
EvalEst Guide

In R, the functions in this package are made available with

> library("EvalEst")

The code from the vignette that generates this guide can be loaded into an
editor with edit(vignette(”EvalEst”)). This uses the default editor, which can be
changed using options(). Also, it should be possible to view the pdf version of
the guide for this package with print(vignette(”EvalEst”)) and the guide for the
dse package with print(vignette(”dse-guide”)).

1 Evaluating Estimation Methods

One way to test estimation techniques is to specify a ”true” model which is used
to produce simulated data and then examine how well an estimation technique
finds the true model. This is not as general as theoretical results, since it is
really only valid at the ”true” parameter values and for the sample size tested,
however, it can be illustrative and theoretical results for small samples are very
difficult to obtain. It also provides a very good cross check of the simulation and
estimation code. Also, equivalent representations may have effects which are not
yet fully appreciated in the literature. The following models from Gilbert (1995)
1 will be used to illustrate.

> mod1 <- ARMA(A=array(c(1,-.25,-.05), c(3,1,1)),

B=array(1,c(1,1,1)))

> mod2 <- ARMA(A=array(c(1,-.8, -.2), c(3,1,1)),

B=array(1,c(1,1,1)))

> mod3 <- ARMA(

A=array(c(

1.00,-0.06,0.15,-0.03,0.00,0.02,0.03,-0.02,0.00,-0.02,-0.03,

-0.02,0.00,-0.07,-0.05,0.12,1.00,0.20,-0.03,-0.11,0.00,-0.07,

-0.03,0.08,0.00,-0.40,-0.05,-0.66,0.00,0.00,0.17,-0.18,1.00,

-0.11,-0.24,-0.09), c(4,3,3)),

B=array(diag(1,3), c(1,3,3)))

mod2 has a unit root, as can be verified with roots(mod2) or stability(mod2).
The function MonteCarloSimulations runs simulate repeatedly to give many

data samples.

> z <- MonteCarloSimulations(mod1,

simulation.args=list(sampleT=100))

> tfplot(z)

> distribution(z)

1P.D. Gilbert, 1993. ”State Space and ARMA Models: An Overview of the Equivalence”,
Bank of Canada working paper 93–4. Also available at www.bank-banque-canada.ca/pgilbert

1

Usually it is not necessary to use MonteCarloSimulations and actually save
all the simulations since the seed and other information about the random num-
ber generator (RNG) can be used to reproduce the samples. Thus functions
for testing estimation methods can produce the same samples when they are
needed.

The function EstEval simulates and then estimates models:

> e.ls.mod1 <- EstEval(mod1, replications=100,

simulation.args=list(sampleT=100, sd=1),

estimation="estVARXls",

estimation.args=list(max.lag=2),

criterion="TSmodel"

rng=list(kind="default", normal.kind="default",

seed=c(13,44,1,25,56,0,6,33,22,13,13,0))# Splus - see below

)

In this example simulation and estimation will be repeated 100 times with
samples of size 100 and the standard deviation of the model noise will be set
to 1. simulation.args are passed to the function simulate, which may take dif-
ferent arguments depending on the class of the model. Estimation is done with
the function estVARXls and estimation.args are passed to it. The argument
criterion specifies what should be returned from the estimation. In this case the
model is returned (An object of class TSmodel) but not additional information
as is usually returned in the object TSestModel. It is also possible to spec-
ify coef or roots to return only that specific information, but that information
can be extracted from the TSmodel as illustrated below. In general EstEval will
work with any estimation method which will take the results of simulate applied
to the supplied model and returns something that criterion can extract. That
is, if criterion(estimation(simulate(model))) returns something (with criterion
and estimation replaced by the functions you supply and model replaced by the
model you supply), then EstEval should work with your functions. This does
not mean that plots described below will necessarily work or make sense.

An optional argument rng can be specified. If supplied, the RNG and seed
will be set. This is useful if an experiment is to be reproduced. Using Splus
3.2 and 3.3 the settings indicated by comments in the examples in this section
will reproduce the results in Gilbert (1995). It was possible to generate similar
random experiments in S and in R, but not using the Splus default generator.
(I have not tested in Splus for several years now.) If the argument rng is given
as

> rng=list(kind="Wichmann-Hill", seed=c(979,1479,1542),

normal.kind="Box-Muller")

then the uniform RNG is set to Wichmann-Hill, the normal transformation is
set to Box-Muller, and the initial seed is set. With the RNG set in this way
both Splus and R will produce similar results. These settings are reset to their

2

previous values when the function completes. They can be set so that they do
not revert using the function

> setRNG(kind="Wichmann-Hill", seed=c(979,1479,1542),

normal.kind="Box-Muller")

The argument seed is optional (and other values can be supplied but they should
be consistent with the generator). An initial seed will be generated if it is omit-
ted. Typically the seed should be set only when trying to reproduce previous
results.

The following uses mod2 as the true model.

> e.ls.mod2 <- EstEval(mod2, replications=100,

simulation.args=list(sampleT=100, sd=1),

estimation="estVARXls",

estimation.args=list(max.lag=2),

criterion="TSmodel"

#rng=list(kind="default", normal.kind="default",

#seed=c(13,43,7,57,62,3,30,29,24,54,47,2))#Splus

)

To plot a line chart of the cumulative average of the estimated parameters
use coef to extract the parameters (coefficients) from the TSmodel :

> par(mfcol=c(2,1)) # set the number of plots on the graphics device

> tfplot(coef(e.ls.mod1))

The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2))

3

0 20 40 60 80 100

−
0.

90
−

0.
80

−
0.

70

pa
rm

 1

0 20 40 60 80 100

−
0.

30
−

0.
20

−
0.

10

pa
rm

 2

The straight line indicates the true value. To plot a line chart of the esti-
mated parameters use coef to extract the parameters from the TSmodel :

> par(mfcol = c(2,1)) #set number of plots on graphics device

> tfplot(coef(e.ls.mod1), cumulate = FALSE, bounds = FALSE)

bounds controls whether or not estimated one standard deviation bounds are
plotted. The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2), cumulate = FALSE, bounds = FALSE)

4

0 20 40 60 80 100

−
1.

1
−

0.
9

−
0.

7

pa
rm

 1

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
1

pa
rm

 2

To plot the distribution of estimates:

> distribution(coef(e.ls.mod1), bandwidth=.2)

The plot from mod2 looks like this:

> distribution(coef(e.ls.mod2), bandwidth=.2)

5

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

parameter 1

de
ns

ity

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

parameter 2

de
ns

ity

To plot the roots of the estimated model use roots to extract the roots from
the TSmodel :

> e.ls.mod1.roots <- roots(e.ls.mod1)

> plot(e.ls.mod1.roots)

> plot(e.ls.mod1.roots, complex.plane=F)

> plot(roots(e.ls.mod2), complex.plane=F)

> distribution(e.ls.mod1.roots, bandwidth=.2)

bandwidth is an argument passed to the kernel estimator used to generate the
plot. The plot from mod2 looks like this:

> distribution(roots(e.ls.mod2), bandwidth=.1)

6

0.6 0.8 1.0 1.2

0
1

2
3

4

density.default(x = r[, i], bw = bandwidth)

Mod root 1

de
ns

ity

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

density.default(x = r[, i], bw = bandwidth)

Mod root 2

de
ns

ity

Some attention to the equivalence of different model representations is nec-
essary when evaluating estimation methods. For example, if the state space
equivalent of a VAR model is used as the true model for simulation and est-
VARXls is used for estimation then parameter estimates will be very different
from those of the state space model (but root estimates should still be similar).
Many estimation techniques may also do some model selection (such as estBlack-
Box does), so the returned models may have different numbers of parameters
and/or lags.

Evaluating models based on their forecast performance avoids some of these
difficulties. In any case, since forecasting is often the end objective, it is useful
to evaluate models directly on their forecasting performance. The function
forecastCovEstimatorsWRTtrue() evaluates estimation methods using a given
true model for simulation. It calculates the covariance of forecast errors of the
estimated models relative to the output of the true model:

> pc <- forecastCovEstimatorsWRTtrue(mod3,

estimation.methods = list(estVARXls=list(max.lag=6)),

est.replications=2, pred.replications=10

rng=list(kind="default", normal.kind="default",

seed=c(53,41,26,39,10,1,19,25,56,32,28,3))#Splus

)

The names of the elements in the list estimation.methods specify the esti-
mation methods and their value is a list of the arguments to the method. If no

7

arguments are required then the value should be specified as NULL. The covari-
ance for forecasts of zero and a simple trend are also calculated. These are useful
benchmarks. est.replications controls the number of times a sample is generated
and used for estimating a model with each estimation method. pred.replications
controls how many times the forecasts from the estimated model are compared
with output from the true model. Thus the total number of simulations is
est.replications + est.replications * pred.replications, so 22 in the above exam-
ple.

A similar function is available which applies a model reduction procedure
after the estimation:

> pc.rd <- forecastCovReductionsWRTtrue(mod3,

estimation.methods = list(estVARXls=list(max.lag=3)),

est.replications=2, pred.replications=10

rng = list(kind = "default", normal.kind="default",

seed=c(29,55,47,18,33,1,15,15,34,46,13,2))

)

The reduction procedure used is MittnikReducedModels. An optional argu-
ment criteria can be specified. This controls the model selection criteria used
by the reduction technique.

It is possible to compare different estimation techniques on the basis of their
out-of-sample forecasting error with respect to a data sample. In the following
example estimation.sample controls the portion of the sample used for estima-
tion. It can be a fraction indicating a portion of the sample, or it can be an
integer in which case it will be treated as the number of periods to use for
estimation.

> data(eg1.DSE.data, package="dse")

> z <-outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample=.5,

estimation.methods = list(estVARXar=NULL, estVARXls=NULL),

trend=T)

The plot looks like this:

> tfplot(z)

8

2 4 6 8 10 12

0.
0e

+
00

1.
0e

+
08

2.
0e

+
08

horizon

M
1

Prediction variance relative to given data.

2 4 6 8 10 12

0.
0e

+
00

1.
0e

+
10

2.
0e

+
10

horizon

G
D

P
l2

2 4 6 8 10 12

0
50

0
10

00
15

00

horizon

C
P

I

trend
estVARXar NULL
estVARXls NULL

In the example below the number of lags is limited (the default is 12 for
estBlackBox4) and printing of intermediate results is suppressed.

> z <-outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample=.5,

estimation.methods = list(

estBlackBox4=list(max.lag=3, verbose=F),

estVARXls=list(max.lag=3)),

trend=T, zero=T)

> tfplot(z)

9

The object returned by outOfSample.forecastCovEstimatorsWRTdata() con-
tains the estimated models so it is possible to extract the models and use l, hori-
zonForecasts and featherForecasts. In the above example the model estimated
with estBlackBox4 is the first model and that estimated with estVARXls is the
second, so

> zz <- horizonForecasts(TSmodel(z, select=1), TSdata(z),

horizons=c(1,3,6))

would generate an object with the actual forecasts for the model estimated
with estBlackBox4 (rather than the covariance of the forecast errors) and fore-
casts(zz)[3,30,] will then be the prediction made for the 30th period from 6 (the
third element of horizons) periods previous. The generic function horizonFore-
casts() can also be applied directly to z and the appropriate information will be
extracted to generate forecasts for all the estimated models.

10

