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dowjones Negative log-returns of DOW JONES.

Description

Series of negative log-returns of the U.S. stock market index Dow Jones.

Format

A 8784 ∗ 2 data frame.

Details

From the series of n = 8785 closing prices St, t = 1, 2, ..., for the Dow Jones stock market index,
recorded from January 29, 1985 to December 12, 2019, the series of negative log-returns.

Xt+1 = − log(St+1/St), 1 ≤ t ≤ n− 1

is available. Hence the dataset (negative log-returns) contains 8784 observations.

EBTailIndex Expectile Based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Expectile Based (EB) estimator.

Usage

EBTailIndex(data, tau, est=NULL)
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Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details\.

est A real specifying the estimate of the expectile at the intermediate level tau.

Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is estimated using
the EB estimator:

γ̂En =

(
1 +

ˆ̄Fn(ξ̃τn )
1−τn

)−1

,

where ˆ̄Fn is the empirical survival function of the observations, ξ̃τn is an estimate of the τn-th
expectile. The observations can be either independent or temporal dependent. See Padoan and
Stupfler (2020) and Daouia et al. (2018) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1
as n → ∞. Practically, τn ∈ (0, 1) is the ratio between the empirical mean distance of the
τn-th expectile from the smaller observations and the empirical mean distance of of the τn-th
expectile from all the observations. An estimate of τn-th expectile is computed and used in
turn to estimate γ.

• The value est, if provided, is meant to be an esitmate of the τn-th expectile which is used
to estimate γ. On the contrary, if est=NULL, then the routine EBTailIndex estimate first the
τn-th expectile expectile and then use it to estimate γ.

Value

An estimate of the tain index γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

HTailIndex, MomTailIndex, MLTailIndex,

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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Examples

# Tail index estimation based on the Expectile based estimator obtained with data
# simulated from an AR(1) with 1-dimensional Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- EBTailIndex(data, tau)
gammaHat

estExpectiles High Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the intermediate level.

Usage

estExpectiles(data, tau, method="LAWS", tailest="Hill", var=FALSE, varType="asym-Dep-Adj",
bigBlock=NULL, smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the direct LAWS estimator. See Details.
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tailest A string specifying the type of tail index estimator. By default tailest="Hill"
specifies the use of Hill estimator. See Details.

var If var=TRUE then an estimate of the variance of the expectile estimator is com-
puted.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep-Adj"
specifies the variance estimator for serial dependent observations implemented
with a suitable adjustment. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τn-th expectile is computed. Two estimators
are available: the so-called direct Least Asymmetrically Weighted Squares (LAWS) and indirect
Quantile-Based (QB). The definition of the QB estimator depends on the estimation of the tail
index γ. Here, γ is estimated using the Hill estimation (see HTailIndex) or in alternative using the
the expectile based estimator (see EBTailIndex). The observations can be either independent or
temporal dependent. See Section 3.1 in Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, τn ∈ (0, 1) is the ratio between N (Numerator) and D (Denominator).
Where N is the empirical mean distance of the τn-th expectile from the observations smaller
than it, and D is the empirical mean distance of τn-th expectile from all the observations.

• If method='LAWS', then the expectile at the intermediate level τn is estimated applying the
direct LAWS estimator. Instead, If method='QB' the indirect QB esimtator is used to estimate
the expectile. See Section 3.1 in Padoan and Stupfler (2020) for details.

• When the expectile is estimated by the indirect QB esimtator (method='QB'), an estimate of
the tail index γ is needed. If tailest='Hill' then γ is estimated using the Hill estimator
(see also HTailIndex). If tailest='ExpBased' then γ is estimated using the expectile based
estimator (see EBTailIndex). See Section 3.1 in Padoan and Stupfler (2020) for details.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
when method='LAWS' and tau=NULL, kn specifies by τn = 1 − kn/n the intermediate level
of the expectile. Instead, when method='QB', if tailest="Hill" then the value kn specifies
the number of k+1 larger order statistics to be used to estimate γ by the Hill estimator and
if tau=NULL then it also specifies by τn = 1 − kn/n the confidence level τn of the quantile
to estimate. Finally, if tailest="ExpBased" and tau=NULL then it also specifies by τn =
1− kn/n the intermediate level expectile based esitmator of γ (see EBTailIndex).

• If var=TRUE then the asymptotic variance of the expecile estimator is computed. With in-
dependent observations the asymptotic variance is computed by the formula Theorem 3.1 of
Padoan and Stupfler (2020). This is achieved through varType="asym-Ind". With serial
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dependent observations the asymptotic variance is estimated by the formula in Theorem 3.1
of Padoan and Stupfler (2020). This is achieved through varType="asym-Dep". In this lat-
ter case the computation of the asymptotic variance is based on the "big blocks seperated by
small blocks" techinque which is a standard tools in time series, see Leadbetter et al. (1986).
See also Section C.1 in Appendix of Padoan and Stupfler (2020). The size of the big and
small blocks are specified by the parameters bigblock and smallblock, respectively. Still
with serial dependent observations, If varType="asym-Dep-Adj", then the asymptotic vari-
ance is estimated using formula (C.79) in Padoan and Stupfler (2020), see Section C.1 of the
Appendix for details.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the τn-th expectile,
with approximate nominal confidence level (1 − α)100% is computed. See Sections 3.1 and
C.1 in the Appendix of Padoan and Stupfler (2020).

Value

A list with elements:

• ExpctHat: an estimate of the τn-th expecile;

• VarExpHat: an estimate of the asymptotic variance of the expectile estimator;

• CIExpct: an estimate of the approximate (1−α)100% confidence interval for τn-th expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, predExpectiles, extQuantile

Examples

# Extreme expectile estimation at the intermediate level tau obtained with
# 1-dimensional data simulated from am AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# High expectile (intermediate level) estimation
expectHat <- estExpectiles(data, tau, var=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
expectHat$ExpctHat
expectHat$CIExpct

estExtLevel Extreme Level Estimation

Description

Estimates the expectile’s extreme level corresponding to a quantile’s extreme level.

Usage

estExtLevel(alpha_n, data=NULL, gammaHat=NULL, VarGamHat=NULL, tailest="Hill", k=NULL,
var=FALSE, varType="asym-Dep", bigBlock=NULL, smallBlock=NULL, alpha=0.05)

Arguments

alpha_n A real in (0, 1) specifying the extreme level αn for the quantile. See Details.

data A vector of (1× n) observations to be used to estimate the tail index in the case
it is not provided. By default data=NULL specifies that no data are given.

gammaHat A real specifying an estimate of the tail index. By default gammaHat=NULL spec-
ifies that no estimate is given. See Details.

VarGamHat A real specifying an estimate of the variance of the tail index estimate. By
default VarGamHat=NULL specifies that no estimate is given. See Details.

tailest A string specifying the type of tail index estimator to be used. By default
tailest="Hill" specifies the use of Hill estimator. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the variance of the extreme level estimator is
computed.
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varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a given extreme level αn for the αn-th quantile, an estimate of the extreme level τ ′n(αn) is
computed such that ξτ ′

n(αn) = qαn . The estimator is defined by

τ̂ ′n(αn) = 1− (1− αn) γ̂n
1−γ̂n

where γ̂n is a consistent estimator of the tail index γ. If a value for the parameter gammaHat is given,
then such a value is used to compute τ̂ ′n. If gammaHat is NULL and a dataset is provided through the
parameter data, then the tail index γ is estimated by a suitable estimator γ̂n. See Section 6 in
Padoan and Stupfler (2020) for more details.

• If VarGamHat is specified, i.e. the variance of the tail index estimator, then the variance of the
extreme level estimator τ̂ ′n is computed by using such value.

• When estimating the tail index, if tailest='Hill' then γ is estimated using the Hill estimator
(see also HTailIndex). If tailest='ML' then γ is estimated using the Maximum Likelihood
estimator (see MLTailIndex). If tailest='ExpBased' then γ is estimated using the expec-
tile based estimator (see EBTailIndex). If tailest='Moment' then γ is estimated using the
moment based estimator (see MomTailIndex). See Padoan and Stupfler (2020) for details.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn →∞ and kn/n→ 0 as n→∞. Practically, when
tailest="Hill" then the value kn specifies the number of k+1 larger order statistics to be
used to estimate γ by the Hill estimator. See MLTailIndex, EBTailIndex and MomTailIndex
for the other estimators.

• If var=TRUE then the asymptotic variance of the extreme level estimator is computed by ap-
plying the delta method, i.e.
V ar(τ ′n) = V ar(γ̂n) ∗ (αn − 1)2/(1− γ̂n)4

where V ar(γ̂n is provided by VarGamHat or is estimated when esitmating the tail index
through tailest='Hill' and tailest='ML'. See HTailIndex and MLTailIndex for details
on how the variance is computed.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the extreme level,
τ ′n(αn), with approximate nominal confidence level (1− α)100% is computed.

Value

A list with elements:

• tauHat: an estimate of the extreme level τ ′n;
• tauVar: an estimate of the asymptotic variance of the extreme level estimator τ̂ ′n(αn);
• tauCI: an estimate of the approximate (1− α)100% confidence interval for the extreme level
τ ′n(αn).
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Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

estExpectiles, predExpectiles, extQuantile

Examples

# Extreme level estimation for a given quantile's extreme level alpha_n
# obtained with 1-dimensional data simulated from an AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# expectile's extreme level estimation
tau1Hat <- estExtLevel(alpha_n, data, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock)
tau1Hat

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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expectiles Expectile Computation

Description

Computes the true expectile for some families of parametric models.

Usage

expectiles(par, tau, tsDist="gPareto", tsType="IID", trueMethod="true",
estMethod="LAWS", nrep=1e+05, ndata=1e+06, burnin=1e+03)

Arguments

par A vector of (1×p) parameters of the time series parametric family. See Details.

tau A real in (0, 1) specifying the level τ of the expectile to be computed. See
Details.

tsDist A string specifying the parametric family of the innovations distribution. By de-
fault tsDist="gPareto" specifies a Pareto family of distributions. See Details.

tsType A string specifying the type of time series. By default tsType="IID" specifies
a sequence of independent and indentically distributed random variables. See
Details.

trueMethod A string specifying the method used to computed the expecile. By default
trueMethod="true" specifies that the true analytical expression to computed
the expectile is used. See Details.

estMethod A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the direct LAWS estimator. See Details.

nrep A positive interger specifying the number of simulations to use for computing
an approximation of the expectile. See Details.

ndata A positive interger specifying the number of observations to genreated for each
simulation. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a parametric family of time series models or a parametric family of distributions (for the case
of independent observations) the τ -th expectile (or expectile of level tau) is computed.

• There are two methods to compute the τ -th expectile. For the Generalised Pareto and Student-
t parametric families of distributions, the analytical epxression of the expectile is available.
This is used to compute the τ -th expectile if the parameter trueMethod="true" is speci-
fied. For most of parametric family of distributions or parametric families of time series
models the analytical epxression of the expectile is not available. In this case an approx-
imate value of the τ -th expectile is computed via a Monte Carlo method if the parameter
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trueMethod=="approx" is specified. In particular, ndata observations from a family of
time series models (e.g. tsType="AR" and tsDist="studentT") or a sequence of inde-
pendent and indentically distributed random variables with common family of distributions
(e.g. tsType="IID" and tsDist="gPareto") are simulated nrep times. For each simula-
tion the τ -th expectile is estimate by the estimation method specified by estMethod. The
mean of such estimate provides an approximate value of the τ -th expectile. The available
estimator to esitmate the expecile are the direct LAWS (estMethod="LAWS") and the indirect
QB (estMethod="QB"), see estExpectiles for details. The available families of distributions
are: Generalised Pareto (tsDist="gPareto"), Student-t (tsDist="studentT") and Frechet
(tsDist="Frechet"). The available classes of time series with parametric innovations fami-
lies of distributions are specified in rtimeseries.

Value

The τ -th expectile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

See Also

rtimeseries

Examples

# Derivation of the true tau-th expectile for the Pareto distribution
# via accurate simulation

# parameter value
par <- c(1, 0.3)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau)
trueExp

# tau-th expectile of the AR(1) with Student-t innovations
tsDist <- "studentT"
tsType <- "AR"

# Approximation via Monte Carlo methods
trueMethod <- "approx"

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau, tsDist, tsType, trueMethod)
trueExp

ExpectMES Marginal Expected Shortfall Expectile Based Estimation

Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using an expectile
based approach.

Usage

ExpectMES(data, tau, tau1, method="LAWS", var=FALSE, varType="asym-Dep", bias=FALSE,
bigBlock=NULL, smallBlock=NULL, k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the MES estimator
is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.
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alpha_n A real in (0, 1) specifying the quantile’s extreme level to be use in order to
estimate the expectile’s extreme level.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τ ′n-th MES is computed. The estimation
of the MES at the extreme level tau1 (τ ′n) is indeed meant to be a prediction. Two estimators are
available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the
Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of
the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex for details). The
observations can be either independent or temporal dependent. See Section 4 in Padoan and Stupfler
(2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n→∞. See predExpectiles for details.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n→∞. See predExpectiles for details.

• When method='LAWS', then the τ ′n-th MES is estimated using the LAWS based estimator.
When method='QB', the expectile is instead estimated using the QB esimtator. See Sectino 4
in Padoan and Stupfler (2020) and in particular Corollary 4.3 and 4.4 for details. The definition
of both estimators depend on the estimation of the tail index γ. In particular, the tail index γ
is estimated using the Hill estimator (see HTailIndex).

• If var=TRUE then an esitmate of the asymptotic variance of the tau′n-th MES is computed.
Notice that the estimation of the asymptotic variance is only available when γ is estimated
using the Hill estimator (see HTailIndex). With independent observations the asymptotic vari-
ance is estimated by γ̂2, see Corollary 4.3 in Padoan and Stupfler (2020). This is achieved
through varType="asym-Ind". With serial dependent observations the asymptotic variance
is estimated by the formula in Corollary 4.3 of Padoan and Stupfler (2020). This is achieved
through varType="asym-Dep". See Section 4 adn 5 in Padoan and Stupfler (2020) for details.
In this latter case the computation of the serial dependence is based on the "big blocks seper-
ated by small blocks" techinque which is a standard tools in time series, see e.g. Leadbetter et
al. (1986). The size of the big and small blocks are specified by the parameters bigBlock and
smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
when tau=NULL and method='LAWS', then τn = 1 − kn/n is the intermediate level of the
expectile to be stimated. kn also specifies the number of k+1 larger order statistics used in the
definition of the Hill estimator (see HTailIndex for detail). Differently, When tau=NULL and
method='QB', then τn = 1− kn/n is the intermediate level of the quantile to be stimated.
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• If the quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′n is
replaced by tau′n(αn) which is estimated by the method described in Section 6 of Padoan and
Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′n-th expectile, with approximate nominal confidence level (1 − α)100%, is computed.
The confidence intervals are computed exploiting formula in Corollary 4.3, 4.4 and Theorem
6.2 of Padoan and Stupfler (2020) and (46) in Drees (2003). See Sections 4-6 in Padoan and
Stupfler (2020) for details. When biast=TRUE confidence intervals are computed in the same
way but after correcting the tail index estimate by an estimate of the bias term, see formula
(4.2) in de Haan et al. (2016) for details.

Value

A list with elements:

• HatXMES: an estimate of the τ ′n-th expectile based MES;

• VarHatXMES: an estimate of the asymptotic variance of the expectile based MES estimator;

• CIHatXMES: an estimate of the approximate (1− α)100% confidence interval for τ ′n-th MES.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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Examples

# Marginl Expected Shortfall expectile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme MES expectile based estimation
MESHat <- ExpectMES(data, NULL, NULL, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock, alpha_n=alpha_n)
MESHat

extQuantile Value-at-Risk (VaR) or Extreme Quantile (EQ) Estimation

Description

Computes a point and interval estimate of the VaR based on the Weissman estimator.

Usage

extQuantile(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, k=NULL, alpha=0.05)



16 extQuantile

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the VaR estimator is
computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the VaR.

Details

For a dataset data of sample size n, the VaR or EQ, correspoding to the extreme level tau1, is
computed by applying the Weissman estimator. The definition of the Weissman estimator depends
on the estimation of the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex).
The observations can be either independent or temporal dependent (see e.g. de Haan and Ferreira
2006; Drees 2003; de Haan et al. 2016 for details).

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, (1 − τn) ∈ (0, 1) is a small proportion of observations in the observed
data sample that exceed the taun-th empirical quantile. Such proportion of observations is
used to estimate the taun-th quantile and γ.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. The value (1 − tau′n) ∈ (0, 1) is meant to be a small tail probability such that
(1− τ ′n) = 1/n or (1− τ ′n) < 1/n. It is also assumed that n(1− τ ′n)→ C as n→∞, where
C is a positive finite constant. The value C is the expected number of exceedances of the τ ′n-th
quantile. Typically, C ∈ (0, 1) which means that it is expected that there are no observations
in a data sample exceeding the quantile of level (1− τ ′n).

• If var=TRUE then an esitmate of the asymptotic variance of the tau′n-th quantile is computed.
With independent observations the asymptotic variance is estimated by the formula γ̂2 (see
e.g. de Drees 2000, 2003, for details). This is achieved through varType="asym-Ind". With
serial dependent data the asymptotic variance is estimated by the formula in 1288 in Drees
(2000). This is achieved through varType="asym-Dep". In this latter case the computation of
the serial dependence is based on the "big blocks seperated by small blocks" techinque which
is a standard tools in time series, see e.g. Leadbetter et al. (1986). The size of the big and
small blocks are specified by the parameters bigBlock and smallBlock, respectively. With
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serial dependent data the asymptotic variance can also be estimated by formula (32) of Drees
(2003). This is achieved through varType="asym-Alt-Dep".

• If bias=TRUE then an estimate of the τ ′n–th quantile is computed using the formula in page 330
of de Haan et al. (2016), which provides a bias corrected version of the Weissman estimator.
However, in this case the asymptotic variance is not estimated using the formula in Haan et
al. (2016) Theorem 4.2. Instead, for simplicity standard formula in Drees (2000) page 1288
is used.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate the τn-th
empirical quantile and γ. The intermediate level τn can be seen defined as τn = 1− kn/n.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′n-th quantile, with approximate nominal confidence level (1−α)100%, is computed. The
confidence intervals are computed exploiting the formulas (33) and (46) of Drees (2003).
When biast=TRUE confidence intervals are computed in the same way but after correcting the
tail index estimate by an estimate of the bias term, see formula (4.2) in de Haan et al. (2016)
for details. Furthermore, in this case with serial dependent data the asymptotic variance is
estimated using the formula in Drees (2000) page 1288.

Value

A list with elements:

• ExtQHat: an estimate of the VaR or τ ′n-th quantile;

• VarExQHat: an estimate of the asymptotic variance of the VaR estimator;

• CIExtQ: an estimate of the approximate (1− α)100% confidence interval for the VaR.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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See Also

HTailIndex, EBTailIndex, estExpectiles

Examples

# Extreme quantile estimation at the level tau1 obtained with 1-dimensional data
# simulated from an AR(1) with univariate Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# VaR (extreme quantile) estimation
extQHat1 <- extQuantile(data, tau, tau1, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat1$ExtQHat
extQHat1$CIExtQ

# VaR (extreme quantile) estimation with bias correction
extQHat2 <- extQuantile(data, tau, tau1, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat2$ExtQHat
extQHat2$CIExtQ

HTailIndex Hill Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Hill’s estimator.
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Usage

HTailIndex(data, k, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the variance of the tail index estimator is com-
puted.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the tail index.

Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the Hill estimator. The observations can be either independent or temporal dependent.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate γ.

• If var=TRUE then an estimate of the asymptotic variance of the Hill estimator is computed.
With independent observations the asymptotic variance is estimated by the formula γ̂2, see
Theorem 3.2.5 of de Haan and Ferreira (2006). This is achieved through varType="asym-Ind".
With serial dependent observations the asymptotic variance is estimated by the formula in
1288 in Drees (2000). This is achieved through varType="asym-Dep". In this latter case the
serial dependence is estimated by exploiting the "big blocks seperated by small blocks" tech-
inque which is a standard tools in time series, see Leadbetter et al. (1986). See also formula
(11) in Drees (2003). The size of the big and small blocks are specified by the parameters
bigBlock and smallBlock, respectively.

• If bias=TRUE then an estimate of the bias term of the Hill estimator is computed implementing
using formula (4.2) in de Haan et al. (2016). However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.1. Instead for simplicity
standard formulas have been used (see de Haan and Ferreira 2006 Theorem 3.2.5 and Drees
2000 page 1288).

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
γ, with approximate nominal confidence level (1 − α)100%, is computed. The confidence
intervals are computed exploiting the formulas in de Haan and Ferreira (2006) Theorem 3.2.5
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and Drees (2000) page 1288. When biast=TRUE the confidence intervals are computed in
the same way but after correcting the tail index estimate by an estimate of the bias term, see
formula (4.2) in de Haan et al. (2016) for details.

Value

A list with elements:

• gammaHat: an estimate of tail index γ;

• VarGamHat: an estimate of the asymptotic variance of the Hill estimator;

• BiasGamHat: an estimate of bias term of the Hill estimator;

• AdjExtQHat: the adjustment to correct the Weissman estimator of an extreme quantile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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See Also

MLTailIndex, MomTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Hill estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat1 <- HTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat1$gammaHat
gammaHat1$CIgamHat

# tail index estimation with bias correction
gammaHat2 <- HTailIndex(data, 2*k, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat2$gammaHat-gammaHat2$BiasGamHat
gammaHat2$CIgamHat

MLTailIndex Maximum Likelihood Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Maximum Likelihood (ML)
estimator.

Usage

MLTailIndex(data, k, var=FALSE, varType="asym-Dep", bigBlock=NULL,
smallBlock=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the tail index esti-
mator is computed.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.
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smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the tail index.

Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the ML estimator. The observations can be either independent or temporal dependent.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the numer of k+1 larger order statistics to be used to estimate γ.

• If var=TRUE then the asymptotic variance of the Hill estimator is computed. With independent
observations the asymptotic variance is estimated by the formula in Theorem 3.4.2 of de Haan
and Ferreira (2006). This is achieved through varType="asym-Ind". With serial dependent
observations the asymptotic variance is estimated by the formula in 1288 in Drees (2000).
This is achieved through varType="asym-Dep". In this latter case the serial dependence is es-
timated by exploiting the "big blocks seperated by small blocks" techinque which is a standard
tools in time series, see Leadbetter et al. (1986). See also formula (11) in Drees (2003). The
size of the big and small blocks are specified by the parameters bigBlock and smallBlock,
respectively.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the tail index, with
approximate nominal confidence level (1− α)100% is computed.

Value

A list with elements:

• gammaHat: an estimate of tail index γ;

• VarGamHat: an estimate of the variance of the ML estimator;

• CIgamHat: an estimate of the approximate (1− α)100% confidence interval for γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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See Also

HTailIndex, MomTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Maximum Likelihood estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MLTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat$gammaHat
gammaHat$CIgamHat

MomTailIndex Moment based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Moment Based (MB) estimator.

Usage

MomTailIndex(data, k)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.
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Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the MB estimator. The observations can be either independent or temporal dependent. For
details see de Haan and Ferreira (2006).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate γ.

Value

An estimate of the tail index γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References
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New York.

See Also

HTailIndex, MLTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Moment estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
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# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MomTailIndex(data, k)
gammaHat

predExpectiles Extreme Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the extreme level (Expectile Prediction).

Usage

predExpectiles(data, tau, tau1, method="LAWS", tailest="Hill", var=FALSE,
varType="asym-Dep", bias=FALSE, bigBlock=NULL, smallBlock=NULL,
k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

tailest A string specifying the tail index estimator. By default tailest="Hill" speci-
fies the use of Hill estimator. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the expectile estima-
tor is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha_n A real in (0, 1) specifying the quantile’s extreme level to be use in order to
estimate the expectile’s extreme level.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.
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Details

For a dataset data of sample size n, an estimate of the τ ′n-th expectile is computed. The estimation
of the expectile at the extreme level tau1 (τ ′n) is indeed meant to be a prediction. Two estimators
are available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and
the Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation
of the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex for details) or
in alternative using the the expectile based estimator (see EBTailIndex). The observations can be
either independent or temporal dependent. See Section 3.2 in Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, τn ∈ (0, 1) is the ratio between N (Numerator) and D (Denominator).
Where N is the empirical mean distance of the τn-th expectile from the observations smaller
than it, and D is the empirical mean distance of τn-th expectile from all the observations.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. The value (1 − tau′n) ∈ (0, 1) is meant to be a small tail probability such that
(1 − τ ′n) = 1/n or (1 − τ ′n) < 1/n. It is also assumed that n(1 − τ ′n) → C as n → ∞,
where C is a positive finite constant. Typically, C ∈ (0, 1) so it is expected that there are no
observations in a data sample that are greater than the expectile at the extreme level τ ′n.

• When method='LAWS', then the τ ′n-th expectile is estimated using the LAWS based estimator.
When method='QB', the expectile is instead estimated using the QB esimtator. The definition
of both estimators depend on the estimation of the tail index γ. When tailest='Hill' then
γ is estimated using the Hill estimator (see HTailIndex). When tailest='ExpBased', then γ
is estimated using the expectile based estimator (see EBTailIndex). See Section 3.2 in Padoan
and Stupfler (2020) for details.

• If var=TRUE then an esitmate of the asymptotic variance of the tau′n-th expectile is com-
puted. Notice that the estimation of the asymptotic variance is only available when γ is es-
timated using the Hill estimator (see HTailIndex). With independent observations the asymp-
totic variance is estimated by γ̂2, see the remark below Theorem 3.5 in Padoan and Stupfler
(2020). This is achieved through varType="asym-Ind". With serial dependent observations
the asymptotic variance is estimated by the formula in Throrem 3.5 of Padoan and Stupfler
(2020). This is achieved through varType="asym-Dep". See Section 3.2 in Padoan and
Stupfler (2020) for details. In this latter case the computation of the serial dependence is
based on the "big blocks seperated by small blocks" techinque which is a standard tools in
time series, see e.g. Leadbetter et al. (1986). The size of the big and small blocks are speci-
fied by the parameters bigBlock and smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn →∞ and kn/n→ 0 as n→∞. Practically, when
tau=NULL and method='LAWS', then τn = 1− kn/n is the intermediate level of the expectile
to be stimated. The latter is also used to estimate the tail index when tailest='ExpBased'.
Instead, if tailest='Hill', then kn specifies the number of k+1 larger order statistics used
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in the definition of the Hill estimator. Differently, When tau=NULL and method='QB', then
τn = 1 − kn/n is the intermediate level of the quantile to be stimated and of the expectile to
be stimated when tailest='ExpBased'. Instead, when tailest='Hill' it is the numer of
k+1 larger order statistics used in the definition of the Hill estimator.

• If quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′n(αn) is
replaced by tau′n(αn) which is esitmated using the method described in Section 6 of Padoan
and Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for tau′n-
th expectile, with approximate nominal confidence level (1 − α)100%, is computed. The
confidence intervals are computed exploiting formula (10) and (11) in Padoan and Stupfler
(2020) and (46) in Drees (2003). See Section 5 in Padoan and Stupfler (2020) for details.
When biast=TRUE confidence intervals are computed in the same way but after correcting the
tail index estimate by an estimate of the bias term, see formula (4.2) in de Haan et al. (2016)
for details.

Value

A list with elements:

• EExpcHat: an estimate of the τ ′n-th expecile;

• VarExtHat: an estimate of the asymptotic variance of the expectile estimator;

• CIExpct: an estimate of the approximate (1−α)100% confidence interval for τ ′n-th expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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See Also
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Examples

# Extreme expectile estimation at the extreme level tau1 obtained with
# 1-dimensional data simulated from an AR(1) with univariate
# Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Extreme expectile estimation
expectHat1 <- predExpectiles(data, tau, tau1, var=TRUE, bigBlock=bigBlock,

smallBlock=smallBlock)
expectHat1$EExpcHat
expectHat1$CIExpct
# Extreme expectile estimation with bias correction
tau <- 0.80
expectHat2 <- predExpectiles(data, tau, tau1, "QB", var=TRUE, bias=TRUE, bigBlock=bigBlock,
smallBlock=smallBlock)

expectHat2$EExpcHat
expectHat2$CIExpct

QuantMES Marginal Expected Shortfall Quantile Based Estimation

Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using a quantile
based approach.
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Usage

QuantMES(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the MES estimator
is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τ ′n-th MES is computed. The estimation of
the MES at the extreme level tau1 (τ ′n) is indeed meant to be a prediction. Estimates are obtained
through the quantile based estimator defined in page 12 of Padoan and Stupfler (2020). Such an
estimator depends on the estimation of the tail index γ. Here, γ is estimated using the Hill estimation
(see HTailIndex for details). The observations can be either independent or temporal dependent. See
Section 4 in Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n→∞. See predExpectiles for details.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n→∞. See predExpectiles for details.

• If var=TRUE then an esitmate of the asymptotic variance of the tau′n-th MES is computed.
Notice that the estimation of the asymptotic variance is only available when γ is estimated
using the Hill estimator (see HTailIndex). With independent observations the asymptotic vari-
ance is estimated by γ̂2, see Corollary 4.3 in Padoan and Stupfler (2020). This is achieved
through varType="asym-Ind". With serial dependent observations the asymptotic variance
is estimated by the formula in Corollary 4.2 of Padoan and Stupfler (2020). This is achieved
through varType="asym-Dep". See Section 4 and 5 in Padoan and Stupfler (2020) for details.
In this latter case the computation of the serial dependence is based on the "big blocks seper-
ated by small blocks" techinque which is a standard tools in time series, see e.g. Leadbetter et



30 QuantMES

al. (1986). The size of the big and small blocks are specified by the parameters bigBlock and
smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. kn specifies
the number of k+1 larger order statistics used in the definition of the Hill estimator (see
HTailIndex for details).

• If the quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′n is
replaced by tau′n(αn) which is estimated by the method described in Section 6 of Padoan and
Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′n-th expectile, with approximate nominal confidence level (1 − α)100%, is computed.
The confidence intervals are computed exploiting formula in Corollary 4.2, Theorem 6.2 of
Padoan and Stupfler (2020) and (46) in Drees (2003). See Sections 4-6 in Padoan and Stupfler
(2020) for details. When biast=TRUE confidence intervals are computed in the same way but
after correcting the tail index estimate by an estimate of the bias term, see formula (4.2) in de
Haan et al. (2016) for details.

Value

A list with elements:

• HatQMES: an estimate of the τ ′n-th quantile based MES;

• VarHatQMES: an estimate of the asymptotic variance of the quantile based MES estimator;

• CIHatQMES: an estimate of the approximate (1− α)100% confidence interval for τ ′n-th MES.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/
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See Also

ExpectMES, HTailIndex, predExpectiles, extQuantile

Examples

# Marginl Expected Shortfall quantile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme MES expectile based estimation
MESHat <- QuantMES(data, NULL, tau1, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock)
MESHat

rbtimeseries Simulation of Two-Dimensional Temporally Dependent Observations
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Description

Simulates samples from parametric families of bivariate time series models.

Usage

rbtimeseries(ndata, dist="studentT", type="AR", copula="Gumbel", par, burnin=1e+03)

Arguments

ndata A positive interger specifying the number of observations to simulate.

dist A string specifying the parametric family of the innovations distribution. By
default dist="studentT" specifies a Student-t family of distributions. See De-
tails.

type A string specifying the type of time series. By default type="AR" specifies a
linear Auto-Regressive time series. See Details.

copula A string specifying the type copula to be used. By default copula="Gumbel"
specifies the Gumbel copula. See Details.

par A list of p parameters to be specified for the bivariate time series parametric
family. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a time series class (type), with a parametric family (dist) for the innovations, a sample of size
ndata is simulated. See for example Brockwell and Davis (2016).

• The available categories of bivariate time series models are: Auto-Regressive (type="AR"),
Auto-Regressive and Moving-Average (type="ARMA"), Generalized-Autoregressive-Conditional-
Heteroskedasticity (type="GARCH") and Auto-Regressive.

• With AR(1) times series the available families of distributions for the innovations and the
dependence structure (copula) are:

– Student-t (dist="studentT" and copula="studentT") with marginal parameters (equal
for both distributions): φ ∈ (−1, 1) (autoregressive coefficient), ν > 0 (degrees of free-
dom) and dependence parameter dep ∈ (−1, 1). The parameters are specified as par
<-list(corr,df,dep);

– Asymmetric Student-t (dist="AStudentT" and copula="studentT") with marginal pa-
rameters (equal for both distributions): φ ∈ (−1, 1) (autoregressive coefficient), ν > 0
(degrees of freedom) and dependence parameter dep ∈ (−1, 1). The paraters are speci-
fied as par <-list(corr,df,dep). Note that in this case the tail index of the lower and
upper tail of the first marginal are different, see Padoan and Stupfler (2020) for details;

• With ARMA(1,1) times series the available families of distributions for the innovations and
the dependence structure (copula) are:

– symmetric Pareto (dist="double-Pareto" and copula="Gumbel" or copula="Gaussian")
with marginal parameters (equal for both distributions): φ ∈ (−1, 1) (autoregressive co-
efficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), and dependence
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parameter dep (dep > 0 if copula="Gumbel" or dep ∈ (−1, 1) if copula="Gaussian").
The parameters are specified as par <-list(corr,scale,shape,smooth,dep).

– symmetric Pareto (dist="double-Pareto" and copula="Gumbel" or copula="Gaussian")
with marginal parameters (equal for both distributions): φ ∈ (−1, 1) (autoregressive co-
efficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), and dependence
parameter dep (dep > 0 if copula="Gumbel" or dep ∈ (−1, 1) if copula="Gaussian").
The parameters are specified as par <-list(corr,scale,shape,smooth,dep). Note
that in this case the tail index of the lower and upper tail of the first marginal are different,
see Padoan and Stupfler (2020) for details;

• With ARCH(1)/GARCH(1,1) time series the distribution of the innovations are symmetric
Gaussian (dist="Gaussian") or asymmetric Gaussian dist="AGaussian". In both cases the
marginal parameters (equal for both distributions) are: α0, α1, β. In the asymmetric Gaussian
case the tail index of the lower and upper tail of the first marginal are different, see Padoan
and Stupfler (2020) for details. The available copulas are: Gaussian (copula="Gaussian")
with dependence parameter dep ∈ (−1, 1), Student-t (copula="studentT") with dependence
parameters dep ∈ (−1, 1) and ν > 0 (degrees of freedom), Gumbel (copula="Gumbel") with
dependence parameter dep > 0. The parameters are specified as par <-list(alpha0,alpha1,beta,dep)
or par <-list(alpha0,alpha1,beta,dep,df).

Value

A vector of (2× n) observations simulated from a specified bivariate time series model.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting.
Springer.

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

See Also

rtimeseries, expectiles

Examples

# Data simulation from a 2-dimensional AR(1) with bivariate Student-t distributed
# innovations, with one marginal distribution whose lower and upper tail indices
# that are different

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme expectile estimation
plot(data, pch=21)
plot(data[,1], type="l")
plot(data[,2], type="l")

rtimeseries Simulation of One-Dimensional Temporally Dependent Observations

Description

Simulates samples from parametric families of time series models.

Usage

rtimeseries(ndata, dist="studentT", type="AR", par, burnin=1e+03)

Arguments

ndata A positive interger specifying the number of observations to simulate.

dist A string specifying the parametric family of the innovations distribution. By
default dist="studentT" specifies a Student-t family of distributions. See De-
tails.

type A string specifying the type of time series. By default type="AR" specifies a
linear Auto-Regressive time series. See Details.

par A vector of (1 × p) parameters to be specified for the univariate time series
parametric family. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a time series class (type) with a parametric family (dist) for the innovations, a sample of size
ndata is simulated. See for example Brockwell and Davis (2016).
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• The available categories of time series models are: Auto-Regressive (type="AR"), Auto-
Regressive and Moving-Average (type="ARMA"), Generalized-Autoregressive-Conditional-
Heteroskedasticity (type="GARCH") and Auto-Regressive and Moving-Maxima (type="ARMAX").

• With AR(1) and ARMA(1,1) times series the available families of distributions for the inno-
vations are:

– Student-t (dist="studentT") with parameters: φ ∈ (−1, 1) (autoregressive coefficient),
ν > 0 (degrees of freedom) specified by par=c(corr,df);

– symmetric Frechet (dist="double-Frechet") with parameters φ ∈ (−1, 1) (autoregres-
sive coefficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), specified
by par=c(corr,scale,shape,smooth);

– symmetric Pareto (dist="double-Pareto") with parameters φ ∈ (−1, 1) (autoregres-
sive coefficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), specified
by par=c(corr,scale,shape,smooth).

With ARCH(1)/GARCH(1,1) time series the Gaussian family of distributions is available for
the innovations (dist="Gaussian") with parameters, α0, α1, β specified by par=c(alpha0,alpha1,beta).
Finally, with ARMAX(1) times series the Frechet families of distributions is available for the
innovations (dist="Frechet") with parameters, φ ∈ (−1, 1) (autoregressive coefficient),
σ > 0 (scale), α > 0 (shape) specified by par=c(corr,scale,shape).

Value

A vector of (1× n) observations simulated from a specified time series model.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, http://mypage.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@ensai.fr>, http://ensai.fr/en/equipe/stupfler-gilles/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting.
Springer.

Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series.
arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.

See Also

expectiles

Examples

# Data simulation from a 1-dimensional AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8

http://mypage.unibocconi.it/simonepadoan/
http://ensai.fr/en/equipe/stupfler-gilles/
http://arxiv.org/abs/2004.04078
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df <- 3
par <- c(corr, df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Graphic representation
plot(data, type="l")
acf(data)

sp500 Negative log-returns of S\&P 500.

Description

Series of negative log-returns of the U.S. stock market index Standard and Poor 500.

Format

A 8784 ∗ 2 data frame.

Details

From the series of n = 8785 closing prices St, t = 1, 2, ..., for the Standard and Poor 500 stock
market index, recorded from January 29, 1985 to December 12, 2019, the series of negative log-
returns.

Xt+1 = − log(St+1/St), 1 ≤ t ≤ n− 1

is available. Hence the dataset (negative log-returns) contains 8784 observations.
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