
Package ‘GA’
January 10, 2019

Version 3.2

Date 2019-01-10

Title Genetic Algorithms

Description Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochas-
tic optimisation. Binary, real-valued, and permutation representations are available to opti-
mize a fitness function, i.e. a function provided by users depending on their objective func-
tion. Several genetic operators are available and can be combined to explore the best set-
tings for the current task. Furthermore, users can define new genetic operators and easily evalu-
ate their performances. Local search using general-purpose optimisation algorithms can be ap-
plied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, us-
ing an explicit master-slave parallelisation or a coarse-grain islands approach.

Depends R (>= 3.4), methods, foreach, iterators

Imports stats, graphics, grDevices, utils, cli, crayon, Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests parallel, doParallel, doRNG (>= 1.6), knitr (>= 1.8)

License GPL (>= 2)

VignetteBuilder knitr

URL https://luca-scr.github.io/GA/

BugReports https://github.com/luca-scr/GA/issues

Repository CRAN

ByteCompile true

LazyData yes

RoxygenNote 6.1.1

NeedsCompilation yes

Author Luca Scrucca [aut, cre] (<https://orcid.org/0000-0003-3826-0484>)

Maintainer Luca Scrucca <luca.scrucca@unipg.it>

Date/Publication 2019-01-10 12:00:03 UTC

1

https://luca-scr.github.io/GA/
https://github.com/luca-scr/GA/issues

2 GA-package

R topics documented:

GA-package . 2
binary2decimal . 3
binary2gray . 4
de . 5
de-class . 7
ga . 9
ga-class . 15
gaControl . 16
gaisl . 17
gaisl-class . 22
gaMonitor . 23
gaSummary . 24
ga_Crossover . 24
ga_Mutation . 26
ga_pmutation . 27
ga_Population . 28
ga_Selection . 29
numericOrNA-class . 30
palettes . 30
parNames-methods . 31
persp3D . 32
plot.de-method . 34
plot.ga-method . 35
plot.gaisl-method . 36
summary.de-method . 37
summary.ga-method . 38
summary.gaisl-method . 39

Index 41

GA-package Genetic Algorithms

Description

Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisa-
tion. Binary, real-valued, and permutation representations are available to optimize a fitness func-
tion, i.e. a function provided by users depending on their objective function. Several genetic opera-
tors are available and can be combined to explore the best settings for the current task. Furthermore,
users can define new genetic operators and easily evaluate their performances. Local search using
general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions.
GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-
grain islands approach.

binary2decimal 3

Details

For a quick intro to GA package see the vignette accompanying the package. Further details are
provided in the papers referenced below.

References

Scrucca, L. (2013) GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37. http://www.jstatsoft.org/v53/i04/

Scrucca, L. (2017) On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. https://journal.r-project.org/archive/
2017/RJ-2017-008

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

binary2decimal Binary encoding of decimal numbers and vice versa.

Description

Functions for computing binary to decimal conversion of numbers and vice versa.

Usage

decimal2binary(x, length)
binary2decimal(x)

Arguments

x input value.

length an optional value giving the length of binary string to return.

Details

decimal2binary converts a numerical value (which is forced to be an integer) to a binary repre-
sentation, i.e. a vector of 0s and 1s. For real numerical values see the example below.

binary2binary converts a binary value, i.e. a vector of 0s and 1s, to a decimal representation.

Author(s)

Luca Scrucca

See Also

binary2gray

../doc/index.html
http://www.jstatsoft.org/v53/i04/
https://journal.r-project.org/archive/2017/RJ-2017-008
https://journal.r-project.org/archive/2017/RJ-2017-008

4 binary2gray

Examples

for integer values
dval <- 12
(bval <- decimal2binary(dval))
binary2decimal(bval)

for real values
dval <- 12.456
use
(bval <- decimal2binary(dval*1000))
binary2decimal(bval)/1000

binary2gray Gray encoding for binary strings

Description

Functions for computing Gray encoding from/to binary strings.

Usage

binary2gray(x)
gray2binary(x)

Arguments

x the string to be evaluated

Details

Gray encoding allows to obtain binary strings not affected by the well-known Hamming cliff prob-
lem. With Gray encoding the number of bit differences between any two consecutive values is one,
whereas in binary strings this is not always true.

Author(s)

Luca Scrucca

See Also

binary2decimal

de 5

Examples

Consider a five-bit encoding of values 15 and 16 using the standard
binary coding
decimal2binary(15, 5)
decimal2binary(16, 5)
Moving from 15 to 16 (or vice versa) all five bits need to be changed,
but using Gray encoding the two binary strings differ by one bit.
binary2gray(decimal2binary(15, 5))
binary2gray(decimal2binary(16, 5))

de Differential Evolution via Genetic Algorithms

Description

Maximization of a fitness function using Differential Evolution (DE). DE is a population-based
evolutionary algorithm for optimisation of fitness functions defined over a continuous parameter
space.

Usage

de(fitness,
lower, upper,
popSize = 10*d,
stepsize = 0.8,
pcrossover = 0.5,
...)

Arguments

fitness the fitness function, any allowable R function which takes as input a vector of
values representing a potential solution, and returns a numerical value describing
its “fitness”.

lower a vector of length equal to the decision variables providing the lower bounds of
the search space.

upper a vector of length equal to the decision variables providing the upper bounds of
the search space.

popSize the population size. By default is set at 10 times the number of decision vari-
ables.

pcrossover the probability of crossover, by default set to 0.5.

stepsize the stepsize or weighting factor. A value in the interval [0,2], by default set to
0.8. If set at NA a random value is selected in the interval [0.5, 1.0] (so called
dithering).

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search.

6 de

Details

Differential Evolution (DE) is a stochastic evolutionary algorithm that optimises multidimensional
real-valued fitness functions without requiring the optimisation problem to be differentiable.

This implimentation follows the description in Simon (2013; Sec. 12.4, and Fig. 12.12) and uses
the functionalities available in the ga function for Genetic Algorithms.

The DE selection operator is defined by gareal_de with parameters p = pcrossover and F = stepsize.

Value

Returns an object of class de-class. See de-class for a description of available slots information.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

Scrucca L. (2013). GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37, http://www.jstatsoft.org/v53/i04/.

Simon D. (2013) Evolutionary Optimization Algorithms. John Wiley & Sons.

Price K., Storn R.M., Lampinen J.A. (2005) Differential Evolution: A Practical Approach to Global
Optimization. Springer.

See Also

summary,de-method, plot,de-method, de-class

Examples

1) one-dimensional function
f <- function(x) abs(x)+cos(x)
curve(f, -20, 20)

DE <- de(fitness = function(x) -f(x), lower = -20, upper = 20)
plot(DE)
summary(DE)

curve(f, -20, 20, n = 1000)
abline(v = DE@solution, lty = 3)

2) "Wild" function, global minimum at about -15.81515

wild <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x + 80
plot(wild, -50, 50, n = 1000)

from help("optim")
SANN <- optim(50, fn = wild, method = "SANN",

control = list(maxit = 20000, temp = 20, parscale = 20))
unlist(SANN[1:2])

http://www.jstatsoft.org/v53/i04/

de-class 7

DE <- de(fitness = function(...) -wild(...), lower = -50, upper = 50)
plot(DE)
summary(DE)

3) two-dimensional Rastrigin function

Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)
f <- outer(x1, x2, Rastrigin)
persp3D(x1, x2, f, theta = 50, phi = 20, col.palette = bl2gr.colors)

DE <- de(fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50)

plot(DE)
summary(DE)

filled.contour(x1, x2, f, color.palette = bl2gr.colors,
plot.axes = { axis(1); axis(2);

points(DE@solution,
col = "yellow", pch = 3, lwd = 2) })

4) two-dimensional Ackley function

Ackley <- function(x1, x2)
{

-20*exp(-0.2*sqrt(0.5*(x1^2 + x2^2))) -
exp(0.5*(cos(2*pi*x1) + cos(2*pi*x2))) + exp(1) + 20

}

x1 <- x2 <- seq(-3, 3, by = 0.1)
f <- outer(x1, x2, Ackley)
persp3D(x1, x2, f, theta = 50, phi = 20, col.palette = bl2gr.colors)

DE <- de(fitness = function(x) -Ackley(x[1], x[2]),
lower = c(-3, -3), upper = c(3, 3),
stepsize = NA)

plot(DE)
summary(DE)

filled.contour(x1, x2, f, color.palette = bl2gr.colors,
plot.axes = { axis(1); axis(2);

points(DE@solution,
col = "yellow", pch = 3, lwd = 2) })

de-class Class "de"

8 de-class

Description

An S4 class for differential evolution algorithm

Objects from the Class

Objects can be created by calls to the de function.

Slots

call an object of class "call" representing the matched call;

type a character string specifying the type of genetic algorithm used;

lower a vector providing for each decision variable the lower bounds of the search space in case of
real-valued or permutation encoded optimisations. Formerly this slot was named min;

upper a vector providing for each decision variable the upper bounds of the search space in case
of real-valued or permutation encoded optimizations. Formerly this slot was named max;

names a vector of character strings providing the names of decision variables (optional);

popSize the population size;

iter the actual (or final) iteration of DE search;

run the number of consecutive generations without any improvement in the best fitness value before
the DE is stopped;

maxiter the maximum number of iterations to run before the DE search is halted;

suggestions a matrix of user provided solutions and included in the initial population;

population the current (or final) population;

elitism the number of best fitness individuals to survive at each generation;

stepsize the stepsize or weighting factor;

pcrossover the crossover probability;

pmutation the mutation probability;

optim a logical specifying whether or not a local search using general-purpose optimisation algo-
rithms should be used;

fitness the values of fitness function for the current (or final) population;

summary a matrix of summary statistics for fitness values at each iteration (along the rows);

bestSol if keepBest = TRUE, the best solutions at each iteration;

fitnessValue the best fitness value at the final iteration;

solution the value(s) of the decision variables giving the best fitness at the final iteration.

Author(s)

Luca Scrucca

See Also

For examples of usage see de.

ga 9

ga Genetic Algorithms

Description

Maximization of a fitness function using genetic algorithms (GAs). Local search using general-
purpose optimisation algorithms can be applied stochastically to exploit interesting regions. The
algorithm can be run sequentially or in parallel using an explicit master-slave parallelisation.

Usage

ga(type = c("binary", "real-valued", "permutation"),
fitness, ...,
lower, upper, nBits,
population = gaControl(type)$population,
selection = gaControl(type)$selection,
crossover = gaControl(type)$crossover,
mutation = gaControl(type)$mutation,
popSize = 50,
pcrossover = 0.8,
pmutation = 0.1,
elitism = base::max(1, round(popSize*0.05)),
updatePop = FALSE,
postFitness = NULL,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
optim = FALSE,
optimArgs = list(method = "L-BFGS-B",

poptim = 0.05,
pressel = 0.5,
control = list(fnscale = -1, maxit = 100)),

keepBest = FALSE,
parallel = FALSE,
monitor = if(interactive()) gaMonitor else FALSE,
seed = NULL)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:

"binary" for binary representations of decision variables.
"real-valued" for optimization problems where the decision variables are

floating-point representations of real numbers.

10 ga

"permutation" for problems that involves reordering of a list of objects.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describ-
ing its “fitness”.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search.

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.
Formerly this argument was named min; its usage is allowed but deprecated.

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.
Formerly this argument was named max; its usage is allowed but deprecated.

nBits a value specifying the number of bits to be used in binary encoded optimizations.

population an R function for randomly generating an initial population. See ga_Population
for available functions.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See ga_Selection for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See ga_Crossover
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See ga_Mutation for available
functions.

popSize the population size.

updatePop a logical defaulting to FALSE. If set at TRUE the first attribute attached to the value
returned by the user-defined fitness function is used to update the population.
Be careful though, this is an experimental feature!

postFitness a user-defined function which, if provided, receives the current ga-class object
as input, performs post fitness-evaluation steps, then returns an updated version
of the object which is used to update the GA search.
Be careful though, this is an experimental feature!

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

elitism the number of best fitness individuals to survive at each generation. By default
the top 5% individuals will survive at each iteration.

maxiter the maximum number of iterations to run before the GA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the GA is stopped.

maxFitness the upper bound on the fitness function after that the GA search is interrupted.

names a vector of character strings providing the names of decision variables.

ga 11

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

optim a logical defaulting to FALSE determining whether or not a local search us-
ing general-purpose optimisation algorithms should be used. See argument
optimArgs for further details and finer control.

optimArgs a list controlling the local search algorithm with the following components:
method a string specifying the general-purpose optimisation method to be used,

by default is set to "L-BFGS-B". Other possible methods are those reported
in optim.

poptim a value in the range [0,1] specifying the probability of performing a
local search at each iteration of GA (default 0.1).

pressel a value in the range [0,1] specifying the pressure selection (default
0.5). The local search is started from a random solution selected with prob-
ability proportional to fitness. High values of pressel tend to select the
solutions with the largest fitness, whereas low values of pressel assign
quasi-uniform probabilities to any solution.

control a list of control parameters. See ’Details’ section in optim.
keepBest a logical argument specifying if best solutions at each iteration should be saved

in a slot called bestSol. See ga-class.
parallel An optional argument which allows to specify if the Genetic Algorithm should

be run sequentially or in parallel.
For a single machine with multiple cores, possible values are:

• a logical value specifying if parallel computing should be used (TRUE) or
not (FALSE, default) for evaluating the fitness function;

• a numerical value which gives the number of cores to employ. By default,
this is obtained from the function detectCores;

• a character string specifying the type of parallelisation to use. This depends
on system OS: on Windows OS only "snow" type functionality is available,
while on Unix/Linux/Mac OSX both "snow" and "multicore" (default)
functionalities are available.

In all the cases described above, at the end of the search the cluster is automati-
cally stopped by shutting down the workers.
If a cluster of multiple machines is available, evaluation of the fitness function
can be executed in parallel using all, or a subset of, the cores available to the
machines belonging to the cluster. However, this option requires more work
from the user, who needs to set up and register a parallel back end. In this case
the cluster must be explicitly stopped with stopCluster.

monitor a logical or an R function which takes as input the current state of the ga-class
object and show the evolution of the search. By default, for interactive sessions
the function gaMonitor prints the average and best fitness values at each itera-
tion. If set to plot these information are plotted on a graphical device. Other
functions can be written by the user and supplied as argument. In non interactive
sessions, by default monitor = FALSE so any output is suppressed.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a GA search. Note that if parallel comput-
ing is required, the doRNG package must be installed.

12 ga

Details

Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic principles of bi-
ological evolution and natural selection. GAs simulate the evolution of living organisms, where
the fittest individuals dominate over the weaker ones, by mimicking the biological mechanisms of
evolution, such as selection, crossover and mutation.

The GA package is a collection of general purpose functions that provide a flexible set of tools for
applying a wide range of genetic algorithm methods.

The ga function enables the application of GAs to problems where the decision variables are en-
coded as "binary", "real-valued", or "permutation" strings.

Default genetic operators are set via gaControl. To retrieve the currently set operators:

gaControl("binary")

gaControl("real-valued")

gaControl("permutation")

Value

Returns an object of class ga-class. See ga-class for a description of available slots information.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

Back T., Fogel D., Michalewicz Z. (2000). Evolutionary Computation 1: Basic Algorithms and
Operators. IOP Publishing Ltd., Bristol and Philadelphia.

Back T., Fogel D., Michalewicz Z. (2000b). Evolutionary Computation 2: Advanced Algorithms
and Operators. IOP Publishing Ltd., Bristol and Philadelphia.

Coley D. (1999). An Introduction to Genetic Algorithms for Scientists and Engineers. World Sci-
entific Pub. Co. Inc., Singapore.

Eiben A., Smith J. (2003). Introduction to Evolutionary Computing. Springer-Verlag, Berlin Hei-
delberg.

Goldberg D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley Professional, Boston, MA.

Haupt R. L., Haupt S. E. (2004). Practical Genetic Algorithms. 2nd edition. John Wiley & Sons,
New York.

Luke S. (2013) Essentials of Metaheuristics, 2nd edition. Lulu. Freely available at http://cs.
gmu.edu/~sean/book/metaheuristics/.

Scrucca L. (2013). GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37, http://www.jstatsoft.org/v53/i04/.

Scrucca, L. (2017) On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. https://journal.r-project.org/archive/
2017/RJ-2017-008

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
http://www.jstatsoft.org/v53/i04/
https://journal.r-project.org/archive/2017/RJ-2017-008
https://journal.r-project.org/archive/2017/RJ-2017-008

ga 13

Simon D. (2013) Evolutionary Optimization Algorithms. John Wiley & Sons.

Sivanandam S., Deepa S. (2007). Introduction to Genetic Algorithms. Springer-Verlag, Berlin
Heidelberg.

Yu X., Gen M. (2010). Introduction to Evolutionary Algorithms. Springer-Verlag, Berlin Heidel-
berg.

See Also

summary,ga-method, plot,ga-method, ga-class, ga_Population, ga_Selection, ga_Crossover,
ga_Mutation, gaControl.

Examples

1) one-dimensional function
f <- function(x) abs(x)+cos(x)
curve(f, -20, 20)

fitness <- function(x) -f(x)
GA <- ga(type = "real-valued", fitness = fitness, lower = -20, upper = 20)
summary(GA)
plot(GA)

curve(f, -20, 20)
abline(v = GA@solution, lty = 3)

2) one-dimensional function
f <- function(x) (x^2+x)*cos(x) # -10 < x < 10
curve(f, -10, 10)

write your own tracing function
monitor <- function(obj)
{

curve(f, -10, 10, main = paste("iteration =", obj@iter))
points(obj@population, obj@fitness, pch = 20, col = 2)
rug(obj@population, col = 2)
Sys.sleep(0.2)

}
Not run:
GA <- ga(type = "real-valued", fitness = f, lower = -10, upper = 10, monitor = monitor)

End(Not run)
or if you want to suppress the tracing
GA <- ga(type = "real-valued", fitness = f, lower = -10, upper = 10, monitor = NULL)
summary(GA)

monitor(GA)
abline(v = GA@solution, lty = 3)

3) two-dimensional Rastrigin function

Rastrigin <- function(x1, x2)
{

14 ga

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)
f <- outer(x1, x2, Rastrigin)
persp3D(x1, x2, f, theta = 50, phi = 20, col.palette = bl2gr.colors)
filled.contour(x1, x2, f, color.palette = bl2gr.colors)

GA <- ga(type = "real-valued", fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 100)

summary(GA)
plot(GA)

4) Parallel GA
Simple example of an expensive fitness function obtained artificially by
introducing a pause statement.
Not run:
Rastrigin <- function(x1, x2)
{

Sys.sleep(0.1)
20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))

}

system.time(GA1 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345))

system.time(GA2 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345, parallel = TRUE))

End(Not run)

5) Hybrid GA
Example of GA with local search

Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

GA <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 100,
optim = TRUE)

summary(GA)

ga-class 15

ga-class Class "ga"

Description

An S4 class for genetic algorithms

Objects from the Class

Objects can be created by calls to the ga function.

Slots

call an object of class "call" representing the matched call;

type a character string specifying the type of genetic algorithm used;

lower a vector providing for each decision variable the lower bounds of the search space in case of
real-valued or permutation encoded optimisations. Formerly this slot was named min;

upper a vector providing for each decision variable the upper bounds of the search space in case
of real-valued or permutation encoded optimizations. Formerly this slot was named max;

nBits a value specifying the number of bits to be used in binary encoded optimizations;

names a vector of character strings providing the names of decision variables (optional);

popSize the population size;

iter the actual (or final) iteration of GA search;

run the number of consecutive generations without any improvement in the best fitness value before
the GA is stopped;

maxiter the maximum number of iterations to run before the GA search is halted;

suggestions a matrix of user provided solutions and included in the initial population;

population the current (or final) population;

elitism the number of best fitness individuals to survive at each generation;

pcrossover the crossover probability;

pmutation the mutation probability;

optim a logical specifying whether or not a local search using general-purpose optimisation algo-
rithms should be used;

fitness the values of fitness function for the current (or final) population;

summary a matrix of summary statistics for fitness values at each iteration (along the rows);

bestSol if keepBest = TRUE, the best solutions at each iteration;

fitnessValue the best fitness value at the final iteration;

solution the value(s) of the decision variables giving the best fitness at the final iteration.

Author(s)

Luca Scrucca

16 gaControl

See Also

For examples of usage see ga.

gaControl A function for setting or retrieving defaults genetic operators

Description

Default settings for genetic operators used in the GA package.

Usage

gaControl(...)

Arguments

... no arguments, a single character vector, or a named list with components.

Details

If the function is called with no arguments returns the current default settings, i.e., a list with the
following default components:

• "binary"

– population = "gabin_Population"

– selection = "gabin_lrSelection"

– crossover = "gabin_spCrossover"

– mutation = "gabin_raMutation"

• "real-valued"

– population = "gareal_Population"

– selection = "gareal_lsSelection"

– crossover = "gareal_laCrossover"

– mutation = "gareal_raMutation"

• "permutation"

– population = "gaperm_Population"

– selection = "gaperm_lrSelection"

– crossover = "gaperm_oxCrossover"

– mutation = "gaperm_simMutation"

• "eps" = the tolerance value used by the package functions. By default set at sqrt(.Machine$double.eps).

The function may be called with a single string specifying the name of the component. In this case
the function returns the current default settings.

To change the default values, a named component must be followed by a single value (in case of
"eps") or a list of component(s) specifying the name of the function for a genetic operator. See the
Examples section.

gaisl 17

Value

If the argument list is empty the function returns the current list of values. If the argument list is not
empty, the returned list is invisible.

Note

The parameter values set via a call to this function will remain in effect for the rest of the session,
affecting the subsequent behaviour of the functions for which the given parameters are relevant.

Author(s)

Luca Scrucca

See Also

ga

Examples

get and save defaults
defaultControl <- gaControl()
print(defaultControl)
get current defaults only for binary search
gaControl("binary")
set defaults for selection operator of binary search
gaControl("binary" = list(selection = "gabin_tourSelection"))
gaControl("binary")
set defaults for selection and crossover operators of binary search
gaControl("binary" = list(selection = "ga_rwSelection",

crossover = "gabin_uCrossover"))
gaControl("binary")
restore defaults
gaControl(defaultControl)
gaControl()

gaisl Islands Genetic Algorithms

Description

Maximization of a fitness function using islands genetic algorithms (ISLGAs). This is a distributed
multiple-population GA, where the population is partitioned into several subpopulations and as-
signed to separated islands. Independent GAs are executed in each island, and only occasionally
sparse exchanges of individuals are performed among the islands. In principle islands can evolve
sequentially, but increased computational efficiency is obtained by running GAs in parallel on each
island. The latter is called island parallel GAs (ISLPGAs) and it is used by default.

18 gaisl

Usage

gaisl(type = c("binary", "real-valued", "permutation"),
fitness, ...,
lower, upper, nBits,
population = gaControl(type)$population,
selection = gaControl(type)$selection,
crossover = gaControl(type)$crossover,
mutation = gaControl(type)$mutation,
popSize = 100,
numIslands = 4,
migrationRate = 0.1,
migrationInterval = 10,
pcrossover = 0.8,
pmutation = 0.1,
elitism = base::max(1, round(popSize/numIslands*0.05)),
updatePop = FALSE,
postFitness = NULL,
maxiter = 1000,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
optim = FALSE,
optimArgs = list(method = "L-BFGS-B",

poptim = 0.05,
pressel = 0.5,
control = list(fnscale = -1, maxit = 100)),

parallel = TRUE,
monitor = if(interactive()) gaislMonitor else FALSE,
seed = NULL)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:

"binary" for binary representations of decision variables.
"real-valued" for optimization problems where the decision variables are

floating-point representations of real numbers.
"permutation" for problems that involves reordering of a list.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describ-
ing its “fitness”.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search.

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.
Formerly this argument was named min; its usage is allowed but deprecated.

gaisl 19

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.
Formerly this argument was named max; its usage is allowed but deprecated.

nBits a value specifying the number of bits to be used in binary encoded optimizations.

population an R function for randomly generating an initial population. See ga_Population
for available functions.

numIslands an integer value specifying the number of islands to be used in a ring topology,
in which each island is connected unidirectionally with another island, hence
forming a single continuous pathway.

migrationRate a value in the range $[0,1]$ providing the proportion of individuals that should
migrate between the islands.

migrationInterval

an integer value specifying the number of iterations at which exchange of indi-
viduals takes place.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See ga_Selection for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See ga_Crossover
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See ga_Mutation for available
functions.

popSize the population size.

updatePop a logical defaulting to FALSE. If set at TRUE the first attribute attached to the value
returned by the user-defined fitness function is used to update the population.
Be careful though, this is an experimental feature!

postFitness a user-defined function which, if provided, receives the current ga-class object
as input, performs post fitness-evaluation steps, then returns an updated version
of the object which is used to update the GA search.
Be careful though, this is an experimental feature!

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

elitism the number of best fitness individuals to survive at each generation. By default
the top 5% individuals in each island will survive at each iteration.

maxiter the maximum number of iterations to run before the GA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the GA is stopped.

maxFitness the upper bound on the fitness function after that the GA search is interrupted.

names a vector of character strings providing the names of decision variables.

20 gaisl

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

optim a logical defaulting to FALSE determining whether or not a local search us-
ing general-purpose optimisation algorithms should be used. See argument
optimArgs for further details and finer control.

optimArgs a list controlling the local search algorithm with the following components:

method a string specifying the general-purpose optimisation method to be used,
by default is set to "L-BFGS-B". Other possible methods are those reported
in optim.

poptim a value in the range [0,1] specifying the probability of performing a
local search at each iteration of GA (default 0.1).

pressel a value in the range [0,1] specifying the pressure selection (default
0.5). The local search is started from a random solution selected with prob-
ability proportional to fitness. High values of pressel tend to select the
solutions with the largest fitness, whereas low values of pressel assign
quasi-uniform probabilities to any solution.

control a list of control parameters. See ’Details’ section in optim.

parallel An optional argument which allows to specify if the Islands Genetic Algorithm
should be run sequentially or in parallel.
For a single machine with multiple cores, possible values are:

• a logical value specifying if parallel computing should be used (TRUE) or
not (FALSE, default) for running GAs on each island;

• a numerical value which gives the number of cores to employ. By default,
this is obtained from the function detectCores;

• a character string specifying the type of parallelisation to use. This depends
on system OS: on Windows OS only "snow" type functionality is available,
while on Unix/Linux/Mac OSX both "snow" and "multicore" (default)
functionalities are available.

In all the cases described above, at the end of the search the cluster is automati-
cally stopped by shutting down the workers.
If a cluster of multiple machines is available, evolution of GAs on each island
can be executed in parallel using all, or a subset of, the cores available to the
machines belonging to the cluster. However, this option requires more work
from the user, who needs to set up and register a parallel back end. In this case
the cluster must be explicitly stopped with stopCluster.

monitor a logical or an R function which takes as input the current state of the gaisl-class
object and show the evolution of the search in different epochs. By default, for
interactive sessions, the function gaislMonitor prints the average and best fit-
ness values at each epoch for each island. In non interactive sessions, by default
monitor = FALSE so any output is suppressed.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a ISLGA search. Note that if parallel
computing is required, the doRNG package must be installed.

gaisl 21

Details

Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic principles of bi-
ological evolution and natural selection. GAs simulate the evolution of living organisms, where
the fittest individuals dominate over the weaker ones, by mimicking the biological mechanisms of
evolution, such as selection, crossover and mutation.

The gaisl function implements the islands GAs approach, where the population is partitioned into
several subpopulations and assigned to separated islands. Independent GAs are executed in each
island, and only occasionally sparse exchanges of individuals are performed among the islands. The
algorithm can be run in parallel or sequentially. For more information on GAs see ga.

Value

Returns an object of class gaisl-class. See gaisl-class for a description of available slots
information.

Author(s)

Luca Scrucca <luca.scrucca@unipg.it>

References

Luque G., Alba E. (2011) Parallel Genetic Algorithms: Theory and Real World Applications.
Springer.

Luke S. (2013) Essentials of Metaheuristics, 2nd edition. Lulu. Freely available at http://cs.
gmu.edu/~sean/book/metaheuristics/.

Scrucca, L. (2017) On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. https://journal.r-project.org/archive/
2017/RJ-2017-008

See Also

summary,gaisl-method, plot,gaisl-method, gaisl-class, ga

Examples

Not run:
two-dimensional Rastrigin function
Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)
f <- outer(x1, x2, Rastrigin)
persp3D(x1, x2, f, theta = 50, phi = 20)
filled.contour(x1, x2, f, color.palette = jet.colors)

GA <- gaisl(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
https://journal.r-project.org/archive/2017/RJ-2017-008
https://journal.r-project.org/archive/2017/RJ-2017-008

22 gaisl-class

lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 80, maxiter = 500,
numIslands = 4, migrationInterval = 50)

summary(GA)
plot(GA)

End(Not run)

gaisl-class Class "gaisl"

Description

An S4 class for islands genetic algorithms (ISLGAs)

Objects from the Class

Objects can be created by calls to the gaisl function.

Slots

call an object of class "call" representing the matched call;

type a character string specifying the type of genetic algorithm used;

lower a vector providing for each decision variable the lower bounds of the search space in case of
real-valued or permutation encoded optimisations. Formerly this slot was named min;

upper a vector providing for each decision variable the upper bounds of the search space in case
of real-valued or permutation encoded optimizations. Formerly this slot was named max;

nBits a value specifying the number of bits to be used in binary encoded optimizations;

names a vector of character strings providing the names of decision variables (optional);

popSize the population size;

numIslands the number of islands;

migrationRate the migration rate;

migrationInterval the migration interval;

maxiter the maximum number of ISLGA iterations before the search is halted;

run the number of consecutive generations without any improvement in the best fitness value before
the ISLGA is stopped;

maxiter the maximum number of iterations to run before the GA search is halted;

suggestions a matrix of user provided solutions and included in the initial population;

elitism the number of best fitness individuals to survive at each generation;

pcrossover the crossover probability;

pmutation the mutation probability;

optim a logical specifying whether or not a local search using general-purpose optimisation algo-
rithms should be used;

gaMonitor 23

islands a list containing the objects of class ga corresponding to each island GA evolution;
summary a list of matrices of summary statistics for fitness values at each iteration (along the rows).

Each element of the list corresponds to the evolution of an island;
fitnessValues a list of best fitness values found in each island at the final iteration;
solutions a list of matrices, one for each island, containing the values of the decision variables

giving the best fitness at the final iteration;
fitnessValue the best fitness value at the final iteration;
solution a matrix containing the values of the decision variables giving the best fitness at the final

iteration.

Author(s)

Luca Scrucca

See Also

For examples of usage see gaisl.

gaMonitor Monitor genetic algorithm evolution

Description

Functions to print summary statistics of fitness values at each iteration of a GA search.

Usage

gaMonitor(object, digits = getOption("digits"), ...)

gaislMonitor(object, digits = getOption("digits"), ...)

Arguments

object an object of class ga-class or gaisl-class, usually resulting from a call to
function ga or gaisl, respectively.

digits minimal number of significant digits.
... further arguments passed to or from other methods.

Value

These functions print a summary of current GA step on the console.
By default, gaMonitor is called in interactive sessions by ga. The old monitoring function, used as
the default until version 2.2 of GA package, is provided in gaMonitor2.
By default, gaislMonitor is called in interactive sessions by gaisl.

Author(s)

Luca Scrucca

24 ga_Crossover

gaSummary Summarize genetic algorithm evolution

Description

A function which returns fitness summary statistics at each iteration of GA search.

Usage

gaSummary(x, ...)

Arguments

x a vector of fitness values for which summary statistics should be computed.

... further arguments passed to or from other methods.

Details

This function computes summary statistics for a vector of fitness values at current iteration of GA
search.

Value

A vector with the following values: (max, mean, median, min)

Author(s)

Luca Scrucca

See Also

ga

ga_Crossover Crossover operators in genetic algorithms

Description

Functions implementing crossover genetic operator.

ga_Crossover 25

Usage

ga_spCrossover(object, parents, ...)

gabin_spCrossover(object, parents, ...)
gabin_uCrossover(object, parents, ...)

gareal_spCrossover(object, parents, ...)
gareal_waCrossover(object, parents, ...)
gareal_laCrossover(object, parents, ...)
gareal_blxCrossover(object, parents, a = 0.5, ...)
gareal_laplaceCrossover(object, parents, a = 0, b = 0.15, ...)

gaperm_cxCrossover(object, parents, ...)
gaperm_pmxCrossover(object, parents, ...)
gaperm_oxCrossover(object, parents, ...)
gaperm_pbxCrossover(object, parents, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

parents A two-rows matrix of values indexing the parents from the current population.

... Further arguments passed to or from other methods.

a, b Parameters of genetic operators.

Value

Return a list with two elements:

children a matrix of dimension 2 times the number of decision variables containing the
generated offsprings;

fitness a vector of length 2 containing the fitness values for the offsprings. A value NA
is returned if an offspring is different (which is usually the case) from the two
parents.

Author(s)

Luca Scrucca

See Also

ga

26 ga_Mutation

ga_Mutation Mutation operators in genetic algorithms

Description

Functions implementing mutation genetic operator.

Usage

gabin_raMutation(object, parent, ...)

gareal_raMutation(object, parent, ...)
gareal_nraMutation(object, parent, ...)
gareal_rsMutation(object, parent, ...)
gareal_powMutation(object, parent, pow = 10, ...)

gaperm_simMutation(object, parent, ...)
gaperm_ismMutation(object, parent, ...)
gaperm_swMutation(object, parent, ...)
gaperm_dmMutation(object, parent, ...)
gaperm_scrMutation(object, parent, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

parent A vector of values for the parent from the current population where mutation
should occur.

... Further arguments passed to or from other methods.

pow Parameters of genetic operators.

Value

Return a vector of values containing the mutated string.

Author(s)

Luca Scrucca

ga_pmutation 27

ga_pmutation Variable mutation probability in genetic algorithms

Description

A function which calculates the mutation probability for the current iteration. This enables to use
GAs with variable mutation rate (see examples).

Usage

ga_pmutation(object, p0 = 0.5, p = 0.01, T = round(object@maxiter/2), ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

p0 initial probability of mutation.

p limiting probability of mutation.

T maximum iteration after which it should converges to p.

... Further arguments passed to or from other methods.

Value

Return a numeric value in the range (0,1).

Author(s)

Luca Scrucca

See Also

ga, ga_Mutation

Examples

Not run:
Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

GA <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 500, run = 100,
pmutation = ga_pmutation)

plot(GA)

GA <- ga(type = "real-valued",

28 ga_Population

fitness = function(x) -Rastrigin(x[1], x[2]),
lower = c(-5.12, -5.12), upper = c(5.12, 5.12),
popSize = 50, maxiter = 500, run = 100,
pmutation = function(...) ga_pmutation(..., p0 = 0.1))

plot(GA)

End(Not run)

ga_Population Population initialization in genetic algorithms

Description

Functions for creating a random initial population to be used in genetic algorithms.

Usage

gabin_Population(object, ...)

gareal_Population(object, ...)

gaperm_Population(object, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

... Further arguments passed to or from other methods.

Details

gabin_Population generates a random population of object@nBits binary values;

gareal_Population generates a random (uniform) population of real values in the range [object@min,
object@max];

gaperm_Population generates a random (uniform) population of integer values in the range [object@min,
object@max].

Value

Return a matrix of dimension object@popSize times the number of decision variables.

Author(s)

Luca Scrucca

See Also

ga

ga_Selection 29

ga_Selection Selection operators in genetic algorithms

Description

Functions implementing selection genetic operator.

Usage

ga_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

ga_nlrSelection(object, q = 0.25, ...)
ga_rwSelection(object, ...)
ga_tourSelection(object, k = 3, ...)

gabin_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gabin_nlrSelection(object, q = 0.25, ...)
gabin_rwSelection(object, ...)
gabin_tourSelection(object, k = 3, ...)

gareal_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gareal_nlrSelection(object, q = 0.25, ...)
gareal_rwSelection(object, ...)
gareal_tourSelection(object, k = 3, ...)
gareal_lsSelection(object, ...)
gareal_sigmaSelection(object, ...)

gaperm_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gaperm_nlrSelection(object, q = 0.25, ...)
gaperm_rwSelection(object, ...)
gaperm_tourSelection(object, k = 3, ...)

gareal_de(object, F = 0.8, p = 0.5, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

r A tuning parameter for the GA selection operator.

q A tuning parameter for the GA selection operator.

k A tuning parameter for the GA selection operator.

F, p Tuning parameters for the DE selection operator.

... Further arguments passed to or from other methods.

30 palettes

Value

Return a list with two elements:

population a matrix of dimension object@popSize times the number of decision variables
containing the selected individuals or strings;

fitness a vector of length object@popSize containing the fitness values for the selected
individuals.

Author(s)

Luca Scrucca

See Also

ga, de.

numericOrNA-class Virtual Class "numericOrNA" - Simple Class for sub-assignment Val-
ues

Description

The class "numericOrNA" is a simple class union (setClassUnion) of "numeric" and "logical".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

showClass("numericOrNA")

palettes Colours palettes

Description

Functions for creating a vector of colours from pre-specified palettes.

Usage

jet.colors(n)

spectral.colors(n)

bl2gr.colors(n)

parNames-methods 31

Arguments

n a numerical value specifying the number of colours in the palette.

Details

jet.colors() creates a palette of colours which tend to have high brightness and not uniform lu-
minance. Furthermore, the brightest colours, yellow and cyan, are used for intermediate data values,
and this has the effect of emphasizing uninteresting (and arbitrary) values while de-emphasizing the
extremes. For these reasons this popular palette is not recommended.
spectral.colors() creates a palette based on ColorBrewer http://colorbrewer2.org, so the
resulting colours have a much uniform luminance.
The bl2gr.colors() palette returns a palette of colours from blue to green.

Value

Returns a character vector of colours encoded in hexadecimal values.

See Also

colors, rgb.

Examples

jet.colors(9)
spectral.colors(9)
bl2gr.colors(9)

par(mfrow = c(3,1), mar = c(1,1,1,1))
n = 21
image(1:21, 1, as.matrix(1:21), col = jet.colors(21),

ylab = "", xlab = "", xaxt = "n", yaxt = "n", bty = "n")
image(1:21, 1, as.matrix(1:21), col = spectral.colors(21),

ylab = "", xlab = "", xaxt = "n", yaxt = "n", bty = "n")
image(1:21, 1, as.matrix(1:21), col = bl2gr.colors(21),

ylab = "", xlab = "", xaxt = "n", yaxt = "n", bty = "n")

parNames-methods Parameters or decision variables names from an object of class
ga-class.

Description

A method for obtaining the names of parameters or decision variables from an object of class
ga-class.

http://colorbrewer2.org

32 persp3D

Usage

parNames(object, ...)
S4 method for signature 'ga'
parNames(object, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

... Further arguments, currently not used.

Value

A list of character values providing the names of parameters or decision variables.

Author(s)

Luca Scrucca

See Also

ga

persp3D Perspective plot with colour levels

Description

This function draws a perspective plot of a surface with different levels in different colours.

Usage

persp3D(x, y, z, theta = 30, phi = 20, d = 5, expand = 2/3,
xlim = range(x, finite = TRUE), ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE), levels = pretty(zlim, nlevels),
nlevels = 20, col.palette = jet.colors, border = NA,
ticktype = "detailed", xlab = NULL, ylab = NULL, zlab = NULL,
...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively.

z a matrix containing the values to be plotted (NAs are allowed).

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

persp3D 33

d a value which can be used to vary the strength of the perspective transformation.
expand a expansion factor applied to the z coordinates.
xlim, ylim, zlim

x-, y- and z-limits for the axes.
levels a vector of values specifying the levels to be used for plotting the surface with

different colours.
nlevels a value specifying the number of levels to be used for plotting. This value is

used if levels argument is not specified.
col.palette the colour palette used for plotting.
border the colour of the line drawn around the surface facets. By default is set to NA so

no borders are drawn.
ticktype a character specifying the type of axes tickmarks. By default "detailed" ticks

are drawn.
xlab, ylab, zlab

character strings specifying the titles for the axes.
... Further arguments passed to the function persp.

Details

This function enhances the default perspective plot for drawing 3-dimensional surfaces.

Value

Return a list with the following elements:

persp the viewing transformation matrix (see persp);
levels a vector of values giving the levels used for plotting the surface;
colors a vector of strings giving the colour used for plotting the surface.

Author(s)

Luca Scrucca

See Also

persp

Examples

y <- x <- seq(-10, 10, length=60)
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
persp3D(x, y, z, theta = 30, phi = 30, expand = 0.5)
persp3D(x, y, z, col.palette = heat.colors, phi = 30, theta = 225,

box = TRUE, border = NA, shade = .4)
x1 <- seq(-3,3,length=50)
x2 <- seq(-3,3,length=50)
y <- function(x1, x2) sin(x1)+cos(x2)
persp3D(x1, x2, outer(x1,x2,y), zlab="y", theta = 150, phi = 20, expand = 0.6)

34 plot.de-method

plot.de-method Plot of Differential Evolution search path

Description

The plot method for de-class objects gives a plot of best and average fitness values found during
the iterations of the DE search.

Usage

S4 method for signature 'de'
plot(x, y, ylim, cex.points = 0.7,

col = c("green3", "dodgerblue3", adjustcolor("green3", alpha.f = 0.1)),
pch = c(16, 1), lty = c(1,2), legend = TRUE, grid = graphics:::grid, ...)

Arguments

x An object of class "ga".

y Not used.

ylim A vector of two values specifying the limits on the y-axis.

cex.points The magnification to be used for points.

col The colours to be used for best and average fitness values.

pch The type of points to be used for best and average fitness values.

lty The type of lines to be used for best and average fitness values.

legend A logical specifying if a legend should be included.

grid A function for grid drawing of NULL to avoid drawing one.

... Further arguments, currently not used.

Details

Plot best and average fitness values at each iteration of DE search.

Value

The method invisibly return a data.frame with the iterations and summary statistics for the fitness
function evaluated at each iteration.

Author(s)

Luca Scrucca

See Also

de, de-class, plot,de-method.

plot.ga-method 35

Examples

See examples in help(de)

plot.ga-method Plot of Genetic Algorithm search path

Description

The plot method for ga-class objects gives a plot of best and average fitness values found during
the iterations of the GA search.

Usage

S4 method for signature 'ga'
plot(x, y, ylim, cex.points = 0.7,

col = c("green3", "dodgerblue3", adjustcolor("green3", alpha.f = 0.1)),
pch = c(16, 1), lty = c(1,2), legend = TRUE, grid = graphics:::grid, ...)

Arguments

x An object of class "ga".

y Not used.

ylim A vector of two values specifying the limits on the y-axis.

cex.points The magnification to be used for points.

col The colours to be used for best and average fitness values.

pch The type of points to be used for best and average fitness values.

lty The type of lines to be used for best and average fitness values.

legend A logical specifying if a legend should be included.

grid A function for grid drawing of NULL to avoid drawing one.

... Further arguments, currently not used.

Details

Plot best and average fitness values at each iteration of GA search.

Value

The method invisibly return a data.frame with the iterations and summary statistics for the fitness
function evaluated at each iteration.

Author(s)

Luca Scrucca

36 plot.gaisl-method

See Also

ga, ga-class.

Examples

See examples in help(ga)

The following code shows how to obtain graphs using the
ggplot2 plotting system
Not run:
GA <- ga(type = "real-valued",

fitness = function(x) -(abs(x)+cos(x)),
lower = -20, upper = 20,
popSize = 20, pmutation = 0.2, maxiter = 50)

out <- plot(GA)
library(reshape2)
df <- melt(out[,c(1:3,5)], id.var = "iter")
library(ggplot2)
ggplot(out) +

geom_ribbon(aes(x = iter, ymin = median, ymax = max,
colour = "median", fill = "median")) +

geom_line(aes(x = iter, y = max, colour = "max")) +
geom_point(aes(x = iter, y = max, colour = "max")) +
geom_line(aes(x = iter, y = mean, colour = "mean"), lty = 2) +
geom_point(aes(x = iter, y = mean, colour = "mean"), pch = 1) +
xlab("Generation") + ylab("Fitness values") +
scale_colour_manual(breaks = c("max", "mean", "median"),

values = c("green3", "dodgerblue3", adjustcolor("green3", alpha.f = 0.1))) +
scale_fill_manual(breaks = "median",

values = adjustcolor("green3", alpha.f = 0.1)) +
guides(fill = "none",

colour = guide_legend(override.aes =
list(fill = c(NA, NA, adjustcolor("green3", alpha.f = 0.1)),

pch = c(19,1,NA)))) +
theme_bw() +
theme(legend.title = element_blank(),

legend.pos = "top",
legend.background = element_blank())

End(Not run)

plot.gaisl-method Plot of Islands Genetic Algorithm search path

Description

The plot method for gaisl-class objects gives a plot of best fitness values found in each island
during the GA iterations.

summary.de-method 37

Usage

S4 method for signature 'gaisl'
plot(x, y, ...)

Arguments

x An object of class "gaisl".

y Not used.

... Further arguments passed to plot.default, such as ylim, ylab, etc., or to
matplot, such as col, lty, and lwd.

Details

Plot best fitness values found in each island during the GA iterations.

Value

The method invisibly return a list with the following components:

iter a vector of values specifying the iteration.

summary a matrix of best fitness values for each island along the columns.

Author(s)

Luca Scrucca

See Also

gaisl, gaisl-class.

Examples

See examples in help(gaisl)

summary.de-method Summary for Differential Evolution

Description

Summary method for class de-class.

Usage

S4 method for signature 'de'
summary(object, ...)

S3 method for class 'summary.de'
print(x, digits = getOption("digits"), ...)

38 summary.ga-method

Arguments

object an object of class de-class.

x an object of class summary.de.

digits number of significant digits.

... further arguments passed to or from other methods.

Value

The summary function returns an object of class summary.de which can be printed by the corre-
sponding print method. The function also returns invisibly a list with the information from the
differential evolution search.

Author(s)

Luca Scrucca

See Also

de

Examples

f <- function(x) abs(x)+cos(x)
DE <- de(fitness = function(x) -f(x),

lower = -20, upper = 20, run = 50)
out <- summary(DE)
print(out)
str(out)

summary.ga-method Summary for Genetic Algorithms

Description

Summary method for class ga-class.

Usage

S4 method for signature 'ga'
summary(object, ...)

S3 method for class 'summary.ga'
print(x, digits = getOption("digits"), ...)

summary.gaisl-method 39

Arguments

object an object of class ga-class.

x an object of class summary.ga.

digits number of significant digits.

... further arguments passed to or from other methods.

Value

The summary function returns an object of class summary.ga which can be printed by the corre-
sponding print method. The function also returns invisibly a list with the information from the
genetic algorithm search.

Author(s)

Luca Scrucca

See Also

ga

Examples

f <- function(x) abs(x)+cos(x)
GA <- ga(type = "real-valued",

fitness = function(x) -f(x),
lower = -20, upper = 20, run = 50)

out <- summary(GA)
print(out)
str(out)

summary.gaisl-method Summary for Islands Genetic Algorithms

Description

Summary method for class gaisl-class.

Usage

S4 method for signature 'gaisl'
summary(object, ...)

S3 method for class 'summary.gaisl'
print(x, digits = getOption("digits"), ...)

40 summary.gaisl-method

Arguments

object an object of class gaisl-class.

x an object of class summary.gaisl.

digits number of significant digits.

... further arguments passed to or from other methods.

Value

The summary function returns an object of class summary.gaisl which can be printed by the cor-
responding print method. The function also returns invisibly a list with the information from the
islands genetic algorithm search.

Author(s)

Luca Scrucca

See Also

gaisl

Examples

Not run:
f <- function(x) abs(x)+cos(x)
GA <- gaisl(type = "real-valued",

fitness = function(x) -f(x),
lower = -20, upper = 20, run = 10,
numIslands = 4)

out <- summary(GA)
print(out)
str(out)

End(Not run)

Index

∗Topic classes
de-class, 8
ga-class, 15
gaisl-class, 22
numericOrNA-class, 30

∗Topic hplot
palettes, 30
persp3D, 32
plot.de-method, 34
plot.ga-method, 35
plot.gaisl-method, 36

∗Topic methods
parNames-methods, 31
plot.de-method, 34
plot.ga-method, 35
plot.gaisl-method, 36

∗Topic optimize
de, 5
de-class, 8
ga, 9
ga-class, 15
gaisl, 17
gaisl-class, 22
summary.de-method, 37
summary.ga-method, 38
summary.gaisl-method, 39

∗Topic package
GA-package, 2

binary2decimal, 3, 4
binary2gray, 3, 4
bl2gr.colors (palettes), 30

colors, 31

de, 5, 8, 30, 34, 38
de-class, 7
decimal2binary (binary2decimal), 3
detectCores, 11, 20

GA (GA-package), 2

ga, 6, 9, 15–17, 21, 23–30, 32, 36, 39
ga-class, 15, 31
GA-package, 2
ga_Crossover, 10, 13, 19, 24
ga_Crossover_R (ga_Crossover), 24
ga_Crossover_Rcpp (ga_Crossover), 24
ga_lrSelection (ga_Selection), 29
ga_lrSelection_R (ga_Selection), 29
ga_lrSelection_Rcpp (ga_Selection), 29
ga_Mutation, 10, 13, 19, 26, 27
ga_nlrSelection (ga_Selection), 29
ga_nlrSelection_R (ga_Selection), 29
ga_nlrSelection_Rcpp (ga_Selection), 29
ga_pmutation, 27
ga_pmutation_R (ga_pmutation), 27
ga_pmutation_Rcpp (ga_pmutation), 27
ga_Population, 10, 13, 19, 28
ga_rwSelection (ga_Selection), 29
ga_rwSelection_R (ga_Selection), 29
ga_rwSelection_Rcpp (ga_Selection), 29
ga_Selection, 10, 13, 19, 29
ga_spCrossover (ga_Crossover), 24
ga_spCrossover_R (ga_Crossover), 24
ga_spCrossover_Rcpp (ga_Crossover), 24
ga_tourSelection (ga_Selection), 29
ga_tourSelection_R (ga_Selection), 29
ga_tourSelection_Rcpp (ga_Selection), 29
gabin_lrSelection (ga_Selection), 29
gabin_lrSelection_R (ga_Selection), 29
gabin_lrSelection_Rcpp (ga_Selection),

29
gabin_nlrSelection (ga_Selection), 29
gabin_nlrSelection_R (ga_Selection), 29
gabin_nlrSelection_Rcpp (ga_Selection),

29
gabin_Population (ga_Population), 28
gabin_Population_R (ga_Population), 28
gabin_Population_Rcpp (ga_Population),

28

41

42 INDEX

gabin_raMutation (ga_Mutation), 26
gabin_raMutation_R (ga_Mutation), 26
gabin_raMutation_Rcpp (ga_Mutation), 26
gabin_rwSelection (ga_Selection), 29
gabin_rwSelection_R (ga_Selection), 29
gabin_rwSelection_Rcpp (ga_Selection),

29
gabin_spCrossover (ga_Crossover), 24
gabin_spCrossover_R (ga_Crossover), 24
gabin_spCrossover_Rcpp (ga_Crossover),

24
gabin_tourSelection (ga_Selection), 29
gabin_tourSelection_R (ga_Selection), 29
gabin_tourSelection_Rcpp

(ga_Selection), 29
gabin_uCrossover (ga_Crossover), 24
gabin_uCrossover_R (ga_Crossover), 24
gabin_uCrossover_Rcpp (ga_Crossover), 24
gaControl, 12, 13, 16
gaisl, 17, 22, 23, 37, 40
gaisl-class, 22
gaislMonitor, 20
gaislMonitor (gaMonitor), 23
gaMonitor, 11, 23
gaperm_cxCrossover (ga_Crossover), 24
gaperm_cxCrossover_R (ga_Crossover), 24
gaperm_cxCrossover_Rcpp (ga_Crossover),

24
gaperm_dmMutation (ga_Mutation), 26
gaperm_dmMutation_R (ga_Mutation), 26
gaperm_dmMutation_Rcpp (ga_Mutation), 26
gaperm_ismMutation (ga_Mutation), 26
gaperm_ismMutation_R (ga_Mutation), 26
gaperm_ismMutation_Rcpp (ga_Mutation),

26
gaperm_lrSelection (ga_Selection), 29
gaperm_lrSelection_R (ga_Selection), 29
gaperm_lrSelection_Rcpp (ga_Selection),

29
gaperm_nlrSelection (ga_Selection), 29
gaperm_nlrSelection_R (ga_Selection), 29
gaperm_nlrSelection_Rcpp

(ga_Selection), 29
gaperm_oxCrossover (ga_Crossover), 24
gaperm_oxCrossover_R (ga_Crossover), 24
gaperm_oxCrossover_Rcpp (ga_Crossover),

24
gaperm_pbxCrossover (ga_Crossover), 24

gaperm_pbxCrossover_R (ga_Crossover), 24
gaperm_pbxCrossover_Rcpp

(ga_Crossover), 24
gaperm_pmxCrossover (ga_Crossover), 24
gaperm_pmxCrossover_R (ga_Crossover), 24
gaperm_pmxCrossover_Rcpp

(ga_Crossover), 24
gaperm_Population (ga_Population), 28
gaperm_Population_R (ga_Population), 28
gaperm_Population_Rcpp (ga_Population),

28
gaperm_rwSelection (ga_Selection), 29
gaperm_rwSelection_R (ga_Selection), 29
gaperm_rwSelection_Rcpp (ga_Selection),

29
gaperm_scrMutation (ga_Mutation), 26
gaperm_scrMutation_R (ga_Mutation), 26
gaperm_scrMutation_Rcpp (ga_Mutation),

26
gaperm_simMutation (ga_Mutation), 26
gaperm_simMutation_R (ga_Mutation), 26
gaperm_simMutation_Rcpp (ga_Mutation),

26
gaperm_swMutation (ga_Mutation), 26
gaperm_swMutation_R (ga_Mutation), 26
gaperm_swMutation_Rcpp (ga_Mutation), 26
gaperm_tourSelection (ga_Selection), 29
gaperm_tourSelection_R (ga_Selection),

29
gaperm_tourSelection_Rcpp

(ga_Selection), 29
gareal_blxCrossover (ga_Crossover), 24
gareal_blxCrossover_R (ga_Crossover), 24
gareal_blxCrossover_Rcpp

(ga_Crossover), 24
gareal_de, 6
gareal_de (ga_Selection), 29
gareal_de_R (ga_Selection), 29
gareal_de_Rcpp (ga_Selection), 29
gareal_laCrossover (ga_Crossover), 24
gareal_laCrossover_R (ga_Crossover), 24
gareal_laCrossover_Rcpp (ga_Crossover),

24
gareal_laplaceCrossover (ga_Crossover),

24
gareal_laplaceCrossover_R

(ga_Crossover), 24
gareal_laplaceCrossover_Rcpp

INDEX 43

(ga_Crossover), 24
gareal_lrSelection (ga_Selection), 29
gareal_lrSelection_R (ga_Selection), 29
gareal_lrSelection_Rcpp (ga_Selection),

29
gareal_lsSelection (ga_Selection), 29
gareal_lsSelection_R (ga_Selection), 29
gareal_lsSelection_Rcpp (ga_Selection),

29
gareal_nlrSelection (ga_Selection), 29
gareal_nlrSelection_R (ga_Selection), 29
gareal_nlrSelection_Rcpp

(ga_Selection), 29
gareal_nraMutation (ga_Mutation), 26
gareal_nraMutation_R (ga_Mutation), 26
gareal_nraMutation_Rcpp (ga_Mutation),

26
gareal_Population (ga_Population), 28
gareal_Population_R (ga_Population), 28
gareal_Population_Rcpp (ga_Population),

28
gareal_powMutation (ga_Mutation), 26
gareal_powMutation_R (ga_Mutation), 26
gareal_powMutation_Rcpp (ga_Mutation),

26
gareal_raMutation (ga_Mutation), 26
gareal_raMutation_R (ga_Mutation), 26
gareal_raMutation_Rcpp (ga_Mutation), 26
gareal_rsMutation (ga_Mutation), 26
gareal_rsMutation_R (ga_Mutation), 26
gareal_rsMutation_Rcpp (ga_Mutation), 26
gareal_rwSelection (ga_Selection), 29
gareal_rwSelection_R (ga_Selection), 29
gareal_rwSelection_Rcpp (ga_Selection),

29
gareal_sigmaSelection (ga_Selection), 29
gareal_sigmaSelection_R (ga_Selection),

29
gareal_sigmaSelection_Rcpp

(ga_Selection), 29
gareal_spCrossover (ga_Crossover), 24
gareal_spCrossover_R (ga_Crossover), 24
gareal_spCrossover_Rcpp (ga_Crossover),

24
gareal_tourSelection (ga_Selection), 29
gareal_tourSelection_R (ga_Selection),

29
gareal_tourSelection_Rcpp

(ga_Selection), 29
gareal_waCrossover (ga_Crossover), 24
gareal_waCrossover_R (ga_Crossover), 24
gareal_waCrossover_Rcpp (ga_Crossover),

24
gaSummary, 24
gray2binary (binary2gray), 4

jet.colors (palettes), 30

matplot, 37

numericOrNA-class, 30

optim, 11, 20

palettes, 30
parNames (parNames-methods), 31
parNames,ga-method (parNames-methods),

31
parNames-methods, 31
persp, 33
persp3D, 32
plot,de-method (plot.de-method), 34
plot,ga-method (plot.ga-method), 35
plot,gaisl-method (plot.gaisl-method),

36
plot.de-method, 34
plot.default, 37
plot.ga (plot.ga-method), 35
plot.ga-method, 35
plot.gaisl (plot.gaisl-method), 36
plot.gaisl-method, 36
print,de-method (de), 5
print,ga-method (ga), 9
print,gaisl-method (gaisl), 17
print.summary.de (summary.de-method), 37
print.summary.ga (summary.ga-method), 38
print.summary.gaisl

(summary.gaisl-method), 39

rgb, 31

setClassUnion, 30
show,de-method (de), 5
show,ga-method (ga), 9
show,gaisl-method (gaisl), 17
spectral.colors (palettes), 30
stopCluster, 11, 20

44 INDEX

summary,de-method (summary.de-method),
37

summary,ga-method (summary.ga-method),
38

summary,gaisl-method
(summary.gaisl-method), 39

summary.de (summary.de-method), 37
summary.de-method, 37
summary.ga (summary.ga-method), 38
summary.ga-method, 38
summary.gaisl (summary.gaisl-method), 39
summary.gaisl-method, 39

	GA-package
	binary2decimal
	binary2gray
	de
	de-class
	ga
	ga-class
	gaControl
	gaisl
	gaisl-class
	gaMonitor
	gaSummary
	ga_Crossover
	ga_Mutation
	ga_pmutation
	ga_Population
	ga_Selection
	numericOrNA-class
	palettes
	parNames-methods
	persp3D
	plot.de-method
	plot.ga-method
	plot.gaisl-method
	summary.de-method
	summary.ga-method
	summary.gaisl-method
	Index

