
maxlogL: A general computational procedure for

Maximum Likelihood estimation in R

Jaime Mosquera Gutiérrez

Universidad Nacional de Colombia
Freddy Hernández

Universidad Nacional de Colombia

Abstract

Maximum likelihood (ML) method is preferred among others because it produces con-
sistent and efficient estimators. However, likelihood optimization processes frequently
involve unwieldy mathematical expressions and it is necessary in some cases to implement
distributions and constantly build (log-)likelihood functions in computing languages in
order to get numerical solutions. We present maxlogL, a function contained in the Esti-

mationTools package for ML parameter estimation of any probability function loaded in
R with no need of special structures, given a data set. We show via simulation that the
routine has good performance in estimating the parameters of three distributions (normal,
ZIP and user-defined). Finally, we present two application examples with real data.

Keywords: Maximum likelihood estimation, parameter estimation, R, EstimationTools.

1. Introduction

Parameter estimation for probability density functions or probability mass functions is a
central problem in statistical analysis and applied sciences because it allows to build pre-
dictive models and make inferences. Traditionally this problem has been tackled by means
of likelihood maximization, as it was introduced by Fisher (1912). The method consists on
performing an optimization through first derivative of the log-likelihood function and solve
the outcoming system of equations. Despite its validity for any probability distribution, there
exist a vast variety of them with cumbersome derivatives which produce non-linear systems
of equations, therefore it is necessary to implement numerical methods and develop compu-
tational algorithms to find a solution.

R (R Core Team 2019) is a free language developed for statistical computing and equipped
with unconstrained and box-constrained general-purpose optimization tools in base package:
Fox, Hall, and Schryer (1978) developed the function nlminb for optimization using PORT
(portable Fortran programs for numerical computation) routines; Nash (1979) implemented
optim, a function that performs optimization based on three algorithms: (1) Nelder and Mead
(1965), (2) quasi-Newton (BFGS) and (3) conjugate-gradient (CG). Either the former or the
latter is implemented, users must take a distribution included in any package or create their
own function otherwise and then write the likelihood.

On the other hand, R posses an extensive number of libraries (add-ons) in order to enhance its
capabilities, e.g gamlss package (Stasinopoulos and Rigby 2007) for fitting generalized additive
models for location, scale and shape. It is possible to carry out parameter estimation with

2 maxlogL: Maximum Likelihood estimation in R

an empty regression model of any distribution implemented as a gamlss.family structure.
Visit Stasinopoulos, Rigby, Heller, Voudouris, and De Bastiani (2017) for more details.

In this paper, we introduce the function maxlogL, which is capable of applying maximum like-
lihood estimation based on optimization through optim or nlminb only with the density/mass
function defined as usual in R. The user could define its own distribution or use whichever
existing in any package. The remainder of the article defines the maximization problem
mathematically and computationally. Then, we present a simulation study to evaluate the
performance of maxlogL with data generated from normal, ZIP and user-defined distributions.
Finally, we give an application with a real data set and present some conclusions.

2. Maximum Likelihood estimation

Let be y⊤ = (y1, y2, ..., yn) a random sample with n observations drawn from a population
with distribution f(·|θ), with θ a vector of parameters. The likelihood function of θ is

L(θ|y) =
n

∏

i=1

f(yi|θ). (1)

The method of ML finds the parameter values that makes data more probable. It is achieved
by computing a vector θ̂ such that

θ̂ = arg max
θ∈Θ

L(θ|y). (2)

It is usual to perform maximization of log-likelihood function, i.e. l(θ|y) = log L(θ|y). The
variance-covariance matrix of ML estimators is given by

V ar(θ̂) = I−1(θ̂) = C(θ̂), (3)

where I(θ̂) is the Fisher Information Matrix. The standard errors can be calculated as the
square root of the diagonal elements of matrix C (Pawitan 2013)

S.E(θ̂) =
√

Cjj(θ̂). (4)

The R function presented here calculates l(θ|y) computationally, and computes standard
errors from Hessian matrix.

3. Basic usage and features

Our maxlogL function is a S3 object of class maxlogL. It is included in EstimationTools,
a package available from the Comprehensive R Archive Network (CRAN) https://cran.

r-project.org/package=EstimationTools. It can be downloaded and loaded in global
environment typing the following instructions in the console:

R> install.packages("EstimationTools")

R> library(EstimationTools)

https://cran.r-project.org/package=EstimationTools
https://cran.r-project.org/package=EstimationTools

Jaime Mosquera Gutiérrez, Second Author 3

With maxlogL we provide a flexible implementation of ML estimation. It cab be executed
stating its most important arguments

R> maxlogL(x, dist, optimizer, lower = NULL, upper = NULL)

where the argument x is a vector with data to be fitted, dist corresponds to the probabil-
ity density/mass function of the working distribution, whereas upper and lower are limits
used when user selects box-constrained algorithms. maxlogL is a wrapper function specifi-
cally developed for ML estimation, which allows to implement any of optim algorithms for
optimization or nlminb routine for unconstrained or box-constrained optimization through
the argument optimizer.

EstimationTools package provides a summary method for class maxlogL, which displays AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion), ML estimates and its
standard error. The method also reports the optimization routine selected by the user and the
method used for computation of standard error. There are three methods available: hessian

function from numDeriv package, calculation with optim (setting the argument hessian =

TRUE and bootstrap calculation, with boot function of boot package (Davison and Hinkley
1997; Canty and Ripley 2017).

Hence, for non-censorship fitting the user must pass a vector with data and specify a prob-
ability distribution function available in R. For example, fitting a sample generated from a
normal distribution, Z ∼ NO(µ = 10, σ2 = 1), could be done with the next command lines:

R> set.seed(1000)

R> z <- rnorm(n = 1000, mean = 10, sd = 1)

R> fit1 <- maxlogL(x = z, dist = 'dnorm', start=c(2, 3),

+ lower=c(-15, 0), upper=c(15, 10))

R> summary(fit1)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

AIC BIC

2804.033 2813.849

Estimate Std. Error Z value Pr(>|z|)

mean 9.98752 0.03103 321.87 <2e-16 ***

sd 0.98126 0.02194 44.72 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

The link argument is a list with entries fun and over, which specify the link functions applied
and the name of linked parameters in probability function implemented in R respectively. The

4 maxlogL: Maximum Likelihood estimation in R

estimation performed above can be carried out applying logarithm link function to σ, avoiding
problems of estimation in the boundary of parametric space. The usage is illustrated in the
following code snippet:

R> fit2 <- maxlogL(x = z, dist = 'dnorm',

+ link = list(over = "sd", fun = "log_link"))

R> summary(fit2)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

AIC BIC

2804.033 2813.849

Estimate Std. Error Z value Pr(>|z|)

mean 9.98752 0.03103 321.87 <2e-16 ***

sd 0.98126 0.02194 44.72 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

The user can apply link functions to more than one parameter of the distribution:

R> fit3 <- maxlogL(x = z, dist = 'dnorm',

+ link = list(over = c("mean", "sd"),

+ fun = c("log_link", "log_link")))

R> summary(fit3)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

AIC BIC

2804.033 2813.849

Estimate Std. Error Z value Pr(>|z|)

mean 9.98752 0.03103 321.87 <2e-16 ***

sd 0.98126 0.02194 44.72 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

Jaime Mosquera Gutiérrez, Second Author 5

Other link functions available are logit and negative inverse, which must be specified as
"logit_link" and "NegInv_link". On the other hand, maxlogL allows to define fixed known
parameters, e.g., the sample size n in estimation of success proportion in a binomial distribu-
tion N ∼ BI(p = 0.3, n = 10). This parameters can be specified with fixed argument, which
is a list that stores the fixed parameters value specified by their names

R> set.seed(100)

R> N <- rbinom(n = 100, size = 10, prob = 0.3)

R> phat <- maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),

+ link = list(over = "prob", fun = "logit_link"))

R> summary(phat)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

AIC BIC

334.9805 334.9805

Estimate Std. Error Z value Pr(>|z|)

prob 0.31200 0.01465 21.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

As can be seen, the procedure applies the inverse of the link function to return the parameter
to the original scale.

«««< HEAD =======

4. Simulation Study

In this section we simulated ML estimation with some distributions with maxlogL.

4.1. Existing distributions

We simulated the following two types of random variables: X ∼ NO(µ = 5, σ2 = 4) with
sample sizes n ∈ {3, ..., 400} and Y ∼ ZIP(λ = 6, π = 0.08) with n ∈ {3, ..., 500}. We
performed 1000 replications of each sample size.

4.2. User-defined distribution

Additionally, we simulated W ∼ EEB(µ = 0.5, σ = 1, ν = 1.5, m = 10) with n ∈ {3, ..., 1000}
(an exponentiated exponential binomial distribution, proposed by Bakouch, Ristić, Asgharzadeh,
Esmaily, and Al-Zahrani (2012)). As the previous case, we performed 1000 replications of

6 maxlogL: Maximum Likelihood estimation in R

each sample size. Probability density function of EEB distribution is given by the following
expression:

f(w|µ, σ, ν, m) =
σνµm

1 − (1 − µ)m

(

1 − e−σw
)ν−1

[

1 − µ
(

1 − e−σw
)ν

]m−1
, (5)

with w > 0, µ ∈ (0, 1), σ, ν > 0 and m an integer such that m ≥ 1. We took this distribution
as the user-defined by implementing it as an R function, as is customary. Note that argument
size corresponds to parameter m in equation (5):

R> dEEB <- function(x, mu = 0.5, sigma = 1, nu = 1.5, size = 10,

+ log = FALSE){

+ if (any(x<0))

+ stop(paste("x must greater than zero", "\n", ""))

+ if (any(mu < 0) | any(mu > 1))

+ stop(paste("mu must be between 0 and 1", "\n", ""))

+ if (any(sigma<=0))

+ stop(paste("sigma must be greater than zero", "\n", ""))

+ if (any(nu<=0))

+ stop(paste("nu must be greater than zero", "\n", ""))

+

+ loglik <- log(sigma * nu * size * mu) - sigma * x +

+ (nu - 1) * log(1 - exp(-sigma * x)) -

+ log(1 - (1 - mu)^size) +

+ (size - 1) * log(1 - mu * (1 - exp(-sigma * x))^nu)

+ if (log == FALSE)

+ density <- exp(loglik) else density <- loglik

+ return(density)

+ }

Jaime Mosquera Gutiérrez, Second Author 7

0 100 200 300 400

4
.9

6
4
.9

8
5
.0

0
5
.0

2
5
.0

4

n

µ̂

nlminb

optim (BFGS)

(a)

0 100 200 300 400

1
.2

1
.4

1
.6

1
.8

2
.0

n
σ̂

nlminb

optim (BFGS)

(b)

Figure 1: Mean value for (a) location parameter µ̂ and (b) scale parameter σ̂ versus sample
size n in normal distribution based on 1000 replications. Horizontal red lines are the true
value of the parameters.

5. Results

The results of Monte Carlo study for the three distributions mentioned are presented in
Figure 1 above, and Figures 2 and 3 below. All the plots show that the mean estimates tend
to the true value of the parameter as the sample size increases, as is expected under regularity
conditions.

8 maxlogL: Maximum Likelihood estimation in R

0 200 400 600 800 1000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

n

µ̂

nlminb

optim (BFGS)

(a)

0 200 400 600 800 1000

1
.0

1
.5

2
.0

2
.5

n
σ̂

nlminb

optim (BFGS)

(b)

0 200 400 600 800 1000

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

n

ν̂

nlminb

optim (BFGS)

(c)

Figure 2: Mean value for (a) proportion of successes µ̂, (b) scale parameter σ̂ and (c) shape
parameter τ̂ versus sample size n in EEB distribution based on 1000 replications. Horizontal
red lines are the true value of the parameters.

Variance of estimated parameters decreases as sample size increases, according to the efficiency
property of ML estimators (Gurland 1954; Daniels 1961). This results are presented in figures
??, ?? and ?? of Appendix ??.

Jaime Mosquera Gutiérrez, Second Author 9

0 100 200 300 400 500

5
.9

0
5
.9

5
6
.0

0

nlminb

optim (BFGS)

λ^

n

(a)

0 100 200 300 400 5000
.0

7
4

0
.0

7
8

0
.0

8
2

0
.0

8
6

nlminb

optim (BFGS)

π̂
n

(b)

Figure 3: Mean value for (a) rate parameter λ̂ and (b) extra zeros proportion π̂ versus sample
size n in ZIP distribution based on 1000 replications. Horizontal red lines are the true value
of the parameters.

»»»> a35a8b6c4df50cfe93d75be77492e41c5bf8026c

6. Illustrative examples

In the following examples we replicate maximum likelihood method with maxlogL in two
applications: fitting of a power Lindley distribution to model tensile strength of carbon fibers
and parameter estimation in two stage hierarchical model of retention proportions in memory
tests.

6.1. Tensile strength data: power Lindley distribution

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966
1.997 2.006 2.027 2.055 2.063 2.098 2.14 2.179 2.224 2.240 2.253
2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435
2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.57 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821
2.848 2.88 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433
3.585 3.585

Table 1: Tensile strength of 69 fibers (Devendra and Rangaswamy 2013).

Data presented in Table 1 correspond to the tensile strength T (in GPa) of 69 specimens of
carbon fiber tested under tension at gauge lengths of 20 mm.

10 maxlogL: Maximum Likelihood estimation in R

Ghitany, Al-Mutairi, Balakrishnan, and Al-Enezi (2013) fitted their power Lindley (PL) dis-
tribution:

f(u|µ, σ) =
µσ2

σ + 1
(1 + uµ)uµ−1e−σuµ

, u > 0, µ, σ > 0. (6)

We implemented this density function in the R function dPL displayed below:

R> dPL <- function(x, mu, sigma, log=FALSE){

+ if (any(x < 0))

+ stop(paste("x must be positive", "\n", ""))

+ if (any(mu <= 0))

+ stop(paste("mu must be positive", "\n", ""))

+ if (any(sigma <= 0))

+ stop(paste("sigma must be positive", "\n", ""))

+

+ loglik <- log(mu) + 2*log(sigma) - log(sigma+1) +

+ log(1+(x^mu)) + (mu-1)*log(x) - sigma*(x^mu)

+

+ if (log == FALSE)

+ density <- exp(loglik)

+ else density <- loglik

+ return(density)

+ }

Then, we estimate parameters with maxlogL taking the vector of strengths from data set
fibers, as follows:

R> # Fitting of tensile strenght data

R> st <- Fibers$Strenght

R> theta <- maxlogL(x = st, dist = "dPL",

+ link = list(over = c("mu", "sigma"),

+ fun = c("log_link", "log_link")))

R> summary(theta)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

AIC BIC

102.119 106.5872

Estimate Std. Error Z value Pr(>|z|)

mu 3.86778 0.31371 12.329 < 2e-16 ***

sigma 0.04967 0.01599 3.107 0.00189 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Jaime Mosquera Gutiérrez, Second Author 11

Note: p-values valid under asymptotic normality of estimators

Estimations are µ̂ = 3.8678 and σ̂ = 0.0497. Essentially, we get the same values computed
by Ghitany et al. (2013). In Figure 4 we showed the performance of parameter estimation
plotting corresponding density along with the histogram in the left panel and estimated
survival function along with Kaplan-Meier estimator in the right panel.

u

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

E
st

im
at

ed
 s

u
rv

iv
al

 f
u
n
ct

io
n

Kaplan−Meier estimator

PL survival function

(b)

Figure 4: Fitting of tensile strength data: (a) estimated density and histogram; (b) estimated
power Lindley survival function and Kaplan-Meier estimator.

6.2. Forgetting data: hierarchical binomial distribution

maxlogL is capable of fit hierarchical models with the proper function definition of input
variable. To illustrate the estimation, we replicated forgetting data example presented in
Myung (2003), which used data from Murdock, Bennet B. (1961).

The retention function is a probability function that models the proportion of correct recall
at time ti in each trial in memory tests. Myung (2003) studied the following two models in
their application example:

power model: p(a, b, t) = at−b,

exponential model: p(a, b, t) = ae−bt, a, b > 0.
(7)

Each observation in the data set corresponds to a proportion obtained as the quotient of
correct responses (xi) and the total number of independent trials (replications of each memory

12 maxlogL: Maximum Likelihood estimation in R

m = 100 (number of trials)

Retention Interval (sec.) 1 3 6 9 12 18

Observed proportion 0.94 0.77 0.40 0.26 0.24 0.16

Table 2: Observed proportion of recalls at each time.

test, represented by m). This kind of experiment can be modelled with a binomial distribution:

f(xi|a, b, m) =
m!

(m − xi)! xi!
p(a, b, ti) [1 − p(a, b, ti)]

m−xi (8)

The usefulness of each retention equation is given by their goodness of fit.

Power model implementation

The hierarchical model with power retention function is implemented in an R function as
follows:

R> # Power model implementation

R> power_logL <- function(x, a, b, log = FALSE){

+ p <- a * x[,1]^(-b)

+ f <- dbinom(x = x[,2], size = m, prob = p)

+ if (log == TRUE)

+ density <- log(f) else density <- f

+ return(density)

+ }

Conditional density in equation (8) depends on xi, but proportion of successes depends on t,
as equation (7) shows. For this reason, the input argument x must be a n × 2 matrix, where
n is the sample size. In forgetting data, n = 6. Then, the estimation is performed as usual
with maxlogL. Note line six in the following chunk of code, which corresponds to the matrix
definition of the input data aforementioned:

R> # Power model estimation

R> m <- 100 # Independent trials

R> t <- c(1,3,6,9,12,18) # time intervals

R> p.ob <- c(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion

R> x <- p.ob*m # Correct responses

R> x <- as.integer(x)

R> Xi <- matrix(c(t,x), ncol=2, nrow=6)

R> retention.pwr <- maxlogL(x = Xi, dist = "power_logL", lower = c(0.01,0.01),

+ upper = c(1,1), start = c(0.1,0.1))

R> summary(retention.pwr)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

Jaime Mosquera Gutiérrez, Second Author 13

AIC BIC

57.4522 58.422

Estimate Std. Error Z value Pr(>|z|)

a 0.95312 0.01860 51.25 <2e-16 ***

b 0.49793 0.03236 15.38 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

In this application, convergence was achieved by solving a box-constrained likelihood opti-
mization, whose boundaries were specified in arguments lower and upper. Furthermore, tun-
ing initial values was necessary with argument start. Computed values are θ̂ = (âpwr, b̂pwr) =
(0.953, 0.498), which are the same estimates of Myung (2003). Power fitting is illustrated in
Figure 5.

Exponential model implementation

Similarly as before, exponential retention function is implemented and input data is defined
as a matrix, in this fashion:

R> # Exponential model implementation

R> exp_logL <- function(x, a, b, log = FALSE){

+ p <- a * exp(-x[,1]*b)

+ f <- dbinom(x = x[,2], size = m, prob = p)

+ if (log == TRUE)

+ density <- log(f) else density <- f

+ return(density)

+ }

R> # Exponential model estimation

R> m <- 100 # Independent trials

R> t <- c(1,3,6,9,12,18) # time intervals

R> p.ob <- c(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion

R> x <- p.ob*m # Correct responses

R> x <- as.integer(x)

R> Xi <- matrix(c(t,x), ncol=2, nrow=6)

R> retention.exp <- maxlogL(x = Xi, dist = 'exp_logL', lower = c(0.1,0.1),

+ upper = c(2,2), start = c(0.1,0.2))

R> summary(retention.exp)

Optimization routine: nlminb

Standard Error calculation: Hessian from optim

14 maxlogL: Maximum Likelihood estimation in R

AIC BIC

41.3329 42.3027

Estimate Std. Error Z value Pr(>|z|)

a 1.070112 0.031342 34.14 <2e-16 ***

b 0.130826 0.009252 14.14 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: p-values valid under asymptotic normality of estimators

Again, we obtain the same estimates of Myung (2003): θ̂ = (âexp, b̂exp) = (1.070, 0.131).
Exponential fitting is shown in Figure 5. According to the Akaike information criterion, the
exponential model has better fitness (AICexp = 41.33 against AICpwr = 57.45).

5 10 15

0
.2

0
.4

0
.6

0
.8

Retention interval (sec.)

P
ro

p
o
rt

io
n

Observed

Power model

Exponential model

Figure 5: Observed proportion of recalls and models fitted.

7. Conclusions

We have implemented classic estimation via maximization of log-likelihood function through
basic optimization routines in R such as optim and nlminb. With maxlogL, we enable re-
searchers, developers and users in general to compute ML estimators of any distribution in
a fast and reliable way. With our summary method, it is possible to calculate standard error
of estimates through Hessian matrix or bootstrap algorithm. In some cases, it is possible to

Jaime Mosquera Gutiérrez, Second Author 15

implement estimation in hierarchical models, with appropriate tuning of initial values.

In future revisions, we could implement evolutionary algorithms to perform estimation in dis-
tributions with regularity issues (Haupt and Haupt 2003). Furthermore, our routine could be
took to develop further work on log-likelihood estimation, such as developing new parametric
regression models.

References

Bakouch HS, Ristić MM, Asgharzadeh A, Esmaily L, Al-Zahrani BM (2012). “An expo-
nentiated exponential binomial distribution with application.” Statistics and Probability
Letters, 82(6), 1067–1081. ISSN 01677152. doi:10.1016/j.spl.2012.03.004. URL
http://dx.doi.org/10.1016/j.spl.2012.03.004.

Canty A, Ripley BD (2017). boot: Bootstrap R (S-Plus) Functions.

Daniels HE (1961). “Efficiency of a maximum likelihood estimator.” In J Neyman (ed.),
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics, pp. 151–163. University of California
Press, Berkeley.

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Applications. Cambridge
University Press, Cambridge. URL http://statwww.epfl.ch/davison/BMA/.

Devendra K, Rangaswamy T (2013). “Strength Characterization of E-glass Fiber Reinforced
Epoxy Composites with Filler Materials.” Journal of Minerals and Materials Characteriza-
tion and Engineering, 01(06), 353–357. ISSN 2327-4077. doi:10.4236/jmmce.2013.16054.
URL http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmmce.2013.16054.

Fisher R (1912). “On an Absolute Criterion for Fitting Frequency Curves.” Messenger of
Mathematics, 41(1), 155–160. ISSN 08834237. doi:10.2307/2246266.

Fox PA, Hall AP, Schryer NL (1978). “The PORT Mathematical Subroutine Library.” ACM
Transactions on Mathematical Software, 4(2), 104–126. ISSN 00983500. doi:10.1145/

355780.355783. URL http://portal.acm.org/citation.cfm?doid=355780.355783.

Ghitany ME, Al-Mutairi DK, Balakrishnan N, Al-Enezi LJ (2013). “Power Lindley distri-
bution and associated inference.” Computational Statistics and Data Analysis, 64, 20–33.
ISSN 01679473. doi:10.1016/j.csda.2013.02.026. URL http://dx.doi.org/10.1016/

j.csda.2013.02.026.

Gurland J (1954). “On regularity conditions for maximum likelihood estimators.” Scan-
dinavian Actuarial Journal, 1954(1), 71–76. ISSN 0346-1238. doi:10.1080/03461238.

1954.10414197. URL http://www.tandfonline.com/doi/abs/10.1080/03461238.

1954.10414197.

Haupt RL, Haupt SE (2003). Practical Genetic Algorithms. John Wiley & Sons, Inc., Hobo-
ken, NJ, USA. ISBN 0471455652. doi:10.1002/0471671746. URL http://doi.wiley.

com/10.1002/0471671746.

http://dx.doi.org/10.1016/j.spl.2012.03.004
http://dx.doi.org/10.1016/j.spl.2012.03.004
http://statwww.epfl.ch/davison/BMA/
http://dx.doi.org/10.4236/jmmce.2013.16054
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmmce.2013.16054
http://dx.doi.org/10.2307/2246266
http://dx.doi.org/10.1145/355780.355783
http://dx.doi.org/10.1145/355780.355783
http://portal.acm.org/citation.cfm?doid=355780.355783
http://dx.doi.org/10.1016/j.csda.2013.02.026
http://dx.doi.org/10.1016/j.csda.2013.02.026
http://dx.doi.org/10.1016/j.csda.2013.02.026
http://dx.doi.org/10.1080/03461238.1954.10414197
http://dx.doi.org/10.1080/03461238.1954.10414197
http://www.tandfonline.com/doi/abs/10.1080/03461238.1954.10414197
http://www.tandfonline.com/doi/abs/10.1080/03461238.1954.10414197
http://dx.doi.org/10.1002/0471671746
http://doi.wiley.com/10.1002/0471671746
http://doi.wiley.com/10.1002/0471671746

16 maxlogL: Maximum Likelihood estimation in R

Murdock, Bennet B J (1961). “The retention of individual items.” Journal of Experimental
Psychology, 62(6), 618–625. ISSN 0022-1015. doi:10.1037/h0043657. URL http://

content.apa.org/journals/xge/62/6/618.

Myung IJ (2003). “Tutorial on maximum likelihood estimation.” Journal of Mathematical
Psychology, 47(1), 90–100. ISSN 00222496. doi:10.1016/S0022-2496(02)00028-7. URL
https://linkinghub.elsevier.com/retrieve/pii/S0022249602000287.

Nash JC (1979). Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation. 2nd editio edition. Adam Hilger, Bristol.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer
Journal, 7(4), 308–313. ISSN 0010-4620. doi:10.1093/comjnl/7.4.308. URL https:

//academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/7.4.308.

Pawitan Y (2013). In all likelihood: statistical modelling and inference using likelihood. Oxford
University Press. ISBN 978-0199671229.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape ({GAMLSS}) in \proglang{R}.” Journal of Statistical Software, 23(7), 1–46. doi:

10.18637/jss.v023.i07.

Stasinopoulos M, Rigby RA, Heller GZ, Voudouris V, De Bastiani F (2017). “The GAMLSS
family of distributions.” In Flexible regression and smoothing using GAMLSS in R, pp.
153–189. CRC Press. ISBN 9781138197909.

Affiliation:

Jaime Mosquera Gutiérrez
Universidad Nacional de Colombia
School of Statistics
Faculty of Sciences
Universidad Nacional de Colombia
Cra. 65 #59a-110
Medellín, Colombia
E-mail: jmosquerag@unal.edu.co

http://dx.doi.org/10.1037/h0043657
http://content.apa.org/journals/xge/62/6/618
http://content.apa.org/journals/xge/62/6/618
http://dx.doi.org/10.1016/S0022-2496(02)00028-7
https://linkinghub.elsevier.com/retrieve/pii/S0022249602000287
http://dx.doi.org/10.1093/comjnl/7.4.308
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/7.4.308
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/7.4.308
https://www.r-project.org/
http://dx.doi.org/10.18637/jss.v023.i07
http://dx.doi.org/10.18637/jss.v023.i07
mailto:jmosquerag@unal.edu.co

	Introduction
	Maximum Likelihood estimation
	Basic usage and features
	Simulation Study
	Existing distributions
	User-defined distribution

	Results
	Illustrative examples
	Tensile strength data: power Lindley distribution
	Forgetting data: hierarchical binomial distribution

	Conclusions

