
Package ‘FKF’
June 14, 2020

Title Fast Kalman Filter

Version 0.1.7

Description This is a fast and flexible implementation of the Kalman
filter, which can deal with NAs. It is entirely written in C
and relies fully on linear algebra subroutines contained in
BLAS and LAPACK. Due to the speed of the filter, the fitting of
high-dimensional linear state space models to large datasets
becomes possible. This package also contains a plot function
for the visualization of the state vector and graphical
diagnostics of the residuals.

License GPL (>= 2)

Encoding UTF-8

Imports graphics

Suggests RUnit, knitr, rmarkdown, covr, pkgdown

Depends R(>= 2.8)

BugReports https://github.com/waternumbers/FKF/issues

URL https://waternumbers.github.io/FKF/,

https://github.com/waternumbers/FKF

NeedsCompilation yes

RoxygenNote 7.1.0

VignetteBuilder knitr

Author David Luethi [aut],
Philipp Erb [aut],
Simon Otziger [aut],
Paul Smith [cre] (<https://orcid.org/0000-0002-0034-3412>)

Maintainer Paul Smith <paul@waternumbers.co.uk>

Repository CRAN

Date/Publication 2020-06-14 14:50:15 UTC

1

https://github.com/waternumbers/FKF/issues
https://waternumbers.github.io/FKF/
https://github.com/waternumbers/FKF

2 fkf

R topics documented:
fkf . 2
plot.fkf . 7

Index 10

fkf Fast Kalman filter

Description

This function allows for fast and flexible Kalman filtering. Both, the measurement and transition
equation may be multivariate and parameters are allowed to be time-varying. In addition “NA”-
values in the observations are supported. fkf wraps the C-function FKF which fully relies on linear
algebra subroutines contained in BLAS and LAPACK.

Usage

fkf(a0, P0, dt, ct, Tt, Zt, HHt, GGt, yt, check.input = TRUE)

Arguments

a0 A vector giving the initial value/estimation of the state variable.

P0 A matrix giving the variance of a0.

dt A matrix giving the intercept of the transition equation (see Details).

ct A matrix giving the intercept of the measurement equation (see Details).

Tt An array giving the factor of the transition equation (see Details).

Zt An array giving the factor of the measurement equation (see Details).

HHt An array giving the variance of the innovations of the transition equation (see
Details).

GGt An array giving the variance of the disturbances of the measurement equation
(see Details).

yt A matrix containing the observations. “NA”-values are allowed (see Details).

check.input A logical stating whether the input shall be checked for consistency (“stor-
age.mode”, “class”, and dimensionality, see Details). This input is depreciated
and will be removed in a future version, checks are always made.

Details

State space form

The following notation is closest to the one of Koopman et al. The state space model is represented
by the transition equation and the measurement equation. Let m be the dimension of the state

fkf 3

variable, d be the dimension of the observations, and n the number of observations. The transition
equation and the measurement equation are given by

αt+1 = dt + Tt · αt +Ht · ηt

yt = ct + Zt · αt +Gt · εt,

where ηt and εt are iid N(0, Im) and iid N(0, Id), respectively, and αt denotes the state variable.
The parameters admit the following dimensions:

at ∈ Rm dt ∈ Rm etat ∈ Rm

Tt ∈ Rm×m Ht ∈ Rm×m

yt ∈ Rd ct ∈ Rd εt ∈ Rd

Zt ∈ Rd×m Gt ∈ Rd×d

Note that fkf takes as input HHt and GGt which corresponds to HtH
′
t and GtG

′
t.

Iteration:
Let i be the loop variable. The filter iterations are implemented the following way (in case of no
NA’s):

Initialization: if(i == 1){ at[,i] = a0 Pt[,,i] = P0 }

Updating equations:
vt[,i] = yt[,i] -ct[,i] -Zt[,,i] %*% at[,i]
Ft[,,i] = Zt[,,i] %*% Pt[,,i] %*% t(Zt[,,i]) + GGt[,,i]
Kt[,,i] = Pt[,,i] %*% t(Zt[,,i]) %*% solve(Ft[,,i])
att[,i] = at[,i] + Kt[,,i] %*% vt[,i]
Ptt[,i] = Pt[,,i] -Pt[,,i] %*% t(Zt[,,i]) %*% t(Kt[,,i])

Prediction equations:
at[,i + 1] = dt[,i] + Tt[,,i] %*% att[,i]
Pt[,,i + 1] = Tt[,,i] %*% Ptt[,,i] %*% t(Tt[,,i]) + HHt[,,i]

Next iteration:
i <-i + 1
goto “Updating equations”.

NA-values:
NA-values in the observation matrix yt are supported. If particular observations yt[,i] contain
NAs, the NA-values are removed and the measurement equation is adjusted accordingly. When the
full vector yt[,i] is missing the Kalman filter reduces to a prediction step.

Parameters:
The parameters can either be constant or deterministic time-varying. Assume the number of obser-
vations is n (i.e. y = (yt)t=1,...,n, yt = (yt1, . . . , ytd)). Then, the parameters admit the following
classes and dimensions:

dt either a m× n (time-varying) or a m× 1 (constant) matrix.
Tt either a m×m× n or a m×m× 1 array.
HHt either a m×m× n or a m×m× 1 array.
ct either a d× n or a d× 1 matrix.
Zt either a d×m× n or a d×m× 1 array.

4 fkf

GGt either a d× d× n or a d× d× 1 array.
yt a d× n matrix.

BLAS and LAPACK routines used:
The R function fkf basically wraps the C-function FKF, which entirely relies on linear algebra
subroutines provided by BLAS and LAPACK. The following functions are used:

BLAS: dcopy, dgemm, daxpy.
LAPACK: dpotri, dpotrf.

FKF is called through the .Call interface. Internally, FKF extracts the dimensions, allocates memory,
and initializes the R-objects to be returned. FKF subsequently calls cfkf which performs the Kalman
filtering.

The only critical part is to compute the inverse of Ft and the determinant of Ft. If the inverse can
not be computed, the filter stops and returns the corresponding message in status (see Value). If
the computation of the determinant fails, the filter will continue, but the log-likelihood (element
logLik) will be “NA”.

The inverse is computed in two steps: First, the Cholesky factorization of Ft is calculated by
dpotrf. Second, dpotri calculates the inverse based on the output of dpotrf.
The determinant of Ft is computed using again the Cholesky decomposition.

Value

An S3-object of class “fkf”, which is a list with the following elements:

att A m× n-matrix containing the filtered state variables, i.e. at|t = E(αt|yt).
at A m× (n+ 1)-matrix containing the predicted state variables, i.e. at = E(αt|yt−1).
Ptt A m×m× n-array containing the variance of att, i.e. Pt|t = var(αt|yt).
Pt A m×m× (n+ 1)-array containing the variances of at, i.e. Pt = var(αt|yt−1).
vt A d× n-matrix of the prediction errors given by vt = yt − ct − Ztat.
Ft A d× d× n-array which contains the variances of vt, i.e. Ft = var(vt).
Kt A m× d× n-array containing the “Kalman gain” (ambiguity, see calculation above).

logLik The log-likelihood.
status A vector which contains the status of LAPACK’s dpotri and dpotrf. (0, 0) means successful exit.

sys.time The time elapsed as an object of class “proc_time”.

The first element of both at and Pt is filled with the function arguments a0 and P0, and the last, i.e.
the (n + 1)-th, element of at and Pt contains the predictions
at[, n+ 1] = E(αn+1|yn) and
Pt[, , n+ 1] = var(αn+1|yn).

Usage

fkf(a0,P0,dt,ct,Tt,Zt,HHt,GGt,yt,check.input = TRUE)

fkf 5

References

Harvey, Andrew C. (1990). Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.

Hamilton, James D. (1994). Time Series Analysis. Princeton University Press.

Koopman, S. J., Shephard, N., Doornik, J. A. (1999). Statistical algorithms for models in state
space using SsfPack 2.2. Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.

See Also

plot to visualize and analyze fkf-objects, KalmanRun from the stats package, function dlmFilter
from package dlm.

Examples

<--->
Example 1: ARMA(2, 1) model estimation.
<--->
This example shows how to fit an ARMA(2, 1) model using this Kalman
filter implementation (see also stats' makeARIMA and KalmanRun).
n <- 1000

Set the AR parameters
ar1 <- 0.6
ar2 <- 0.2
ma1 <- -0.2
sigma <- sqrt(0.2)

Sample from an ARMA(2, 1) process
a <- arima.sim(model = list(ar = c(ar1, ar2), ma = ma1), n = n,

innov = rnorm(n) * sigma)

Create a state space representation out of the four ARMA parameters
arma21ss <- function(ar1, ar2, ma1, sigma) {

Tt <- matrix(c(ar1, ar2, 1, 0), ncol = 2)
Zt <- matrix(c(1, 0), ncol = 2)
ct <- matrix(0)
dt <- matrix(0, nrow = 2)
GGt <- matrix(0)
H <- matrix(c(1, ma1), nrow = 2) * sigma
HHt <- H %*% t(H)
a0 <- c(0, 0)
P0 <- matrix(1e6, nrow = 2, ncol = 2)
return(list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt,

HHt = HHt))
}

The objective function passed to 'optim'
objective <- function(theta, yt) {

sp <- arma21ss(theta["ar1"], theta["ar2"], theta["ma1"], theta["sigma"])
ans <- fkf(a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt,

Zt = sp$Zt, HHt = sp$HHt, GGt = sp$GGt, yt = yt)

6 fkf

return(-ans$logLik)
}

theta <- c(ar = c(0, 0), ma1 = 0, sigma = 1)
fit <- optim(theta, objective, yt = rbind(a), hessian = TRUE)
fit

Confidence intervals
rbind(fit$par - qnorm(0.975) * sqrt(diag(solve(fit$hessian))),

fit$par + qnorm(0.975) * sqrt(diag(solve(fit$hessian))))

Filter the series with estimated parameter values
sp <- arma21ss(fit$par["ar1"], fit$par["ar2"], fit$par["ma1"], fit$par["sigma"])
ans <- fkf(a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt,

Zt = sp$Zt, HHt = sp$HHt, GGt = sp$GGt, yt = rbind(a))

Compare the prediction with the realization
plot(ans, at.idx = 1, att.idx = NA, CI = NA)
lines(a, lty = "dotted")

Compare the filtered series with the realization
plot(ans, at.idx = NA, att.idx = 1, CI = NA)
lines(a, lty = "dotted")

Check whether the residuals are Gaussian
plot(ans, type = "resid.qq")

Check for linear serial dependence through 'acf'
plot(ans, type = "acf")

<--->
Example 2: Local level model for the Nile's annual flow.
<--->
Transition equation:
alpha[t+1] = alpha[t] + eta[t], eta[t] ~ N(0, HHt)
Measurement equation:
y[t] = alpha[t] + eps[t], eps[t] ~ N(0, GGt)

y <- Nile
y[c(3, 10)] <- NA # NA values can be handled

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- y[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'

Estimate parameters:
fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5,

GGt = var(y, na.rm = TRUE) * .5),
fn = function(par, ...)
-fkf(HHt = matrix(par[1]), GGt = matrix(par[2]), ...)$logLik,

plot.fkf 7

yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

Filter Nile data with estimated parameters:
fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = matrix(fit.fkf$par[1]),

GGt = matrix(fit.fkf$par[2]), yt = rbind(y))

Compare with the stats' structural time series implementation:
fit.stats <- StructTS(y, type = "level")

fit.fkf$par
fit.stats$coef

Plot the flow data together with fitted local levels:
plot(y, main = "Nile flow")
lines(fitted(fit.stats), col = "green")
lines(ts(fkf.obj$att[1,], start = start(y), frequency = frequency(y)), col = "blue")
legend("top", c("Nile flow data", "Local level (StructTS)", "Local level (fkf)"),

col = c("black", "green", "blue"), lty = 1)

plot.fkf Plotting fkf objects

Description

Plotting method for objects of class fkf. This function provides tools for graphical analysis of the
Kalman filter output: Visualization of the state vector, QQ-plot of the individual residuals, QQ-plot
of the Mahalanobis distance, auto- as well as crosscorrelation function of the residuals.

Usage

S3 method for class 'fkf'
plot(
x,
type = c("state", "resid.qq", "qqchisq", "acf"),
CI = 0.95,
at.idx = 1:nrow(x$at),
att.idx = 1:nrow(x$att),
...

)

Arguments

x The output of fkf.

type A string stating what shall be plotted (see Details).

CI The confidence interval in case type == "state". Set CI to NA if no confidence
interval shall be plotted.

8 plot.fkf

at.idx An vector giving the indexes of the predicted state variables which shall be plot-
ted if type == "state".

att.idx An vector giving the indexes of the filtered state variables which shall be plotted
if type == "state".

... Arguments passed to either plot, qqnorm, qqplot or acf.

Details

The argument type states what shall be plotted. type must partially match one of the following:

state The state variables are plotted. By the arguments at.idx and att.idx, the user can specify
which of the predicted (at) and filtered (at|t) state variables will be drawn.

resid.qq Draws a QQ-plot for each residual-series invt.

qqchisq A Chi-Squared QQ-plot will be drawn to graphically test for multivariate normality of the
residuals based on the Mahalanobis distance.

acf Creates a pairs plot with the autocorrelation function (acf) on the diagonal panels and the
crosscorrelation function (ccf) of the residuals on the off-diagnoal panels.

Value

Invisibly returns an list with components:

distance The Mahalanobis distance of the residuals as a vector of length n.
std.resid The standardized residuals as an d× n-matrix. It should hold that std.residij iid ∼ Nd(0, I),

where d denotes the dimension of the data and n the number of observations.

usage

plot(x,type = c("state","resid.qq","qqchisq","acf"),CI = 0.95,at.idx = 1:nrow(x$at),att.idx
= 1:nrow(x$att),...)

See Also

fkf

Examples

<--->
Example 3: Local level model for the treering data
<--->
Transition equation:
alpha[t+1] = alpha[t] + eta[t], eta[t] ~ N(0, HHt)
Measurement equation:
y[t] = alpha[t] + eps[t], eps[t] ~ N(0, GGt)

y <- treering
y[c(3, 10)] <- NA # NA values can be handled

plot.fkf 9

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- array(1,c(1,1,1))
a0 <- y[1] # Estimation of the first width
P0 <- matrix(100) # Variance of 'a0'

Estimate parameters:
fit.fkf <- optim(c(HHt = var(y, na.rm = TRUE) * .5,

GGt = var(y, na.rm = TRUE) * .5),
fn = function(par, ...)

-fkf(HHt = array(par[1],c(1,1,1)), GGt = array(par[2],c(1,1,1)), ...)$logLik,
yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

Filter tree ring data with estimated parameters:
fkf.obj <- fkf(a0, P0, dt, ct, Tt, Zt, HHt = array(fit.fkf$par[1],c(1,1,1)),

GGt = array(fit.fkf$par[2],c(1,1,1)), yt = rbind(y))

Plot the width together with fitted local levels:
plot(y, main = "Treering data")
lines(ts(fkf.obj$att[1,], start = start(y), frequency = frequency(y)), col = "blue")
legend("top", c("Treering data", "Local level"), col = c("black", "blue"), lty = 1)

Check the residuals for normality:
plot(fkf.obj, type = "resid.qq")

Test for autocorrelation:
plot(fkf.obj, type = "acf", na.action = na.pass)

Index

∗Topic algebra
fkf, 2

∗Topic hplot
plot.fkf, 7

∗Topic models
fkf, 2

∗Topic multivariate
fkf, 2

acf, 8

ccf, 8

fkf, 2, 7, 8

KalmanRun, 5

plot, 5, 8
plot.fkf, 7

qqnorm, 8
qqplot, 8

10

	fkf
	plot.fkf
	Index

