Package 'FTICRMS'

February 19, 2015

Type Package

Title Programs for Analyzing Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Data	
Version 0.8	
Date 2009-08-20	
Author Don Barkauskas	
Maintainer Don Barkauskas <barkda@wald.ucdavis.edu></barkda@wald.ucdavis.edu>	
Depends Matrix, lattice, splines	
Description This package was developed partially with funding from the NIH Training Program in Biomolecular Technology (2-T32-GM08799).	
License GPL-2	
Repository CRAN	
Date/Publication 2012-10-29 08:57:04	
NeedsCompilation no	
R topics documented:	
FTICRMS-package	2
baseline	2
display.tests	5
extract.pars	6
locate.peaks	9
make.par.file	10
	13
	14
run.baselines	17
run.cluster.matrix	19
6.1	22
	24
run.strong.peaks	26
Index	29

2 baseline

FTICRMS-package Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) Analysis	FTICRMS-package	
--	-----------------	--

Description

Contains programs for identifying baseline curves and peaks and for statistical analysis of FT-ICR MS data.

Details

Package: FTICRMS
Type: Package
Version: 0.8
Date: 2009-08-20
License: GPL-2

This package was developed partially with funding from the NIH Training Program in Biomolecular Technology (2-T32-GM08799).

Author(s)

Don Barkauskas

Maintainer: Don Barkauskas (<barkda@wald.ucdavis.edu>)

baseline Calculate Baselines for specific Data	baseline	Calculate Baselines for Spectroscopic Data
--	----------	--

Description

Computes an estimated baseline curve for a spectrum using the "BXR algorithm," a method of Xi and Rocke generalized by Barkauskas and Rocke.

Usage

```
baseline(spect, init.bd, sm.par = 1e-11, sm.ord = 2, max.iter = 20, tol = 5e-8,
    sm.div = NA, sm.norm.by = c("baseline", "overestimate", "constant"),
    neg.div = NA, neg.norm.by = c("baseline", "overestimate", "constant"),
    rel.conv.crit = TRUE, zero.rm = TRUE, halve.search = FALSE)
```

baseline 3

Arguments

spect	vector containing the intensities of the spectrum
init.bd	initial value for baseline; default is flat baseline at median height
sm.par	smoothing parameter for baseline calculation
sm.ord	order of derivative to penalize in baseline analysis
max.iter	convergence criterion in baseline calculation
tol	convergence criterion; see below
sm.div	smoothness divisor in baseline calculation
sm.norm.by	method for smoothness penalty in baseline analysis
neg.div	negativity divisor in baseline calculation
neg.norm.by	method for negativity penalty in baseline analysis
rel.conv.crit	logical; whether convergence criterion should be relative to size of current baseline estimate
zero.rm	logical; whether to replace zeros with average of surrounding values
halve.search	logical; whether to use a halving-line search if step leads to smaller value of function

Details

If the spectrum is given by y_i , then the algorithm works by maximizing the objective function

$$F(\{b_i\}) = \sum_{i=1}^{n} b_i - \sum_{i=2}^{n-1} A_{1,i}(b_{i-1} - 2b_i + b_{i+1})^2 - \sum_{i=1}^{n} A_{2,i}[\max\{b_i - y_i, 0\}]^2$$

using Newton's method (with embedded halving line search if halve.search == TRUE) using starting value b[i] = init.bd[i] for all i. The middle term controls the smoothness of the baseline and the last term applies a "negativity penalty" when the baseline is above the spectrum.

The smoothing factor sm.par corresponds to A_1^* in Barkauskas (2009) and controls how large the estimated nth derivative of the baseline is allowed to be (for sm.ord = n). From a practical standpoint, values of sm.ord larger than two do not seem to adequately smooth the baseline because the Hessian becomes computationally singular for any reasonable value of sm.par.

The parameters sm.div, sm.norm.by, neg.div, and neg.norm.by determine the methods used to normalize the smoothness and negativity terms. The general forms are $A_{1,i}=n^4A_1^*/M_i/p$ and $A_{2,i}=1/M_i/p$. Here, n = length(spect); p is sm.div or neg.div, as appropriate; and M_i is determined by sm.norm.by or neg.norm.by, as appropriate. Values of "baseline" make $M_i=b_i'$, where b_i' is the currently estimated value of the baseline; values of "overestimate" make $M_i=b_i'-y_i$; and values of "constant" make $M_i=\sigma$, where σ is an estimate of the noise standard deviation.

The values of sm.norm.by and neg.norm.by can be abbreviated and both have default value "baseline". The default values of NA for sm.div and neg.div are translated by default to sm.div = 0.5223145 and neg.div = 0.4210109, which are the appropriate parameters for the FT-ICR mass spectrometry machine that generated the spectra which were used to develop this package. It is distinctly

4 baseline

possible that other machines will require different parameters, and almost certain that other spectroscopic technologies will require different parameters; see Barkauskas (2009a) for a description for how these parameters were obtained.

If zero.rm == TRUE and $y_a, \ldots, y_{a+k} = 0$, then these values of the spectrum are set to be $(y_{a-1} + y_{a+k+1})/2$. (For typical MALDI FT-ICR spectra, a spectrum value of zero indicates an erased harmonic and should not be considered a real data point.)

Value

A list containing the following items:

baseline The computed baseline

iter The number of iterations for convergence

changed Numeric vector of length iter containing the number of indicator variables that

switched value on each iteration

hs Numeric vector of length iter containing the number of halving line-searches

done on each iteration

Note

The original algorithm was developed by Yuanxin Xi and David Rocke. The code in this package was first adapted from a Matlab program by Yuanxin Xi, then modified to account for the new methodology in Barkauskas (2009a).

halve.search = FALSE is recommended unless both sm.norm.by == "constant" and neg.norm.by == "constant".

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Xi, Y. and Rocke, D.M. (2008) "Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis". *BMC Bioinformatics*, **9**:324.

See Also

run.baselines

display.tests 5

display.tests	Display Full Test Information for Peaks	

Description

Displays full test information (not just *p*-values) for peaks generated by run.analysis.

Usage

Arguments

sig.rows	numeric or character vector used to select rows of sigs; default value returns all significant tests
summ	either a function or string representing a function which can be applied to the output of use.model or "none"
tests	numeric or character vector used to select rows of clust.mat; default value returns the rows in clust.mat corresponding to the rows in sigs[sig.rows,]
form	formula for use in $1m$; default is the one that was used to generate the significant peaks
use.model	function or string representing a function; what test to apply to data
	arguments to be passed to use.model

Details

If use.model in run.analysis evaluates to anything other than t.test, then the only thing reported on each peak by run.analysis is the p-value. This program takes a specified subset of the significant peaks and returns a list consisting of the models generated by use.model (if summ = "none") or summ applied to those models. Typical values for summ include anova and summary.

Although the program is designed to be used on significant peaks, by defining tests directly in the function call, you can access any of the peaks in clust.mat. If tests is defined in the function call, its value overrides anything specified by sig.rows.

Value

A list with components equal to the models or summaries for the requested peaks.

Note

clust.mat and sig.mat must be defined in the workspace for this program to work—for example, in the results file output by run.analysis.

6 extract.pars

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

See Also

```
run.analysis, anova, lm, t.test
```

extract.pars

Extract Parameters from File

Description

Extracts the parameters in the file specified by par. file and returns them in list form.

Usage

```
extract.pars(par.file = "parameters.RData", root.dir = ".")
```

Arguments

par.file string containing name of parameters file

root.dir string containing directory of parameters file to be extracted from

Details

Used by run. analysis to record all the parameter choices in an analysis for future reference.

Value

covariates

A list with the following components:

add.norm	logical; whether to normalize additively or multiplicatively on the log scale	
add.par	additive parameter for "shiftedlog" or "glog" options for trans.method	
align.fcn	function (and inverse) to apply to masses before (and after) applying align.method	
align.method	alignment algorithm for peaks	
base.dir	directory for baseline files	
bhbysubj	logical; whether to look for number of large peaks by subject (i.e., combining replicates) or by spectrum	
calc.all.peaks	whether to calculate all possible peaks or only sufficiently large ones	
cluster.constant		
	parameter used in running cluster.method	
${\tt cluster.method}$	method for determining when two peaks from different spectra are the same	
cor.thresh	threshhold correlation for declaring isotopes	

data frame containing covariates used in analysis

extract.pars 7

FDR False Discovery Rate in Benjamini-Hochberg test

FTICRMS.version

Version of **FTICRMS** that created file

form formula used in use.model

gengamma.quantiles

whether to use generalized gamma quantiles when calculating large peaks

halve.search whether to use a halving-line search if step leads to smaller value of function

isotope.dist maximum distance for declaring isotopes

lrg.dir directory for significant peaks file lrg.file name of file for storing large peaks

lrg.only whether to consider only peaks that have at least one "large" peak; i.e., identified

by run.lrg.peaks

masses specific masses to test

max.iter convergence criterion in baseline calculation

min.spect minimum number of spectra necessary for peak to be used in run.analysis

neg.div negativity divisor in baseline calculation

neg.norm.by method for negativity penalty in baseline analysis

norm.peaks which peaks to use in normalization

norm.post.repl logical; whether to normalize after combining replicates

normalization type of normalization to use on spectra before statistical analysis

num.pts number of points needed for peak fitting

oneside.min minimum number of points on each side of local maximum for peak fitting

overwrite whether to replace existing files with new ones par.file string containing name of parameters file

peak.dir directory for peak location files
peak.method method for locating peaks

peak. thresh threshold for declaring large peak

pval.fcn function to calculate p-values R2.thresh R^2 value needed for peak fitting raw.dir directory for raw data files

rel.conv.crit whether convergence criterion should be relative to size of current baseline esti-

mate

repl.method how to deal with replicates
res.dir directory for result file
res.file name for results file

root.dir directory for parameters file and raw data directory

sm.div smoothness divisor in baseline calculation

8 extract.pars

sm.norm.by method for smoothness penalty in baseline analysis
sm.ord order of derivative to penalize in baseline analysis
sm.par smoothing parameter for baseline calculation

subs subset of spectra to use for analysis

subtract.base whether to subtract calculated baseline from spectrum

tol convergence criterion in baseline calculation

trans.method data transformation method use.model what model to apply to data

zero.rm whether to replace zeros in spectra with average of surrounding values

Note

do.call(make.par.file, extract.pars()) recreates the original parameter file

align.method, cluster.method, neg.norm.by, normalization, peak.method, sm.norm.by, and trans.method can be abbreviated.

See make.par.file for a summary of which programs use each of the parameters in the list.

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Benjamini, Y. and Hochberg, Y. (1995) "Controlling the false discovery rate: a practical and powerful approach to multiple testing." *J. Roy. Statist. Soc. Ser. B*, **57**:1, 289–300.

Xi, Y. and Rocke, D.M. (2008) "Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis". *BMC Bioinformatics*, **9**:324.

See Also

make.par.file, run.analysis

locate.peaks 9

locate.peaks	Locate Peaks in a FT-ICR MS Spectrum	

Description

Locates peaks in FT-ICR MS spectra assuming that the peaks are roughly parabolic on the log scale.

Usage

Arguments

peak.base	numeric matrix with two columns containing the masses and the transformed spectrum intensities
num.pts	minimum number of points needed to have a peak
R2.thresh	minimum \mathbb{R}^2 needed to have a peak
oneside.min	minimum number of points needed on each side of the local maximum
peak.method	how to locate peaks
thresh	only local maxes that are larger than this will be checked to see if they are peaks

Details

If peak.method == "parabola", the algorithm works by locating local maxima in the spectrum, then seeing if any num.pts consecutive points with at least oneside.min point(s) on each side of the local maximum have a coefficient of determination (R^2) of at least R2. thresh when fitted with a quadratic. If, in addition, the coefficient of the squared term is negative, then this is declared a peak and the vertex of the corresponding parabola is located. The coordinates of the vertex give the components Center_hat and Max_hat in the return value. The Width_hat component is the negative reciprocal of the coefficient of the squared term.

If peak.method == "locmax", then the algorithm merely returns the set of local maxima larger than thresh, and the Width_hat component of the return value is NA.

Value

A data frame with columns

Center_hat estimated mass of peak

Max_hat estimated intensity of peak

Width_hat estimated width of peak

10 make.par.file

Note

An extremely large value for Width_hat most likely indicates a bad fit.

peak.method can be abbreviated. Using peak.method = "locmax" will vastly speed up the runtime, but may affect the quality of the analysis.

As noted in both papers in the References, a typical FT-ICR MS spectrum has far more peaks than can be accounted for by actual compounds. Thus, defining a good value of thresh will vastly speed up the computation without materially affecting the analysis.

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

See Also

run.peaks

make.par.file

Create Parameter File for FT-ICR MS Analysis

Description

Creates a file of parameters that can be read by the functions in the **FTICRMS** package

Usage

```
make.par.file(covariates, form, par.file = "parameters.RData", root.dir = ".", ...)
```

Arguments

covariates	data frame with rownames given by raw data files with extensions (e.g., ".txt") stripped
form	object of class "formula" to be used for testing using covariates
par.file	string containing name of file
root.dir	string containing location for file
	parameters whose default values are to be overwritten (see below)

make.par.file 11

Details

root.dir = "."

Creates a file with name given by par.file in directory given by root.dir which contains values for all of the parameters used in the programs in the **FTICRMS** package. The possible parameters that can be included in ..., their default values, their descriptions, and the program(s) in which they are used are as follows:

```
add.norm = TRUE
                                                            logical; whether to normalize additively or multiplicatively on
add.par = 0
                                                            additive parameter for "shiftedlog" or "glog" options for t
align.fcn = NA
                                                            function (and inverse) to apply to masses before (and after) ap
align.method = "spline"
                                                            alignment algorithm for peaks
base.dir = paste(root.dir, "/Baselines", sep="")
                                                            directory for baseline files
bhbysubj = FALSE
                                                            logical; whether to look for number of large peaks by subject
                                                            logical; whether to calculate all possible peaks or only sufficie
calc.all.peaks = FALSE
cluster.constant = 10
                                                            parameter used in running cluster.method
                                                            method for determining when two peaks from different spectr
cluster.method = "ppm"
cor.thresh = 0.8
                                                            threshold correlation for declaring isotopes
FDR = 0.1
                                                            False Discovery Rate in Benjamini-Hochberg test
FTICRMS.version = "0.8"
                                                            Version of FTICRMS that created file
gengamma.quantiles = TRUE
                                                            logical; whether to use generalized gamma quantiles when cal
                                                            logical; whether to use a halving-line search if step leads to sn
halve.search = FALSE
isotope.dist = 7
                                                            maximum distance for declaring isotopes
lrg.dir = paste(root.dir, "/Large_Peaks", sep="")
                                                            directory for large peaks file
lrg.file = "lrg_peaks.RData"
                                                            name of file for storing large peaks
                                                            logical; whether to consider only peaks that have at least one '
lrg.only = TRUE
                                                            specific masses to test
masses = NA
max.iter = 20
                                                            convergence criterion in baseline calculation
min.spect = 1
                                                            minimum number of spectra necessary for peak to be used in
neg.div = NA
                                                            negativity divisor in baseline calculation
neg.norm.by = "baseline"
                                                            method for negativity penalty in baseline analysis
norm.peaks = "common"
                                                            which peaks to use in normalization
norm.post.repl = FALSE
                                                            logical; whether to normalize after combining replicates
num.pts = 5
                                                            number of consecutive points needed for peak fitting
                                                            minimum number of points on each side of local maximum fo
oneside.min = 1
overwrite = FALSE
                                                            logical; whether to replace existing files with new ones
par.file = "parameters.RData"
                                                            string containing name of parameters file
peak.dir = paste(root.dir, "/All_Peaks", sep="")
                                                            directory for peak location files
peak.method = "parabola"
                                                            method for locating peaks
peak.thresh = 3.798194
                                                            threshold for declaring large peak
                                                            shifts to apply before running run.strong.peaks
pre.align = FALSE
pval.fcn = "default"
                                                            function to calculate p-values; default is overall p-value of test
                                                            R^2 value needed for peak fitting
R2.thresh = 0.98
raw.dir = paste(root.dir, "/Raw_Data", sep="")
                                                            directory for raw data files
rel.conv.crit = TRUE
                                                            whether convergence criterion should be relative to size of cur
repl.method = "max"
                                                            how to deal with replicates
res.dir = paste(root.dir, "/Results", sep="")
                                                            directory for results file
res.file = "analyzed.RData"
                                                            name for results file
```

directory for parameters file and raw data

12 make.par.file

```
sm.div = NA
sm.norm.by = "baseline"
sm.ord = 2
sm.par = 1e-11
subs
subtract.base = FALSE
tol = 5e-8
trans.method = "shiftedlog"
use.model = "lm"
zero.rm = TRUE
```

smoothness divisor in baseline calculation
method for smoothness penalty in baseline analysis
order of derivative to penalize in baseline analysis
smoothing parameter for baseline calculation
subset of spectra to use for analysis
logical; whether to subtract calculated baseline from spectrum
convergence criterion in baseline calculation
data transformation method
what model to apply to data
whether to replace zeros in spectra with average of surroundin

Value

No value returned; the file par. file is simply created in root.dir.

Note

do.call(make.par.file, extract.pars()) recreates the original parameter file.

See the individual function help pages for each function for more detailed descriptions of the above parameters.

align.method, cluster.method, neg.norm.by, normalization, peak.method, sm.norm.by, and trans.method can be abbreviated.

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Xi, Y. and Rocke, D.M. (2008) "Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis". *BMC Bioiniformatics*, **9**:324.

See Also

extract.pars

run.all

run.all

Complete Analysis of FT-ICR MS Data

Description

A wrapper that calls all six functions needed for a full analysis.

Usage

```
run.all(par.file = "parameters.RData", root.dir = ".")
```

Arguments

par.file string containing the name of the parameters file root.dir string containing location of raw data directory and parameters file

Details

Requires par.file to be in place before starting—for example by creating it with make.par.file. Calls (in order) run.baselines, run.peaks, run.lrg.peaks, run.strong.peaks, run.cluster.matrix, and run.analysis.

Note

The analysis described in Barkauskas *et al.* (2008) can be (approximately) reproduced using the following parameter values instead of the defaults:

```
add.par = 10
calc.all.peaks = TRUE
gengamma.quantiles = FALSE
max.iter = 30
neg.norm.by = "constant"
peak.thresh = 4
pval.fcn = function(x){anova(x)[2,5]}
rel.conv.crit = FALSE
sm.norm.by = "constant"
subtract.base = TRUE
zero.rm = FALSE
```

(It is only an approximate reproduction because the stopping criterion for baseline calculation used in the article turned out to be a poor one and is no longer supported in the package. This shouldn't make a very large difference, however.)

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

14 run.analysis

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Benjamini, Y. and Hochberg, Y. (1995) "Controlling the false discovery rate: a practical and powerful approach to multiple testing." *J. Roy. Statist. Soc. Ser. B*, **57**:1, 289–300.

Xi, Y. and Rocke, D.M. (2008) "Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis". *BMC Bioinformatics*, **9**:324.

See Also

make.par.file, run.baselines, run.peaks, run.lrg.peaks, run.strong.peaks, run.cluster.matrix,
run.analysis

run.analysis

Test for Significant Peaks in FT-ICR MS by Controlling FDR

Description

Takes the file generated by run.cluster.matrix and tests the peaks using Benjamini-Hochberg to control the False Discovery Rate.

Usage

Arguments

form object of class "formula" to be used by use. model for testing using covariates

covariates data frame containing covariates used in analysis

FDR False Discovery Rate in Benjamini-Hochberg test

norm.post.repl logical; whether to normalize after combining replicates

norm.peaks which peaks to use in normalization

run.analysis 15

normalization	type of normalization to use on spectra before statistical analysis; kept for compatibility (see below)
add.norm	logical; whether to normalize additively or multiplicatively on the log scale
repl.method	function or string representing the name of a function; how to deal with replicates
use.model	function or string representing the name of a function; what test to apply to data
pval.fcn	function to extract p-values; default is overall p-value of test
lrg.only	logical; whether to consider only peaks that have at least one "large" peak; i.e., identified by run.lrg.peaks
masses	specific masses to test
isotope.dist	maximum distance for declaring isotopes
root.dir	directory for parameters file and raw data
lrg.dir	directory for large peaks file; default is paste(root.dir, "/Large_Peaks", sep = "")
lrg.file	name of file to store large peaks in
res.dir	<pre>directory for results file; default is paste(root.dir, "/Results", sep = "")</pre>
res.file	name for results file
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file
bhbysubj	logical; whether to look for number of large peaks by subject (i.e., combining replicates) or by spectrum
subs	subset of spectra to use for analysis; see below
• • •	additional parameters to be passed to use.model

Details

Reads in information from file created by run.cluster.matrix and creates a file named res.file in directory res.dir which contains the following variables:

amps	matrix of transformed amplitudes of alignment peaks
bysubjvar	a vector which tells which rows of covariates are identified as the same subject
centers	matrix of calculated masses of alignment peaks
clust.mat	matrix of transformed amplitudes of peaks used in statistical testing
min.FDR	FDR level required to get at least one significant test given the starting set of peaks
sigs	matrix containing all tests which are significant under at least one scenario
which.sig	matrix containing all peaks tested
parameter.list	if use par, file = TRUE, a list generated by extract, pars; otherwise not defined

Value

No value returned; the file is simply created.

16 run.analysis

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. Note that this is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

norm.peaks determines the peaks used for normalization: "common" normalizes each spectrum using the average peak height of the alignment peaks from that spectrum in amps; "all" normalizes each spectrum using the average peak height of all peaks in that spectrum.

normalization is obsolete but is included for compatibility with previous versions of the package. The valid normalization schemes translate to the new scheme as follows: "common" is norm.post.repl = FALSE and norm.peaks = "common"; "postbase" is norm.post.repl = FALSE and norm.peaks = "all"; "postrepl" is norm.post.repl = TRUE and norm.peaks = "all"; and "none" is norm.peaks = "none" (and norm.post.repl = FALSE, although this value is irrelevant).

Replicates for the same subject are assumed to be determined by the unique values of covariates\$subj. (Future implementations will allow for other methods of defining this.) To analyze replicates as independent samples, use repl.method = "none". This will also speed up the run time if there are no replicates in the data set.

The argument subs can be logical or numeric or character; if it is defined, then covariates is modified to covariates[subs,,drop=F].

If masses is not NULL, then the listed masses plus anything that could be in the first isotope.dist - 1 isotope peaks of each mass are tested.

If something other than the p-value for the overall test statistic is needed, then the user-defined function for pval.fcn should have the form pval.fcn = function(x){...}, where x is a model object of the type returned by use.model; and should have a return value of the desired p-value.

If use.model evaluates to t.test, then the difference between the two groups for each peak is recorded in which.sig\$Delta and sigs\$Delta; otherwise, these columns consist entirely of NA entries.

Each rowname of sigs and which. sig represents the range of masses that were used to form that peak. The columns of those objects give the *p*-value of the peaks in each row, the number of samples that had large peaks for each row, and the significance of each test, coded as

- NA peak not eligible for B-H
- 0 peak eligible for B-H but not declared significant
- 1 peak declared significant

The "S" labels refer to the number of large peaks that were necessary for a row to be eligible. For example, the column labeled S5 in sigs used as its starting set of p-values all rows which had which.sig\$num.lrg >= 5. If bhbysubj == TRUE, then the entries of num.lrg are obtained by going subject-by-subject and for each mass counting the number of subjects who had at least one spectrum with a large peak at that mass; otherwise, num.lrg for each mass is simply the total number of spectra that had a large peak at that mass.

run.baselines 17

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Benjamini, Y. and Hochberg, Y. (1995) "Controlling the false discovery rate: a practical and powerful approach to multiple testing." *J. Roy. Statist. Soc. Ser. B*, **57**:1, 289–300.

See Also

run.strong.peaks

run.baselines

Calculate and Store Baselines for Spectroscopic Data

Description

Takes the spectra from files in raw.dir, calculates the baselines from them, and writes the results in the directory base.dir.

Usage

Arguments

root.dir	directory for parameters file and raw data
raw.dir	<pre>directory for raw data files; default is paste(root.dir, "/Raw_Data", sep = "")</pre>
base.dir	<pre>directory for baseline files; default is paste(root.dir, "/Baselines", sep = "")</pre>
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file
sm.par	smoothing parameter for baseline calculation

18 run.baselines

sm. ord order of derivative to penalize in baseline analysis

max.iter convergence criterion in baseline calculation

tol convergence criterion

sm. div smoothness divisor in baseline calculation

sm. norm. by method for smoothness penalty in baseline analysis

neg.div negativity divisor in baseline calculation

neg.norm.by method for negativity penalty in baseline analysis

rel.conv.crit logical; whether convergence criterion should be relative to size of current base-

line estimate

zero.rm logical; whether to replace zeros with average of surrounding values

halve.search logical; whether to use a halving-line search if step leads to smaller value of

function

Details

Goes through the entire directory raw.dir file-by-file and computes each baseline using baseline, then writes the spectrum and the baseline to a file in directory base.dir. The name of the new file is the same as the name of the old file with ".txt" replaced by ".RData", and the new file is ready to be used by run.peaks.

The files in raw.dir must be in a specific format (future versions of the package will allow for more flexibility). The files should be two-column text files with mass in the first column and spectrum intensity in the second column. There should be no header row (just start the file with the first data point). The columns can be either comma-separated or whitespace-separated and the program will automatically detect which each file is. The decimal separator should be ".", as using "," will cause errrors in reading the files.

See baseline for details of all the parameters after par.file.

Value

No value returned; the files are simply created.

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. Note that this is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

The values of sm.norm.by and neg.norm.by can be abbreviated and both have default value "baseline".

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

run.cluster.matrix 19

References

Barkauskas, D.A. (2009) "Statistical Analysis of Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Data with Applications to Cancer Biomarker Detection". Ph.D. dissertation, University of California at Davis.

Barkauskas, D.A. *et al.* (2009) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Xi, Y. and Rocke, D.M. (2008) "Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis". *BMC Bioinformatics*, **9**:324.

See Also

baseline, run.peaks

run.cluster.matrix

Identify Equivalent Peaks from Different Subjects

Description

Takes the file generated by run.lrg.peaks, identifies equivalent peaks in each spectrum, and fills in missing values.

Usage

Arguments

either FALSE, or a numeric vector of shifts to apply to spectra, or a four-component list (of the form described in the Note section below) to be used before identifying peaks from different spectra

align.method alignment algorithm for peaks

function (and inverse) to apply to masses before (and after) applying align.method; see below

20 run.cluster.matrix

trans.method	type of transformation to use on spectra before statistical analysis
add.par	additive parameter for "shiftedlog" or "glog" options for trans.method
subtract.base	logical; whether to subtract calculated baseline from spectrum
lrg.only	logical; whether to consider only peaks that have at least one "large" peak; i.e., identified by run.lrg.peaks
calc.all.peaks	logical; whether to calculate all possible peaks or only sufficiently large ones
masses	specific masses to test
isotope.dist	maximum distance for declaring isotopes
${\tt cluster.method}$	method for determining when two peaks from different spectra are the same
cluster.constan	
	parameter used in running cluster.method
num.pts	number of consecutive points needed for peak fitting
R2.thresh	R^2 value needed for peak fitting
oneside.min	minimum number of points on each side of local maximum for peak fitting
min.spect	minimum number of spectra necessary for peak to be used in run.analysis
peak.method	method for locating peaks
bhbysubj	logical; whether to look for number of large peaks by subject (i.e., combining replicates) or by spectrum
covariates	data frame with rownames given by raw data files with extensions (e.g., ".txt") stripped; only needed if bhbysubj == TRUE
root.dir	directory for parameters file and raw data
base.dir	<pre>directory for baseline files; default is paste(root.dir, "/Baselines", sep = "")</pre>
peak.dir	<pre>directory for peak location files; default is paste(root.dir, "/All_Peaks", sep = "")</pre>
lrg.dir	<pre>directory for large peaks file; default is paste(root.dir, "/Large_Peaks", sep = "")</pre>
lrg.file	name of file to store large peaks in
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file

Details

Reads in information from file created by run.strong.peaks, calculates the cluster matrix, fills in missing values, and overwrites the file named lrg.file in lrg.dir. The resulting file contains variables

amps	data frame of amplitudes created by run.strong.peaks
centers	data frame of centers created by run.strong.peaks
clust.mat	data frame with columns given by samples and rows given by the distinct peaks in the samples
lrg.mat	data frame of same size as clust.mat with entries given by TRUE if the peak was large in that spectrum and FAL
lrg.peaks	the data frame of significant peaks created by run.lrg.peaks
num.lrg	number of subjects (or spectra if bhbysubj == TRUE) with a large peak at the corresponding mass

run.cluster.matrix 21

and is ready to be used by run.analysis.

Value

No value returned; the file is simply created.

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. Note that this is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

align.method, cluster.method, peak.method, and trans.method can be abbreviated.

If align.fcn is not NA, then it should consist of a list with components fcn and inv, each of class function. align.fcn\$fcn should take a vector of masses as its argument and return a vector of transformed masses. (Typically, this will be transforming masses to frequencies; see Zhang (2005).) align.fcn\$inv should be the inverse function of align.fcn\$fcn.

If align.method == "spline", then alignment consists of making the transformed masses of the strong peaks all agree exactly with their means, then shifting the rest of the transformed masses via an interpolation spline generated using interpSpline. If align.method == "PL", then the same is done but interpolation is done piecewise linearly between the strong peaks. If align.method == "leastsq", then the transformed masses of the strong peaks are aligned to their means using a least-squares affine fit for each spectrum. In any of these cases, if there are no strong peaks, align.method is changed to "none" with a warning. If there is exactly one strong peak, then alignment is by a simple shift in each spectrum on the transformed masses. If there are exactly two strong peaks, then the alignment is by a simple affine transformation on the transformed masses in each spectrum. If align.method = "spline" and there are exactly three strong peaks, then alignment is piecewise affine on the transformed masses (i.e., identical to align.method = "PL").

If align.method = "leastsq", it is strongly recommended that you supply a value for align.fcn that makes the data points (approximately) equally-spaced.

Defining a value for min.spect can vastly speed up the run time at the (small) cost of a little flexibility in doing the statistical analysis in run.analysis. For exploratory data analysis, this should probably be left alone, but once the peak criterion has been established, further analyses will go much more quickly with min.spect re-defined. The value can either be an integer, which is interpreted as the number of spectra; or a number between 0 and 1, in which case it is interpreted as a fraction of the total number of spectra. In either case, the values of clust.mat, lrg.mat, and num.lrg saved in lrg.file are only those masses which have at least min.spect large peaks among the spectra.

pre.align = FALSE is used if the spectra have already been aligned by the mass spectroscopists. If it is not FALSE, it can either be a vector of additive shifts to be applied to the spectra, or a list with components targets, actual, and align.method. In the last case, targets is a vector of target masses, and actual is a matrix with length(targets) columns and a row for each spectrum, actual[i,j] being the mass in spectrum i that should be matched exactly to target[j], with NA being a valid entry in actual. The alignment is then done as in the description in the above paragraph, depending on the number of non-missing values in row i).

Suppose cluster.constant = K and we have two peaks in different spectra with masses $m_1 < m_2$. If cluster.method == "constant", then the peaks are considered to be the same peak if we have $m_2 - m_1 < K$. If cluster.method == "ppm", then the peaks are considered to be the

22 run.lrg.peaks

same peak if we have $m_2 - m_1 < Km_2/10^6$. If cluster.method == "usewidth", then the algorithm uses the observation that log(Width_hat) and log(Center_hat) appear to be linearly related. Tolerances are computed using this relationship.

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Zhang, L.-K. *et al.* (2005) "Accurate mass measurements by Fourier transform mass spectrometry". *Mass Spectrom Rev*, **24**:2, 286–309.

See Also

```
run.lrg.peaks, run.strong.peaks, interpSpline
```

run.lrg.peaks

Extract "Large" Peaks from Files

Description

Takes the files output by run. peaks, extracts "large" peaks, combines them into a single data frame, and writes the data frame to a file.

Usage

run.lrg.peaks 23

Arguments

trans.method	type of transformation to use on spectra before statistical analysis
add.par	additive parameter for "shiftedlog" or "glog" options for trans.method
subtract.base	logical; whether to subtract calculated baseline from spectrum
root.dir	directory for parameters file and raw data
peak.dir	<pre>directory for peak location files; default is paste(root.dir, "/All_Peaks", sep = "")</pre>
base.dir	<pre>directory for baseline files; default is paste(root.dir, "/Baselines", sep = "")</pre>
lrg.dir	<pre>directory for large peaks file; default is paste(root.dir, "/Large_Peaks", sep = "")</pre>
lrg.file	name of file to store large peaks in
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file
calc.all.peaks	logical; whether to calculate all possible peaks or only sufficiently large ones
gengamma.quantiles	
	logical; whether to use generalized gamma quantiles when calculating large
	peaks
peak.thresh	threshold for declaring large peak; see below
subs	subset of spectra to use for analysis; see below

Details

Reads in information from each file created by run.peaks, extracts peaks which are "large" (see below), and creates the file lrg.file in lrg.dir. The resulting file contains the data frame lrg.peaks, which has columns

Center_hat estimated mass of peak
Max_hat estimated intensity of peak
Width_hat estimated width of peak

File name of file the peak was extracted from, with "_peaks.RData" deleted

and is ready to be used by run.strong.peaks.

Value

No value returned; the file is simply created.

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. This is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

trans.method can be abbreviated.

24 run.peaks

If gengamma. quantiles == TRUE, then a peak is "large" if it is at least peak. thresh times as large as the estimated baseline at that point.

If gengamma.quantiles == FALSE, then a peak is "large" if it has zero weight in the data generated by run.peaks for the spectrum it comes from when using Tukey's biweight with parameter K = 1.5 * peak.thresh to estimate center and scale.

If subs is not defined, the algorithm finds large peaks for all files in peak.dir. If it is defined, subs can be logical or numeric or character; if it is defined, then the algorithm finds large peaks for all entries in subs (character) or list.files(peak.dir)[subs] (logical or numeric).

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

See Also

```
run.peaks, run.cluster.matrix
```

run.peaks

Locate Potential Peaks in FT-ICR MS Spectra

Description

Takes baseline-corrected data and locates potential peaks in the spectra.

Usage

run.peaks 25

Arguments

trans.method	type of transformation to use on spectra before statistical analysis
add.par	additive parameter for "shiftedlog" or "glog" options for trans.method
subtract.base	logical; whether to subtract calculated baseline from spectrum
root.dir	directory for parameters file and raw data
base.dir	<pre>directory for baseline files; default is paste(root.dir, "/Baselines", sep = "")</pre>
peak.dir	<pre>directory for peak location files; default is paste(root.dir, "/All_Peaks", sep = "")</pre>
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file
num.pts	number of consecutive points needed for peak fitting
R2.thresh	R^2 value needed for peak fitting
oneside.min	minimum number of points on each side of local maximum for peak fitting
peak.method	method for locating peaks
calc.all.peaks	logical; whether to calculate all possible peaks or only sufficiently large ones
gengamma.quantiles	
	logical; whether to use generalized gamma quantiles when calculating large peaks
peak.thresh	threshold for declaring large peak; see below

Details

Reads in information from each file created by run.baselines, calls locate.peaks to find potential peaks, and writes the output to a file in directory peak.dir. The name of each new file is the same as the name of the old file with ".RData" replaced by "_peaks.RData". The resulting file contains the data frame all.peaks, which has columns

Center_hat estimated mass of peak
Max_hat estimated intensity of peak
Width_hat estimated width of peak

and is ready to be used by run.lrg.peaks.

The parameters gengamma.quantiles and peak.thresh are relevant only if calc.all.peaks = FALSE. In that case, if gengamma.quantiles == TRUE, then peak.thresh is interpreted as a multiplier for the baseline. Anything larger than peak.thresh times the estimated baseline is declared to be a real peak. If gengamma.quantiles == FALSE, then peak.thresh is interpreted as two-thirds of the value of K used in a Tukey's biweight estimation of center and scale (so roughly equal to the number of standard deviations above the mean for iid normal data). Anything with weight zero in the calculation is then declared to be a real peak.

26 run.strong.peaks

Value

No value returned; the files are simply created.

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. Note that this is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

peak.method and trans.method can be abbreviated.

Using calc.all.peaks == FALSE can speed up computation time immensely, but will affect the final result. It probably won't affect it much, but *caveat emptor*.

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

See Also

```
run.baselines, run.lrg.peaks, locate.peaks
```

run.strong.peaks

Locate Peaks that are "Large" in All Samples

Description

Takes the file generated by run.peaks, extracts all peaks that are "large" in all samples, and writes the results to a file.

Usage

run.strong.peaks 27

Arguments

cor.thresh	threshold correlation for declaring isotopes
isotope.dist	maximum distance for declaring isotopes
pre.align	either FALSE, or a numeric vector of shifts to apply to spectra, or a three-component list (of the form described in the Note section below) to be used before identifying peaks from different spectra
align.method	alignment algorithm for peaks
align.fcn	function (and inverse) to apply to masses before (and after) applying align.method; see below
root.dir	directory for parameters file and raw data
lrg.dir	<pre>directory for large peaks file; default is paste(root.dir, "/Large_Peaks", sep = "")</pre>
lrg.file	name of file to store large peaks in
overwrite	logical; whether to replace existing files with new ones
use.par.file	logical; if TRUE, then parameters are read from par.file in directory root.dir
par.file	string containing name of parameters file

Details

Reads in information from file created by run.lrg.peaks, locates peaks which appear in all samples, and overwrites the file lrg.file in lrg.dir. The resulting file contains variables

amps	data frame of amplitudes of non-isotope peaks that occur in all samples
centers	data frame of centers of non-isotope peaks that occur in all samples
lrg.peaks	the data frame of significant peaks created by run.lrg.peaks

and is ready to be used by run.cluster.matrix.

Value

No value returned; the file is simply created.

Note

If use.par.file == TRUE and other parameters are entered into the function call, then the parameters entered in the function call overwrite those read in from the file. Note that this is opposite from the behavior for **FTICRMS** versions 0.7 and earlier.

If align.fcn is not NA, then it should consist of a list with components fcn and inv, each of class function. align.fcn\$fcn should take a vector of masses as its argument and return a vector of transformed masses. (Typically, this will be transforming to the frequency domain; see Zhang (2005).) align.fcn\$inv should be the inverse function of align.fcn\$fcn. If align.method == "leastsq", it is strongly recommended that you supply a value for align.fcn that makes the masses (approximately) equally-spaced.

28 run.strong.peaks

align.method can be abbreviated. If align.method == "spline", then alignment consists of making the transformed masses of the strong peaks all agree exactly with their means, then shifting the rest of the transformed masses via a cubic interpolation spline generated using interpSpline. If align.method == "PL", then the same is done but interpolation is piecewise linear between the strong peaks. If align.method == "leastsq", then the transformed masses of the strong peaks are aligned to their means using a least-squares affine fit for each spectrum. In any of these cases, if there are no strong peaks, align.method is changed to "none" with a warning. If there is exactly one strong peak, then alignment is by a simple shift in each spectrum on the transformed masses. If there are exactly two strong peaks, then the alignment is by a simple affine transformation on the transformed masses in each spectrum. If align.method == "spline" and there are exactly three strong peaks, then alignment is piecewise affine on the transformed masses (i.e., identical to using align.method = "PL").

pre.align = FALSE is used if the spectra have already been aligned by the mass spectroscopists. If it is not FALSE, it can either be a vector of additive shifts to be applied to the spectra, or a list with components targets, actual, and align.method. In the last case, targets is a vector of target masses, and actual is a matrix with length(targets) columns and a row for each spectrum, actual[i,j] being the mass in spectrum i that should be matched exactly to target[j], with NA being a valid entry in actual. The alignment is then done row-by-row as in the description in the above paragraph, depending on the number of non-missing values in row i).

Author(s)

Don Barkauskas (<barkda@wald.ucdavis.edu>)

References

Barkauskas, D.A. and D.M. Rocke. (2009a) "A general-purpose baseline estimation algorithm for spectroscopic data". to appear in *Analytica Chimica Acta*. doi:10.1016/j.aca.2009.10.043

Barkauskas, D.A. *et al.* (2009b) "Analysis of MALDI FT-ICR mass spectrometry data: A time series approach". *Analytica Chimica Acta*, **648**:2, 207–214.

Barkauskas, D.A. *et al.* (2009c) "Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data". *Bioinformatics*, **25**:2, 251–257.

Zhang, L.-K. *et al.* (2005) "Accurate mass measurements by Fourier transform mass spectrometry". *Mass Spectrom Rev*, **24**:2, 286–309.

See Also

run.lrg.peaks, run.cluster.matrix, interpSpline

Index

```
*Topic package
    FTICRMS-package, 2
anova, 5, 6
baseline, 2, 18, 19
display.tests, 5
extract.pars, 6, 12, 15
formula, 10, 14
FTICRMS, 7, 10, 11, 16, 18, 21, 23, 26, 27
FTICRMS (FTICRMS-package), 2
FTICRMS-package, 2
interpSpline, 21, 22, 28
1m, 6
locate.peaks, 9, 25, 26
make.par.file, 8, 10, 13, 14
run.all, 13
run.analysis, 5-8, 11-14, 14, 20, 21
run.baselines, 4, 11–14, 17, 25, 26
run.cluster.matrix, 11–15, 19, 24, 27, 28
run.lrg.peaks, 7, 11–14, 19, 20, 22, 22,
         25–28
run. peaks, 10–14, 18, 19, 22–24, 24, 26
run.strong.peaks, 7, 11, 13, 14, 17, 20, 22,
         23, 26
summary, 5
t.test, 5, 6, 16
```