Package 'FDRreg'

August 29, 2016

Type Package Title False discovery rate regression Version 0.1 Date 2014-02-24 Author James G. Scott, with contributions from Rob Kass and Jesse Windle Maintainer James G. Scott <james.scott@mccombs.utexas.edu> Description Tools for FDR problems, including false discovery rate regression. See corresponding paper: "False discovery rate regression: application to neural synchrony detection in primary visual cortex." James G. Scott, Ryan C. Kelly, Matthew A. Smith, Robert E. Kass. License GPL (>= 3) **Imports** Rcpp (>= 0.11.0), mosaic (>= 0.8-10) **Depends** fda (>= 2.4.0), splines (>= 3.0.2) LinkingTo Rcpp, RcppArmadillo NeedsCompilation yes **Repository** CRAN

Date/Publication 2014-03-05 16:42:00

R topics documented:

FDRreg-package	. 2
FDRreg	. 3
plotFDR	. 6
	9

Index

FDRreg-package

Description

Tools for FDR problems, including false discovery rate regression. Fits models whereby the local false discovery rate may depend upon covariates, either via a linear or additive logistic regression model.

Details

Package:	FDRreg
Type:	Package
Version:	1.0
Date:	2014-02-25
License:	GPL (>=3)

The workhouse function is FDRreg(z, X, ...), where z is an observed vector of z statistics, and X is a matrix of covariates. Do not add a column of ones to X to get an intercept term; the function does that for you, just like R's base lm() and glm() functions.

Author(s)

Author: James G. Scott, with contributions from Rob Kass and Jesse Windle.

Maintainer: James G. Scott <james.scott@mccombs.utexas.edu>

References

False discovery rate regression: application to neural synchrony detection in primary visual cortex. James G. Scott, Ryan C. Kelly, Matthew A. Smith, Pengcheng Zhou, and Robert E. Kass. arXiv:1307.3495 [stat.ME].

Examples

```
library(FDRreg)
```

```
# Simulated data
P = 2
N = 10000
betatrue = c(-3.5,rep(1/sqrt(P), P))
X = matrix(rnorm(N*P), N,P)
psi = crossprod(t(cbind(1,X)), betatrue)
wsuccess = 1/{1+exp(-psi)}
```

```
# Some theta's are signals, most are noise
gammatrue = rbinom(N,1,wsuccess)
```

FDRreg

```
table(gammatrue)
# Density of signals
thetatrue = rnorm(N, 3, 0.5)
thetatrue[gammatrue==0] = 0
z = rnorm(N, thetatrue, 1)
hist(z, 100, prob=TRUE, col='lightblue', border=NA)
curve(dnorm(x,0,1), add=TRUE, n=1001)
## Not run:
# Fit the model
fdr1 <- FDRreg(z, covars=X, nmc=2500, nburn=100, nmids=120, nulltype='theoretical')
# Show the empirical-Bayes estimate of the mixture density
# and the findings at a specific FDR level
Q = 0.1
plotFDR(fdr1, Q=Q, showfz=TRUE)
# Posterior distribution of the intercept
hist(fdr1$betasave[,1], 20)
# Compare actual versus estimated prior probabilities of being a signal
plot(wsuccess, fdr1$priorprob)
# Covariate effects
plot(X[,1], log(fdr1$priorprob/{1-fdr1$priorprob}), ylab='Logit of prior probability')
plot(X[,2], log(fdr1$priorprob/{1-fdr1$priorprob}), ylab='Logit of prior probability')
# Local FDR
plot(z, fdr1$localfdr, ylab='Local false-discovery rate')
# Extract findings at level FDR = Q
myfindings = which(fdr1$FDR <= Q)</pre>
## End(Not run)
```

FDRreg

False Discovery Rate Regression

Description

Estimate an empirical-Bayes false-discovery rate regression model for test statistics z and regressors X.

Usage

```
FDRreg(z, covars, nulltype = 'empirical', type = 'linear', nmc = 10000, nburn = 500,
nmids = 150, densknots = 10, regknots = 5)
```

Arguments

Z	An N dimensional vector; z_i is the test statistic for observation i.
covars	An N x P dimensional design matrix; x_i is the ith row. This is assumed not to have a column of ones representing an intercept; just like in $lm()$ and $glm()$, this will be added by the fitting algorithm.
nulltype	Choices are 'empirical' for an empirical null using Efron's central-matching method, or 'theoretical' for a standard normal null.
type	Choices are 'linear' for a standard logistic regression, or 'additive' for an ad- ditive logit model, in which case each column of covars is expanded using a b-spline basis.
nmc	The number of MCMC iterations saved. Defaults to 10,000.
nburn	The number of initial MCMC iterations discarded as burn-in. Defaults to 500.
nmids	How many bins should be used in the estimation of the marginal density $f(z)$? Defaults to 150.
densknots	How many knots should be used to estimate the marginal density $f(z)$ via spline- based Poisson regression? Defaults to 10; the function will warn you if it looks like you've used too few, using a simple deviance statistic.
regknots	Used only if type='additive'. How many knots should be used to estimate each partial regression function f $j(x j)$? Defaults to 5.

Details

This model assumes that a z-statistic z arises from

 $f(z_i) = w_i f^1(z) + (1 - w_i) f^0(z),$

where $f^{1}(z)$ and $f^{0}(z)$ are the densities/marginal likelihoods under the alternative and null hypotheses, respectively, and where w_i is the prior probability that z_i is a signal (non-null case). Efron's method is used to estimate f(z) nonparametrically; $f^{0}(z)$ may either be the theoretical (standard normal) null, or an empirical null which can be estimated using the middle 25 percent of the data. The prior probabilities w_i are estimated via logistic regression against covariates, using the Polya-Gamma Gibbs sampler of Polson, Scott, and Windle (JASA, 2013).

Value

z	The test statistics provided as the argument z.
localfdr	The corresponding vector of local false discovery rates (lfdr) for the elements of z. localfdr[i] is simply 1 minus the fitted posterior probability that $z[i]$ comes from the non-null (signal) population. It is important to remember that localfdr is not necessarily monotonic in z, because the regression model allows the prior probability that $z[i]$ is a signal to change with covariates $x[i]$.
FDR	The corresponding vector of cut-level false discovery rates (FDR) for the ele- ments of z. Used for extracting findings at a given FDR level. FDR[i] is the estimated false discovery rate for the cohort of test statistics whose local fdr's are at least as small as localfdr[i] — that is, the $z[j]$'s such that localfdr[j] <= localfdr[i].

Х	The design matrix used in the regression. This will include an added column for an intercept, along with the spline basis expansion if type='additive'.
grid	Length nmids: equally-spaced midpoints of the histogram bins used to estimate $f(z)$ via Poisson spline regression.
breaks	Length nmids: the breakpoints of the histogram used to estimate $f(z)$ via Poisson spline regression.
grid.fz	Length nmids: the estimated value of $f(z)$ at the histogram midpoints.
grid.f0z	Length nmids: the estimated value of $f^0(z)$, the assumed (either theoretical or empirical) null density at the histogram midpoints.
grid.zcounts	Length nmids: The number of z-scores that fell into each histogram bin.
dnull	The estimated (or assumed) null density at each of the observed z scores; dnull[i] corresponds to z[i].
dmix	The estimated marginal density $f(z)$ at each point $z[i]$. This should look like a good, smooth fit to the histogram of z.
empirical.null	A list with two members mu0 and sig0, representing the mean and standard deviation of the empirical null estimated using Efron's central-matching method. Always returned, but only used if nulltype='empirical'.
betasave	A matrix of posterior draws. Each row is a single posterior draw of the vector of regression coefficients corresponding to the columns of the returned X.
priorprob	The estimated prior probability of being a signa for each observation z_i . Here priorprob[i] = P(z_i is non-null).
postprob	The estimated posterior probabilities of being a signal each observation z_i: $postprob[i] = P(z_i \text{ is non-null } \text{ data})$, and $localfdr[i] = 1$ -postprob[i].
fjindex	A list of indices of length ncol(covars), where covars is the matrix of covariates you fed in. Mainly useful if type='additive', in which case fjind[[j]] gives you a vector of indices telling you which columns of the returned X and betasave correspond to the basis expansion of the original design matrix covars[,j].

References

J.G. Scott, R. Kelly, M.A. Smith, P. Zhou, and R.E. Kass (2013). False discovery rate regression: application to neural synchrony detection in primary visual cortex. arXiv:1307.3495 [stat.ME].

N.G. Polson, J.G. Scott, and J. Windle (2013. Bayesian inference for logistic models using Polya-Gamma latent variables. Journal of the American Statistical Association (Theory and Methods) 108(504): 1339-49 (2013). arXiv:1205.0310 [stat.ME].

Efron (2004). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J. Amer. Statist. Assoc. 99, 96-104.

Efron (2005). Local false discovery rates. Preprint, Dept. of Statistics, Stanford University.

Examples

- library(FDRreg)
- # Simulated data

```
P = 2
N = 10000
betatrue = c(-3.5,rep(1/sqrt(P), P))
X = matrix(rnorm(N*P), N,P)
psi = crossprod(t(cbind(1,X)), betatrue)
wsuccess = 1/{1+exp(-psi)}
# Some theta's are signals, most are noise
gammatrue = rbinom(N,1,wsuccess)
table(gammatrue)
# Density of signals
thetatrue = rnorm(N, 3, 0.5)
thetatrue[gammatrue==0] = 0
z = rnorm(N, thetatrue, 1)
hist(z, 100, prob=TRUE, col='lightblue', border=NA)
curve(dnorm(x,0,1), add=TRUE, n=1001)
## Not run:
# Fit the model
fdr1 <- FDRreg(z, covars=X, nmc=2500, nburn=100, nmids=120, nulltype='theoretical')
# Show the empirical-Bayes estimate of the mixture density
# and the findings at a specific FDR level
Q = 0.1
plotFDR(fdr1, Q=Q, showfz=TRUE)
# Posterior distribution of the intercept
hist(fdr1$betasave[,1], 20)
# Compare actual versus estimated prior probabilities of being a signal
plot(wsuccess, fdr1$priorprob)
# Covariate effects
plot(X[,1], log(fdr1$priorprob/{1-fdr1$priorprob}), ylab='Logit of prior probability')
plot(X[,2], log(fdr1$priorprob/{1-fdr1$priorprob}), ylab='Logit of prior probability')
# Local FDR
plot(z, fdr1$localfdr, ylab='Local false-discovery rate')
# Extract findings at level FDR = Q
myfindings = which(fdr1$FDR <= Q)</pre>
## End(Not run)
```

plotFDR

Plot an FDR regression model.

6

plotFDR

Description

Plots the results of a fitted FDR regression model from FDRreg.

Usage

plotFDR(fdrr, Q=0.1, showrug=TRUE, showfz=TRUE, showsub=TRUE)

Arguments

fdrr	A fitted model object from FDRreg.
Q	The desired level at which FDR should be controlled. Defaults to 0.1, or 10 percent.
showrug	Logical flag indicating whether the findings at the specified FDR level should be displayed in a rug plot beneath the histogram. Defaults to TRUE.
showfz	Logical flag indicating the fitted marginal density $f(\boldsymbol{z})$ should be plotted. Defaults to TRUE.
showsub	Logical flag indicating whether a subtitle should be displayed describing features of the plot. Defaults to TRUE.

Details

It is important to remember that localfdr (and therefore global FDR) is not necessarily monotonic in z, because the regression model allows the prior probability that z[i] is a signal to change with covariates x[i].

Value

No return value.

Examples

```
library(FDRreg)
# Simulated data
P = 2
N = 10000
betatrue = c(-3.5,rep(1/sqrt(P), P))
X = matrix(rnorm(N*P), N,P)
psi = crossprod(t(cbind(1,X)), betatrue)
wsuccess = 1/{1+exp(-psi)}
# Some theta's are signals, most are noise
gammatrue = rbinom(N,1,wsuccess)
table(gammatrue)
# Density of signals
thetatrue = rnorm(N,3,0.5)
thetatrue[gammatrue==0] = 0
```

```
z = rnorm(N, thetatrue, 1)
hist(z, 100, prob=TRUE, col='lightblue', border=NA)
curve(dnorm(x,0,1), add=TRUE, n=1001)
## Not run:
# Fit the model
fdr1 <- FDRreg(z, covars=X, nmc=2500, nburn=100, nmids=120, nulltype='theoretical')
# Show the empirical-Bayes estimate of the mixture density
# and the findings at a specific FDR level
Q = 0.1
plotFDR(fdr1, Q=Q, showfz=TRUE)
```

End(Not run)

8

Index

*Topic **FDR** FDRreg, 3 *Topic **False discovery rates** FDRreg-package, 2 *Topic **false discovery rate** FDRreg, 3 *Topic **logistic regression** FDRreg, 3

FDRreg, 3 FDRreg-package, 2

plotFDR, 6