIC given in component AIC (applies only for Gaussian response).

deviance, trace, AIC, BIC
vectors of length m giving deviance, approximate degrees of freedom, AIC, and
BIC for each boosting step.

selected vector of length m given the index of the covariate updated in each boosting step
(1-p for smooth components and (p+1), ... , (p—q) for parametric components).

GAMBoost 11

beta list of length p+1, each element being a matrix with m+1 rows giving the es-
timated coefficients for the intercept term (betal[[1]]) and the smooth terms
(betal[21], ..., betal[p+11]).

beta.linear m * g matrix containing the coefficient estimates for the (standardized) linear
covariates.
scoremat m * q matrix containing the value of the score statistic for each of the op-

tional covariates before each boosting step, if selection has been performed by
the score statistic (criterion="score") and a binary response model has been
employed.

mean.linear, sd.linear
vector of mean values and standard deviations used for standardizing the linear

covariates.

hatmatrix hat matrix at the final boosting step.

eta n * (m+1) matrix with predicted value (at predictor level) for each boosting
step.

predictors list of length p+1 containing information (as a list) on basis expansions for the
smooth model components (predictors[[2]], ..., predictors[[p+1]]).

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>, matching closely the original Fortran imple-
mentation employed for Tutz and Binder (2006).

References

Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. BMC Bioinformatics. 10:18.

Binder, H. and Schumacher, M. (2008). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. Manuscript.

Hurvich, C. M., Simonoff, J. S. and Tsai, C. L. (1998). Smoothing parameter selection in nonpara-
metric regression using and improved Akaike information criterion. Journal of the Royal Statistical
Society B, 60(2), 271-293.

Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statistical
Science, 11(2), 89—-121.

Tutz, G. and Binder, H. (2007) Boosting ridge regression. Computational Statistics \& Data Anal-
ysis, 51(12), 6044-6059.

Tutz, G. and Binder, H. (2006) Generalized additive modelling with implicit variable selection by
likelihood based boosting. Biometrics, 51, 961-971.

See Also

getGAMBoostSelected, plot.GAMBoost, predict.GAMBoost, optimGAMBoostPenalty.

12 GAMBoost

Examples

Generate some data
n<-100; p<-8; q<-2

covariates with non-linear (smooth) effects
x <= matrix(runif(n*p,min=-1,max=1),n,p)

binary covariates
x.linear <- matrix(round(runif(n*q,min=0,max=1)),n,q)

1st and 3rd smooth covariate and 1st linear covariate are informative
eta <- -0.5 + 2*xx[,1] + 2xx[,3]*2 + x.linear[,1]-.5

y <= rbinom(n,1,binomial()$linkinv(eta))

Fit a model with just smooth components
gb1 <- GAMBoost(x,y,penalty=500,stepno=100,family=binomial(),trace=TRUE)

Inspect the AIC for a minimum

plot(gh1$AIC) # still falling at boosting step 100 so we need more steps
or a smaller penalty (use 'optimGAMBoostPenalty' for
automatic penalty optimization)

Include two binary covariates as mandatory without penalty
(appropriate for example for 'treatment/control')
modelled as 'linear' predictors

gh2 <- GAMBoost(x,y,penalty=200,
x.linear=x.linear,penalty.linear=0,
stepno=100, family=binomial(), trace=TRUE)

Include first binary covariates as mandatory and second
as optional (e.g 'treatment/control' and 'female/male')

gh3 <- GAMBoost(x,y,penalty=200,
x.linear=x.linear,penalty.linear=c(@,100),
stepno=100, family=binomial (), trace=TRUE)

Get summary with fitted covariates and estimates for
the parametric components
summary (gb3)

Extract boosted components at 'optimal' boosting step
selected <- getGAMBoostSelected(gb3,at.step=which.min(gh3$AIC))

Plot all smooth components at final boosting step
par(mfrow=c(2,4))
plot(gb3)

plot smooth components for which the null line is not inside the bands
at 'optimal' boosting step (determined by AIC)
par(mfrow=c(1,length(selected$smoothbands)))

getGAMBoostSelected 13

plot(gb3,select=selected$smoothbands,at.step=which.min(gb3$AIC))
Fit a generalized linear model for comparison

x.linear <- cbind(x,x.linear)
gh4 <- GAMBoost(x=NULL,y=y,x.linear=x.linear,penalty.linear=100,
stepno=100, trace=TRUE, family=binomial())

Compare with generalized additive model fit
plot(@:100,gb3$AIC, type="1",xlab="stepno"”,ylab="AIC"); lines(0:100,gb4$AIC,1ty=2)

Fit a generalized linear model with penalty modification
after every boosting step, with penalty changes being
redistrbuted via a connection matrix

pendistmat <- matrix(0,10,10)
Covariates 1 and 3 are connected
pendistmat[1,3] <- pendistmat[3,1] <- 1

gh5 <- GAMBoost(x=NULL,y=y,x.linear=x.linear,penalty.linear=100,
stepsize.factor.linear=0.9,pendistmat.linear=pendistmat,
stepno=100, trace=TRUE, family=binomial())

or alternatively

gh5 <- GAMBoost(x=NULL,y=y,x.linear=x.linear,penalty.linear=100,
stepsize.factor.linear=0.9,
pendistmat.linear=pendistmat[c(1,3),c(1,3)],
connected. index.linear=c(1,3),
stepno=100, trace=TRUE, family=binomial())

getGAMBoostSelected Identify selected/significant covariates from a GAMBoost object

Description

Extracts the information from a GAMBoost object which covariates have received any update up
to a specific boosting step and for which smooth estimates the pointwise confidence bands do not
contain the zero line.

Usage

getGAMBoostSelected(object,at.step=NULL)

Arguments
object fitted GAMBoost object from a GAMBoost call.
at.step boosting step for which the information should be extracted. If none is given,

the final boosting step is examined.

14

Value

smooth

smoothbands

parametric

Author(s)

GLMBoost

indices of smooth components which received any update up to the given step.

indices of smooth components for which the pointwise confidence bands at the
given step do not contain the null line (only available when confidence bands
have been fitted; see option se.fit of GAMBoost).

indices of parametric components which received any update up to the given
step.

Harald Binder <binderh@uni-mainz.de>

See Also

GAMBoost, plot.GAMBoost

Examples

see examples for 'GAMBoost' and 'plot.GAMBoost'

GLMBoost

Generalized linear model by likelihood based boosting

Description

GLMBoost a convenience wrapper around GAMBoost, for fitting generalized linear models by likeli-
hood based boosting.

Usage

GLMBoost(x,y,penalty=length(y),standardize=TRUE,...)

Arguments

X

y
penalty

standardize

n * ¢ matrix of covariates with linear influence.
response vector of length n.

penalty value (scalar or vector of length q) for update of individual linear com-
ponents in each boosting step. If this is set to @ the covariates enter the model
as mandatory covariates, which are updated together with the intercept term in
each step.

logical value indicating whether linear covariates should be standardized for
estimation.

arguments that should be passed to GAMBoost

optimGAMBoostPenalty 15

Value

Object returned by call to GAMBoost (see documentation there), with additional class GLMBoost.

Author(s)

Harald Binder <binderh@uni-mainz.de>

References
Tutz, G. and Binder, H. (2007) Boosting ridge regression. Computational Statistics \& Data Anal-
ysis, 51(12), 6044—6059.

See Also

GAMBoost, predict.GLMBoost.

Examples

Generate some data

X <- matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2xx[,1] + 4*x[,3]

y <= rbinom(100,1,binomial()$linkinv(eta))

Fit a model with only linear components
gb1 <- GLMBoost(x,y,penalty=100,stepno=100, trace=TRUE, family=binomial())

Inspect the AIC for a minimum
plot(gh1$AIC)

print the selected covariates, i.e., covariates with non-zero estimates
getGAMBoostSelected(gh1)

Make the first two covariates mandatory

gh2 <- GLMBoost(x,y,penalty=c(@,0,rep(100,ncol(x)-2)),
stepno=100, family=binomial (), trace=TRUE)

optimGAMBoostPenalty Coarse line search for adequate GAMBoost penalty parameter

Description

This routine helps in finding a penalty value that leads to an “optimal” number of boosting steps for
GAMBoost (determined by AIC or cross-validation) that is not too small/in a specified range.

16

Usage

optimGAMBoostPenalty

optimGAMBoostPenalty (x=NULL,y,x.linear=NULL,

Arguments

X

y

x.linear

minstepno=50,maxstepno=200,start.penalty=500,
method=c("AICmin"”,"”"CVmin"),penalty=100,penalty.linear=100,
just.penalty=FALSE,iter.max=10@,upper.margin=0.05,
trace=TRUE, parallel=FALSE, calc.hat=TRUE, calc.se=TRUE,
which.penalty=ifelse(!is.null(x), "smoothness”,”linear"),...)

n * p matrix of covariates with potentially non-linear influence. If this is not
given (and argument x.linear is employed), a generalized linear model is fit-
ted.

response vector of length n.

optional n * q matrix of covariates with linear influence.

minstepno, maxstepno

start.penalty
method

range of boosting steps in which the “optimal” number of boosting steps is
wanted to be.

start value for the search for the appropriate penalty.

determines how the optimal number of boosting steps corresponding to a fixed
penalty is evaluated. With "AICmin" the AIC is used and with "CVmin" cross-
validation is used as a criterion.

penalty,penalty.linear

just.penalty

iter.max

upper.margin

parallel

penalty values for the respective penalty that is not optimized.

logical value indicating whether just the optimal penalty value should be re-
turned or a GAMBoostt fit performed with this penalty.

maximum number of search iterations.

specifies the fraction of maxstepno which is used as an upper margin in which
an AIC/cross-validation minimum is not taken to be one. (Necessary because of
random fluctuations of these criteria).

logical value indicating whether evaluation of cross-validation folds should be
performed in parallel on a compute cluster, when using method="CVmin". This
requires library snowfall.

calc.hat,calc.se

which.penalty

trace

Details

arguments passed to GAMBoost.

indicates whether the penalty for the smooth components (value "smoothness")
or for the linear components ("linear") should be optimized.

logical value indicating whether information on progress should be printed.

miscellaneous parameters for GAMBoost.

The penalty parameter(s) for GAMBoost have to be chosen only very coarsely. In Tutz and Binder
(20006) it is suggested just to make sure, that the optimal number of boosting steps (according to

optimGAMBoostPenalty 17

AIC or cross-validation) is larger or equal to 50. With a smaller number of steps boosting may
become too “greedy” and show sub-optimal performance. This procedure uses very a coarse line
search and so one should specify a rather large range of boosting steps.

Penalty optimization based on AIC should work fine most of the time, but for a large number
of covariates (e.g. 500 with 100 observations) problems arise and (more costly) cross-validation
should be employed.

Value

GAMBoost fit with the optimal penalty (with an additional component optimGAMBoost.criterion
giving the values of the criterion (AIC or cross-validation) corresponding to the final penalty) or
just the optimal penalty value itself.

Author(s)
Written by Harald Binder <binderh@uni-mainz.de>, matching closely the original Fortran imple-
mentation employed for Tutz and Binder (2006).

References
Tutz, G. and Binder, H. (2006) Generalized additive modelling with implicit variable selection by
likelihood based boosting. Biometrics, 51, 961-971.

See Also

GAMBoost

Examples

Not run:
Generate some data

x <= matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2*x[,1] + 2*x[,3]*2
y <= rbinom(100,1,binomial ()$linkinv(eta))

Find a penalty (starting from a large value, here: 5000)

that leads to an optimal number of boosting steps (based in AIC)
in the range [50,200] and return a GAMBoost fit with

this penalty

opt.ghl <- optimGAMBoostPenalty(x,y,minstepno=50,maxstepno=200,
start.penalty=5000, family=binomial(),
trace=TRUE)

extract the penalty found/used for the fit

opt.gbl1$penalty

End(Not run)

18 optimGLMBoostPenalty

optimGLMBoostPenalty Coarse line search for adequate GLMBoost penalty parameter

Description

This routine is a convenience wrapper around optimGAMBoostPenalty for finding a penalty value
that leads to an “optimal” number of boosting steps for GLMBoost (determined by AIC or cross-
validation) that is not too small/in a specified range.

Usage

optimGLMBoostPenalty(x,y,start.penalty=length(y), just.penalty=FALSE,...)

Arguments
X n * g matrix of covariates with linear influence.
y response vector of length n.

start.penalty start value for the search for the appropriate penalty.

just.penalty logical value indicating whether just the optimal penalty value should be re-
turned or a GLMBoost fit performed with this penalty.

miscellaneous parameters for optimGAMBoostPenalty.

Details

The penalty parameter(s) for GLMBoost have to be chosen only very coarsely. In Tutz and Binder
(2006) it is suggested just to make sure, that the optimal number of boosting steps (according to
AIC or cross-validation) is larger or equal to 50. With a smaller number of steps boosting may
become too “greedy” and show sub-optimal performance. This procedure uses very a coarse line
search and so one should specify a rather large range of boosting steps.

Penalty optimization based on AIC should work fine most of the time, but for a large number
of covariates (e.g. 500 with 100 observations) problems arise and (more costly) cross-validation
should be employed.

Value

GLMBoost fit with the optimal penalty (with an additional component optimGAMBoost.criterion
giving the values of the criterion (AIC or cross-validation) corresponding to the final penalty) or
just the optimal penalty value itself.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>, matching closely the original Fortran imple-
mentation employed for Tutz and Binder (2006).

optimStepSizeFactor 19

References

Tutz, G. and Binder, H. (2006) Generalized additive modelling with implicit variable selection by
likelihood based boosting. Biometrics, 51, 961-971.

See Also

GLMBoost, optimGAMBoostPenalty, GAMBoost

Examples

Not run:
Generate some data

Generate some data

x <- matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2*%x[,1] + 4%x[,3]

y <= rbinom(100,1,binomial()$linkinv(eta))

Find a penalty (starting from a large value, here: 5000)

that leads to an optimal number of boosting steps (based in AIC)
in the range [50,200] and return a GLMBoost fit with

this penalty

opt.ghl <- optimGLMBoostPenalty(x,y,minstepno=50,maxstepno=200,
start.penalty=5000,family=binomial(),
trace=TRUE)

extract the penalty found/used for the fit

opt.gbl$penalty

End(Not run)

optimStepSizeFactor Coarse line search for optimum step-size modification factor

Description

This routine helps in finding an optimum step-size modification factor for GAMBoost, i.e., that results
in an optimum in terms of cross-validated log-likelihood.

Usage

optimStepSizeFactor(x=NULL,y,x.linear=NULL,
direction=c("down”,"up”,"both"),start.stepsize=0.1,
iter.max=10,constant.cv.res=NULL,parallel=FALSE,
trace=FALSE,...)

20 optimStepSizeFactor

Arguments
X n * p matrix of covariates with potentially non-linear influence. If this is not
given (and argument x.linear is employed), a generalized linear model is fit-
ted.
y response vector of length n.
x.linear optional n * g matrix of covariates with linear influence.
direction direction of line search for an optimal step-size modification factor (starting

from value 1).
start.stepsize step size used for the line search. A final step is performed using half this size.

iter.max maximum number of search iterations.
constant.cv.res

result of cv.GAMBoost (with just.criterion=TRUE) for stepsize.factor.linear=1,
that can be provided for saving computing time, if it already is available.

parallel logical value indicating whether evaluation of cross-validation folds should be
performed in parallel on a compute cluster. This requires library snowfall.

trace logical value indicating whether information on progress should be printed.

miscellaneous parameters for cv.GAMBoost.

Details

A coarse line search is performed for finding the best parameter stepsize.factor.linear for
GAMBoost. If an pendistmat.linear argument is provided (which is passed on to GAMBoost), a
search for factors smaller than 1 is sensible (corresponding to direction="down"). If no connec-
tion information is provided, it is reasonable to employ direction="both", for avoiding restric-
tions without subject matter knowledge.

Value
List with the following components:

factor.list array with the evaluated step-size modification factors.

critmat matrix with the mean log-likelihood for each step-size modification factor in the
course of the boosting steps.

optimal.factor.index
index of the optimal step-size modification factor.

optimal.factor optimal step-size modification factor.

optimal.step optimal boosting step number, i.e., with minimum mean log-likelihood, for step-
size modification factor optimal . factor.

Author(s)

Written by Harald Binder <binderh@uni-mainz.de>.

References

Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation
of high-dimensional risk prediction models. BMC Bioinformatics. 10:18.

plot. GAMBoost 21

See Also

GAMBoost, cv.GAMBoost

Examples

Not run:
Generate some data
n <-100; p <- 10

covariates with non-linear (smooth) effects
x <= matrix(runif(nxp,min=-1,max=1),n,p)

eta <- -0.5 + 2*xx[,1] + 2xx[,3]1*2 + x[,9]1-.5

y <= rbinom(n,1,binomial()$linkinv(eta))

Determine step-size modification factor for a generalize linear model
As there is no connection matrix, perform search into both directions

optim.res <- optimStepSizeFactor(direction="both",
y=y,x.linear=x,family=binomial(),
penalty.linear=200,
trace=TRUE)

Fit with obtained step-size modification parameter and optimal number of boosting
steps obtained by cross-validation

gb1 <- GAMBoost(x=NULL,y=y,x.linear=x,family=binomial(),penalty.linear=200,
stepno=optim.res$optimal.step,

stepsize.factor.linear=optim.res$optimal.factor)

summary (gbh1)

End(Not run)

plot.GAMBoost Plots of the smooth functions from a GAMBoost fit

Description

Generates plots for the smooth components from a GAMBoost fit at a specific boosting step.

Usage

S3 method for class 'GAMBoost'
plot(x,select=NULL,at.step=NULL,add=FALSE,phi=1,ylim=NULL,xlab=NULL,ylab=NULL,...)

22 plot. GAMBoost

Arguments

X fitted GAMBoost object from a GAMBoost call.

select indices of the smooth component(s) for which plots should be generated. If none
are specified, all are used.

at.step boosting step from which the estimates for the smooth functions should be eval-
uated. If not given, the final boosting step is used.

add logical value indicating whether the plot(s) should be added to the current plot.

phi scale parameter for the confidence bands.

ylim,xlab,ylab standard plotting parameters for plotting range and axis labels. Automatically
set if NULL.

miscellaneous plotting parameters given to the low level plotting routine.

Value

A plot is produced for the specified smooth components in the GAMBoost fit. Pointwise confidence
bands are plotted when the standard error information has been calculated (option calc.se=TRUE
in the call to GAMBoost).

Author(s)

Harald Binder <binderh@uni-mainz.de>

Examples

Generate some data

X <- matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2*x[,1] + 2xx[,3]"2

y <- rbinom(100,1,binomial()$linkinv(eta))

Fit the model with smooth components
gb1 <- GAMBoost(x,y,penalty=400,stepno=100, trace=TRUE, family=binomial())

Plot smooth components of fit

all, at final boosting step

par(mfrow=c(2,4))

plot(gb1)

components that received an update up to the 'optimal' boosting step

selected <- getGAMBoostSelected(gh1,at.step=which.min(gb1$AIC))

par(mfrow=c(1,length(selected$smooth)))
plot(gb1,select=selected$smooth)

components where the estimate at the 'optimal' boosting step does not
contain the null line
par(mfrow=c(1,length(selected$smoothbands)))

predict. GAMBoost 23

plot(gb1,select=selected$smoothbands)

predict.GAMBoost Predict method for GAMBoost fits

Description

Obtains predictions at specified boosting steps from a GAMBoost object fitted by GAMBoost.

Usage

S3 method for class 'GAMBoost'
predict(object,newdata=NULL,newdata.linear=NULL,
at.step=NULL, type=c("link","response”,"terms"”),...)

Arguments
object fitted GAMBoost object from a GAMBoost call.
newdata n.new * p matrix with new covariate values for smooth components. If just

prediction for the training data is wanted or just a generalized linear model has
been fitted, it can be omitted.

newdata.linear matrix with new covariate values for linear components. If linear components
have been fitted and this is not given, the contribution of the linear components
will be ignored for prediction.

at.step scalar or vector of boosting step(s) at which prediction is wanted. If type="terms"
is used, only one step is admissible. If no step is given, the final boosting step is
used.

type type of prediction to be returned: "link” gives prediction at the level of the

predictor, "response” at the response level. "terms” returns individual contri-
butions of the smooth components to the predictor.

miscellaneous arguments, none of which is used at the moment.

Value

For type="1link" and type="response"” a vector of length n.new (at.step being a scalar) or
an.new * length(at.step) matrix (at.step being a vector) with predictions is returned. For
type="terms" an.new * p+1 matrix with contributions of the smooth components to the predictor
is returned.

Author(s)

Harald Binder <binderh@uni-mainz.de>

24 predict. GLMBoost

Examples

Generate some data

x <= matrix(runif(100*3,min=-1,max=1),100,3)
eta <- -0.5 + 2*%x[,1] + 4%x[,3]*2

y <= rbinom(100,1,binomial()$linkinv(eta))

Fit the model with smooth components
gb1 <- GAMBoost(x,y,penalty=200,stepno=100, trace=TRUE, family=binomial())

Extract predictions

at final boosting step
predict(gb1, type="response")

at 'optimal' boosting step (with respect to AIC)
predict(gb1,at.step=which.min(gb1$AIC), type="response")

matrix with predictions at predictor level for all boosting steps
predict(gb1,at.step=1:100, type="1ink")

predict.GLMBoost Predict method for GLMBoost fits

Description
Convienience wrapper for predict.GAMBoost, for obtaining predictions at specified boosting steps
from a GAMBoost object fitted by GLMBoost.

Usage

S3 method for class 'GLMBoost'
predict(object,newdata=NULL,...)

Arguments
object fitted GAMBoost object from a GLMBoost call.
newdata n.new * ¢ matrix with new covariate values for linear components. If just
prediction for the training data is wanted, it can be omitted.
arguments that should be passed to predict.GAMBoost.
Value

Value returned by predict.GAMBoost (see documentation there).

Author(s)

Harald Binder <binderh@uni-mainz.de>

predict. GLMBoost

See Also

GLMBoost, GAMBoost, predict.GAMBoost.

Examples

Generate some data

x <= matrix(runif(100*8,min=-1,max=1),100,8)
eta <- -0.5 + 2xx[,1] + 4*x[,3]

y <= rbinom(100,1,binomial()$linkinv(eta))

Fit the model with only linear components
gb1 <- GLMBoost(x,y,penalty=100,stepno=100, trace=TRUE, family=binomial())

Extract predictions

at final boosting step
predict(gb1,type="response")

at 'optimal' boosting step (with respect to AIC)
predict(gb1,at.step=which.min(gb1$AIC), type="response”)

matrix with predictions at predictor level for all boosting steps
predict(gb1,at.step=1:100,type="1ink")

25

Index

*Topic models estimPval, 5
cv.GAMBoost, 2
cv.GLMBoost, 4 family, 9
estimPVal, 5

GAMBoost, 2-6, 7, 13-17, 19-23, 25
getGAMBoostSelected, 10, 11, 13
GLMBoost, 4-6, 14, 18, 19, 24, 25

GAMBoost, 7
getGAMBoostSelected, 13
GLMBoost, 14
optimGAMBoostPenalty, 15
optimGLMBoostPenalty, 18
optimStepSizeFactor, 19
plot.GAMBoost, 21

optimGAMBoostPenalty, 10, 11,15, 18, 19
optimGLMBoostPenalty, 18
optimStepSizeFactor, 19

predict.GAMBoost, 23 plot.GAMBoost, 11, 14,21
predict.GLMBoost, 24 predict.GAMBoost, 11,23, 24, 25
«Topic regression predict.GLMBoost, 15, 24

cv.GAMBoost, 2
cv.GLMBoost, 4
estimPVal, 5
GAMBoost, 7
getGAMBoostSelected, 13
GLMBoost, 14
optimGAMBoostPenalty, 15
optimGLMBoostPenalty, 18
optimStepSizeFactor, 19
plot.GAMBoost, 21
predict.GAMBoost, 23
predict.GLMBoost, 24
*Topic sSmooth
cv.GAMBoost, 2
GAMBoost, 7
getGAMBoostSelected, 13
optimGAMBoostPenalty, 15
optimStepSizeFactor, 19
plot.GAMBoost, 21
predict.GAMBoost, 23
*Topic survial
estimPVal, 5

cv.GAMBoost, 2, 4, 10, 20, 21
cv.GLMBoost, 4

26

	cv.GAMBoost
	cv.GLMBoost
	estimPVal
	GAMBoost
	getGAMBoostSelected
	GLMBoost
	optimGAMBoostPenalty
	optimGLMBoostPenalty
	optimStepSizeFactor
	plot.GAMBoost
	predict.GAMBoost
	predict.GLMBoost
	Index

