ForecastFramework: A Basis for Modular Model Creation

Create modular models. Quickly prototype models whose input includes (multiple) time series data. Create pieces of model use cases separately, and swap out particular models as desired. Create modeling competitions, data processing pipelines, and re-useable models.

Version: 0.10.3
Depends: R6, R (≥ 2.10.0)
Imports: abind, lubridate, dplyr, reshape2, magrittr, tibble
Suggests: testthat, knitr, rmarkdown
Enhances: surveillance
Published: 2020-01-16
Author: Joshua Kaminsky [aut, cre], Justin Lessler [aut], Nicholas Reich [aut]
Maintainer: Joshua Kaminsky <jkaminsky at jhu.edu>
License: GPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: ForecastFramework results

Downloads:

Reference manual: ForecastFramework.pdf
Vignettes: DataPolymorphism
Forecasting
Prediction
ClassDiagram
Package source: ForecastFramework_0.10.3.tar.gz
Windows binaries: r-devel: ForecastFramework_0.10.3.zip, r-release: ForecastFramework_0.10.3.zip, r-oldrel: ForecastFramework_0.10.3.zip
macOS binaries: r-release: ForecastFramework_0.10.3.tgz, r-oldrel: ForecastFramework_0.10.3.tgz
Old sources: ForecastFramework archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ForecastFramework to link to this page.